minix/commands/part/part.c
Lionel Sambuc d3b0a89bab include/unistd.h: merged
Also removing lseek64, pread64, pwrite64.

Those functions have lost their "raison d'être", when off_t switched to
64bits.

Change-Id: I5aea35f01d6d10e3d6578a70323da7be5eca315a
2014-03-03 20:47:02 +01:00

2065 lines
49 KiB
C

/* part 1.57 - Partition table editor Author: Kees J. Bot
* 13 Mar 1992
* Needs about 22k heap+stack.
*/
#define nil 0
#include <sys/types.h>
#include <stdio.h>
#include <termcap.h>
#include <errno.h>
#include <unistd.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <time.h>
#include <dirent.h>
#include <limits.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <minix/config.h>
#include <minix/const.h>
#include <minix/partition.h>
#include <machine/partition.h>
#include <termios.h>
/* True if a partition is an extended partition. */
#define ext_part(s) ((s) == 0x05 || (s) == 0x0F)
/* Minix master bootstrap code. */
static char MASTERBOOT[] = "/usr/mdec/mbr";
/* Template:
----first---- --geom/last-- ------sectors-----
Device Cyl Head Sec Cyl Head Sec Base Size Kb
/dev/c0d0 977 5 17
/dev/c0d0:2 0 0 2 976 4 16 2 83043 41521
Num Sort Type
0* p0 81 MINIX 0 0 3 33 4 9 3 2880 1440
1 p1 81 MINIX 33 4 10 178 2 2 2883 12284 6142
2 p2 81 MINIX 178 2 3 976 4 16 15167 67878 33939
3 p3 00 None 0 0 0 0 0 -1 0 0 0
*/
#define MAXSIZE 999999999L /* Will 1T be enough this year? */
#define SECTOR_SIZE 512
#define DEV_FD0 0x200 /* Device number of /dev/fd0 */
#define DEV_C0D0 0x300 /* Device number of /dev/c0d0 */
#define arraysize(a) (sizeof(a) / sizeof((a)[0]))
#define arraylimit(a) ((a) + arraysize(a))
void report(const char *label)
{
fprintf(stderr, "part: %s: %s\n", label, strerror(errno));
}
void fatal(const char *label)
{
report(label);
exit(1);
}
struct termios termios;
void save_ttyflags(void)
/* Save tty attributes for later restoration. */
{
if (tcgetattr(0, &termios) < 0) fatal("");
}
void restore_ttyflags(void)
/* Reset the tty flags to how we got 'em. */
{
if (tcsetattr(0, TCSANOW, &termios) < 0) fatal("");
}
void tty_raw(void)
/* Set the terminal to raw mode, no signals, no echoing. */
{
struct termios rawterm;
rawterm= termios;
rawterm.c_lflag &= ~(ICANON|ISIG|ECHO);
rawterm.c_iflag &= ~(ICRNL);
if (tcsetattr(0, TCSANOW, &rawterm) < 0) fatal("");
}
#define ctrl(c) ((c) == '?' ? '\177' : ((c) & '\37'))
char t_cd[16], t_cm[32], t_so[16], t_se[16], t_md[16], t_me[16];
int t_li, t_co;
#define STATUSROW 10
void init_tty(void)
/* Get terminal capabilities and set the tty to "editor" mode. */
{
char *term;
static char termbuf[1024];
char *tp;
if ((term= getenv("TERM")) == nil || tgetent(termbuf, term) != 1) {
fprintf(stderr, "part: Can't get terminal capabilities\n");
exit(1);
}
if (tgetstr("cd", (tp= t_cd, &tp)) == nil
|| tgetstr("cm", (tp= t_cm, &tp)) == nil) {
fprintf(stderr, "part: This terminal is too dumb\n");
exit(1);
}
t_li= tgetnum("li");
t_co= tgetnum("co");
(void) tgetstr("so", (tp= t_so, &tp));
(void) tgetstr("se", (tp= t_se, &tp));
