minix/servers/rs/const.h
Cristiano Giuffrida d1fd04e72a Initialization protocol for system services.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.

SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic 
registration / deregistration of system services.

VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.

RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
2010-01-08 01:20:42 +00:00

88 lines
4.3 KiB
C

/* Global constants used in RS.
*/
#ifndef RS_CONST_H
#define RS_CONST_H
/* Space reserved for program and arguments. */
#define MAX_COMMAND_LEN 512 /* maximum argument string length */
#define MAX_SCRIPT_LEN 256 /* maximum restart script name length */
#define MAX_NR_ARGS 4 /* maximum number of arguments */
#define MAX_IPC_LIST 256 /* Max size of list for IPC target
* process names
*/
/* Flag values. */
#define RS_IN_USE 0x001 /* set when process slot is in use */
#define RS_EXITING 0x004 /* set when exit is expected */
#define RS_REFRESHING 0x008 /* set when refresh must be done */
#define RS_NOPINGREPLY 0x010 /* service failed to reply to a ping request */
#define RS_KILLED 0x020 /* service is killed */
#define RS_CRASHED 0x040 /* service crashed */
#define RS_LATEREPLY 0x080 /* no reply sent to RS_DOWN caller yet */
#define RS_SIGNALED 0x100 /* service crashed */
#define RS_INITIALIZING 0x200 /* set when init is in progress */
#define RS_UPDATING 0x400 /* set when update is in progress */
/* Sys flag values. */
#define SF_CORE_SRV 0x001 /* set for core system services
* XXX FIXME: This should trigger a system
* panic when a CORE_SRV service cannot
* be restarted. We need better error-handling
* in RS to change this.
*/
#define SF_SYNCH_BOOT 0X002 /* set when process needs synch boot init */
#define SF_NEED_COPY 0x004 /* set when process needs copy to restart */
#define SF_USE_COPY 0x008 /* set when process has a copy in memory */
/* Constants determining RS period and binary exponential backoff. */
#define RS_INIT_T 600 /* allow T ticks for init */
#define RS_DELTA_T 60 /* check every T ticks */
#define BACKOFF_BITS (sizeof(long)*8) /* bits in backoff field */
#define MAX_BACKOFF 30 /* max backoff in RS_DELTA_T */
/* Magic process table addresses. */
#define BEG_RPROC_ADDR (&rproc[0])
#define END_RPROC_ADDR (&rproc[NR_SYS_PROCS])
#define NIL_RPROC ((struct mproc *) 0)
/* Constants for live update. */
#define RS_DEFAULT_PREPARE_MAXTIME 2*RS_DELTA_T /* default prepare max time */
#define RS_MAX_PREPARE_MAXTIME 20*RS_DELTA_T /* max prepare max time */
/* Definitions for boot info tables. */
#define NULL_BOOT_NR NR_BOOT_PROCS /* marks a null boot entry */
#define DEFAULT_BOOT_NR NR_BOOT_PROCS /* marks the default boot entry */
#define SYS_ALL_C (-1) /* specifies all calls */
#define SYS_NULL_C (-2) /* marks a null call entry */
/* Define privilege flags for the various process types. */
#define SRV_F (SYS_PROC | PREEMPTIBLE) /* system services */
#define DSRV_F (SRV_F | DYN_PRIV_ID | CHECK_IO_PORT | CHECK_IRQ)
/* dynamic system services */
#define VM_F (SYS_PROC) /* vm */
#define RUSR_F (BILLABLE | PREEMPTIBLE) /* root user proc */
/* Define system call traps for the various process types. These call masks
* determine what system call traps a process is allowed to make.
*/
#define SRV_T (~0) /* system services */
#define DSRV_T SRV_T /* dynamic system services */
#define RUSR_T (1 << SENDREC) /* root user proc */
/* Send masks determine to whom processes can send messages or notifications. */
#define SRV_M (~0) /* system services */
#define RUSR_M \
( spi_to(PM_PROC_NR) | spi_to(FS_PROC_NR) | spi_to(RS_PROC_NR) \
| spi_to(VM_PROC_NR) ) /* root user proc */
/* Define sys flags for the various process types. */
#define SRV_SF (SF_CORE_SRV | SF_NEED_COPY) /* system services */
#define SRVC_SF (SRV_SF | SF_USE_COPY) /* system services with a copy */
#define DSRV_SF (0) /* dynamic system services */
#define VM_SF (SRV_SF | SF_SYNCH_BOOT) /* vm */
#endif /* RS_CONST_H */