(void) tgetstr("md", (tp= t_md, &tp));
(void) tgetstr("me", (tp= t_me, &tp));
save_ttyflags();
tty_raw();
}
int putchr(int c)
{
return putchar(c);
}
void putstr(char *s)
{
int c;
while ((c= *s++) != 0) putchr(c);
}
void set_cursor(int row, int col)
{
tputs(tgoto(t_cm, col, row), 1, putchr);
}
int statusrow= STATUSROW;
int stat_ktl= 1;
int need_help= 1;
void stat_start(int serious)
/* Prepare for printing on a fresh status line, possibly highlighted. */
{
set_cursor(statusrow++, 0);
tputs(t_cd, 1, putchr);
if (serious) tputs(t_so, 1, putchr);
}
void stat_end(int ktl)
/* Closing bracket for stat_start. Sets "keystrokes to live" of message. */
{
tputs(t_se, 1, putchr);
stat_ktl= ktl;
need_help= 1;
}
void stat_reset(void)
/* Reset the statusline pointer and clear old messages if expired. */
{
if (stat_ktl > 0 && --stat_ktl == 0) {
statusrow= STATUSROW;
need_help= 1;
}
if (need_help && statusrow < (24-2)) {
if (statusrow > STATUSROW) stat_start(0);
stat_start(0);
putstr(
"Type '+' or '-' to change, 'r' to read, '?' for more help, 'q' to exit");
}
statusrow= STATUSROW;
need_help= 0;
}
void clear_screen(void)
{
set_cursor(0, 0);
tputs(t_cd, 1, putchr);
stat_ktl= 1;
stat_reset();
}
void reset_tty(void)
/* Reset the tty to cooked mode. */
{
restore_ttyflags();
set_cursor(statusrow, 0);
tputs(t_cd, 1, putchr);
}
void *alloc(size_t n)
{
void *m;
if ((m= malloc(n)) == nil) { reset_tty(); fatal(""); }
return m;
}
typedef enum parttype { DUNNO, SUBPART, PRIMARY, FLOPPY } parttype_t;
typedef struct device {
struct device *next, *prev; /* Circular dequeue. */
dev_t rdev; /* Device number (sorting only). */
char *name; /* E.g. /dev/c0d0 */
char *subname; /* E.g. /dev/c0d0:2 */
parttype_t parttype;
} device_t;
device_t *firstdev= nil, *curdev;
void newdevice(char *name, int scanning)
/* Add a device to the device list. If scanning is set then we are reading
* /dev, so insert the device in device number order and make /dev/c0d0 current.
*/
{
device_t *new, *nextdev, *prevdev;
struct stat st;
st.st_rdev= 0;
if (scanning) {
if (stat(name, &st) < 0 || !S_ISBLK(st.st_mode)) return;
switch (major(st.st_rdev)) {
case 2:
/* Floppy */
if (minor(st.st_rdev) >= 4) return;
break;
case 3:
case 8:
case 10:
case 12:
case 16:
/* Disk controller */
if (minor(st.st_rdev) >= 0x80
|| minor(st.st_rdev) % 5 != 0) return;
break;
default:
return;
}
/* Interesting device found. */
} else {
(void) stat(name, &st);
}
new= alloc(sizeof(*new));
new->rdev= st.st_rdev;
new->name= alloc((strlen(name) + 1) * sizeof(new->name[0]));
strcpy(new->name, name);
new->subname= new->name;
new->parttype= DUNNO;
if (major(st.st_rdev) == major(DEV_FD0) && minor(st.st_rdev) < 112) {
new->parttype= FLOPPY;
} else
if (st.st_rdev >= DEV_C0D0 && minor(st.st_rdev) < 128
&& minor(st.st_rdev) % 5 == 0) {
new->parttype= PRIMARY;
}
if (firstdev == nil) {
firstdev= new;
new->next= new->prev= new;
curdev= firstdev;
return;
}
nextdev= firstdev;
while (new->rdev >= nextdev->rdev
&& (nextdev= nextdev->next) != firstdev) {}
prevdev= nextdev->prev;
new->next= nextdev;
nextdev->prev= new;
new->prev= prevdev;
prevdev->next= new;
if (new->rdev < firstdev->rdev) firstdev= new;
if (new->rdev == DEV_C0D0) curdev= new;
if (curdev->rdev != DEV_C0D0) curdev= firstdev;
}
void getdevices(void)
/* Get all block devices from /dev that look interesting. */
{
DIR *d;
struct dirent *e;
char name[5 + NAME_MAX + 1];
if ((d= opendir("/dev")) == nil) fatal("/dev");
while ((e= readdir(d)) != nil) {
strcpy(name, "/dev/");
strcpy(name + 5, e->d_name);
newdevice(name, 1);
}
(void) closedir(d);
}
int dirty= 0;
unsigned char bootblock[SECTOR_SIZE];
struct part_entry table[1 + NR_PARTITIONS];
int existing[1 + NR_PARTITIONS];
unsigned long offset= 0, extbase= 0, extsize;
int submerged= 0;
char sort_index[1 + NR_PARTITIONS];
unsigned cylinders= 1, heads= 1, sectors= 1, secpcyl= 1;
unsigned alt_cyls= 1, alt_heads= 1, alt_secs= 1;
int precise= 0;
int device= -1;
unsigned long sortbase(struct part_entry *pe)
{
return pe->sysind == NO_PART ? -1 : pe->lowsec;
}
void sort(void)
/* Let the sort_index array show the order partitions are sorted in. */
{
int i, j;
int idx[1 + NR_PARTITIONS];
for (i= 1; i <= NR_PARTITIONS; i++) idx[i]= i;
for (i= 1; i <= NR_PARTITIONS; i++) {
for (j= 1; j <= NR_PARTITIONS-1; j++) {
int sj= idx[j], sj1= idx[j+1];
if (sortbase(&table[sj]) > sortbase(&table[sj1])) {
idx[j]= sj1;
idx[j+1]= sj;
}
}
}
for (i= 1; i <= NR_PARTITIONS; i++) sort_index[idx[i]]= i;
}
void dos2chs(unsigned char *dos, unsigned *chs)
/* Extract cylinder, head and sector from the three bytes DOS uses to address
* a sector. Note that bits 8 & 9 of the cylinder number come from bit 6 & 7
* of the sector byte. The sector number is rebased to count from 0.
*/
{
chs[0]= ((dos[1] & 0xC0) << 2) | dos[2];
chs[1]= dos[0];
chs[2]= (dos[1] & 0x3F) - 1;
}
void abs2dos(unsigned char *dos, unsigned long pos)
/* Translate a sector offset to three DOS bytes. */
{
unsigned h, c, s;
c= pos / secpcyl;
h= (pos % secpcyl) / sectors;
s= pos % sectors + 1;
dos[0]= h;
dos[1]= s | ((c >> 2) & 0xC0);
dos[2]= c & 0xFF;
}
void recompute0(void)
/* Recompute the partition size for the device after a geometry change. */
{
if (device < 0) {
cylinders= heads= sectors= 1;
memset(table, 0, sizeof(table));
} else
if (!precise && offset == 0) {
table[0].lowsec= 0;
table[0].size= (unsigned long) cylinders * heads * sectors;
}
table[0].sysind= device < 0 ? NO_PART : MINIX_PART;
secpcyl= heads * sectors;
}
void guess_geometry(void)
/* With a bit of work one can deduce the disk geometry from the partition
* table. This may be necessary if the driver gets it wrong. (If partition
* tables didn't have C/H/S numbers we would not care at all...)
*/
{
int i, n;
struct part_entry *pe;
unsigned chs[3];
unsigned long sec;
unsigned h, s;
unsigned char HS[256][8]; /* Bit map off all possible H/S */
alt_cyls= alt_heads= alt_secs= 0;
/* Initially all possible H/S combinations are possible. HS[h][0]
* bit 0 is used to rule out a head value.
*/
for (h= 1; h <= 255; h++) {
for (s= 0; s < 8; s++) HS[h][s]= 0xFF;
}
for (i= 0; i < 2*NR_PARTITIONS; i++) {
pe= &(table+1)[i >> 1];
if (pe->sysind == NO_PART) continue;
/* Get the end or start sector numbers (in that order). */
if ((i & 1) == 0) {
dos2chs(&pe->last_head, chs);
sec= pe->lowsec + pe->size - 1;
} else {
dos2chs(&pe->start_head, chs);
sec= pe->lowsec;
}
if (chs[0] >= alt_cyls) alt_cyls= chs[0]+1;
/* Which H/S combinations can be ruled out? */
for (h= 1; h <= 255; h++) {
if (HS[h][0] == 0) continue;
n = 0;
for (s= 1; s <= 63; s++) {
if ((chs[0] * h + chs[1]) * s + chs[2] != sec) {
HS[h][s/8] &= ~(1 << (s%8));
}
if (HS[h][s/8] & (1 << (s%8))) n++;
}
if (n == 0) HS[h][0]= 0;
}
}
/* See if only one remains. */
i= 0;
for (h= 1; h <= 255; h++) {
if (HS[h][0] == 0) continue;
for (s= 1; s <= 63; s++) {
if (HS[h][s/8] & (1 << (s%8))) {
i++;
alt_heads= h;
alt_secs= s;
}
}
}
/* Forget it if more than one choice... */
if (i > 1) alt_cyls= alt_heads= alt_secs= 0;
}
void geometry(void)
/* Find out the geometry of the device by querying the driver, or by looking
* at the partition table. These numbers are crosschecked to make sure that
* the geometry is correct. Master bootstraps other than the Minix one use
* the CHS numbers in the partition table to load the bootstrap of the active
* partition.
*/
{
struct stat dst;
int err= 0;
struct part_geom geometry;
if (submerged) {
/* Geometry already known. */
sort();
return;
}
precise= 0;
cylinders= 0;
recompute0();
if (device < 0) return;
/* Try to guess the geometry from the partition table. */
guess_geometry();
/* Try to get the geometry from the driver. */
(void) fstat(device, &dst);
if (S_ISBLK(dst.st_mode) || S_ISCHR(dst.st_mode)) {
/* Try to get the drive's geometry from the driver. */
if (ioctl(device, DIOCGETP, &geometry) < 0)
err= errno;
else {
table[0].lowsec= (unsigned long)(geometry.base /
SECTOR_SIZE);
table[0].size= (unsigned long)(geometry.size /
SECTOR_SIZE);
cylinders= geometry.cylinders;
heads= geometry.heads;
sectors= geometry.sectors;
precise= 1;
}
} else {
err= ENODEV;
}
if (err != 0) {
/* Getting the geometry from the driver failed, so use the
* alternate geometry.
*/
if (alt_heads == 0) {
alt_cyls= table[0].size / (64 * 32);
alt_heads= 64;
alt_secs= 32;
}
cylinders= alt_cyls;
heads= alt_heads;
sectors= alt_secs;
stat_start(1);
printf("Failure to get the geometry of %s: %s", curdev->name,
errno == ENOTTY ? "No driver support" : strerror(err));
stat_end(5);
stat_start(0);
printf("The geometry has been guessed as %ux%ux%u",
cylinders, heads, sectors);
stat_end(5);
} else {
if (alt_heads == 0) {
alt_cyls= cylinders;
alt_heads= heads;
alt_secs= sectors;
}
if (heads != alt_heads || sectors != alt_secs) {
stat_start(1);
printf("WARNING:");
stat_end(10);
stat_start(0);
printf(
"The %ux%ux%u geometry obtained from the device driver does not match",
cylinders, heads, sectors);
stat_end(10);
stat_start(0);
printf(
"the %ux%ux%u geometry implied by the partition table. Hit 'X' to switch",
alt_cyls, alt_heads, alt_secs);
stat_end(10);
stat_start(0);
printf(
"between the two geometries to see what is best. Note that the geometry");
stat_end(10);
stat_start(0);
printf(
"must be correct when the table is written or the system may not boot!");
stat_end(10);
}
}
/* Show the base and size of the device instead of the whole drive.
* This makes sense for subpartitioning primary partitions.
*/
if (precise && ioctl(device, DIOCGETP, &geometry) >= 0) {
table[0].lowsec= (unsigned long)(geometry.base / SECTOR_SIZE);
table[0].size = (unsigned long)(geometry.size / SECTOR_SIZE);
} else {
precise= 0;
}
recompute0();
sort();
}
typedef struct indicators { /* Partition type to partition name. */
unsigned char ind;
char name[10];
} indicators_t;
indicators_t ind_table[]= {
{ 0x00, "None" },
{ 0x01, "FAT-12" },
{ 0x02, "XENIX /" },
{ 0x03, "XENIX usr" },
{ 0x04, "FAT-16" },
{ 0x05, "EXTENDED" },
{ 0x06, "FAT-16" },
{ 0x07, "HPFS/NTFS" },
{ 0x08, "AIX" },
{ 0x09, "COHERENT" },
{ 0x0A, "OS/2" },
{ 0x0B, "FAT-32" },
{ 0x0C, "FAT?" },
{ 0x0E, "FAT?" },
{ 0x0F, "EXTENDED" },
{ 0x10, "OPUS" },
{ 0x40, "VENIX286" },
{ 0x42, "W2000 Dyn" },
{ 0x52, "MICROPORT" },
{ 0x63, "386/IX" },
{ 0x64, "NOVELL286" },
{ 0x65, "NOVELL386" },
{ 0x75, "PC/IX" },
{ 0x80, "MINIX-OLD" },
{ 0x81, "MINIX" },
{ 0x82, "LINUXswap" },
{ 0x83, "LINUX" },
{ 0x93, "AMOEBA" },
{ 0x94, "AMOEBAbad" },
{ 0xA5, "386BSD" },
{ 0xB7, "BSDI" },
{ 0xB8, "BSDI swap" },
{ 0xC7, "SYRINX" },
{ 0xDB, "CPM" },
{ 0xFF, "BADBLOCKS" },
};
char *typ2txt(int ind)
/* Translate a numeric partition indicator for human eyes. */
{
indicators_t *pind;
for (pind= ind_table; pind < arraylimit(ind_table); pind++) {
if (pind->ind == ind) return pind->name;
}
return "";
}
int round_sysind(int ind, int delta)
/* Find the next known partition type starting with ind in direction delta. */
{
indicators_t *pind;
ind= (ind + delta) & 0xFF;
if (delta < 0) {
for (pind= arraylimit(ind_table)-1; pind->ind > ind; pind--) {}
} else {
for (pind= ind_table; pind->ind < ind; pind++) {}
}
return pind->ind;
}
/* Objects on the screen, either simple pieces of the text or the cylinder
* number of the start of partition three.
*/
typedef enum objtype {
O_INFO, O_TEXT, O_DEV, O_SUB,
O_TYPTXT, O_SORT, O_NUM, O_TYPHEX,
O_CYL, O_HEAD, O_SEC,
O_SCYL, O_SHEAD, O_SSEC, O_LCYL, O_LHEAD, O_LSEC, O_BASE, O_SIZE, O_KB
} objtype_t;
#define rjust(type) ((type) >= O_TYPHEX)
#define computed(type) ((type) >= O_TYPTXT)
typedef struct object {
struct object *next;
objtype_t type; /* Text field, cylinder number, etc. */
char flags; /* Modifiable? */
char row;
char col;
char len;
struct part_entry *entry; /* What does the object refer to? */
char *text;
char value[20]; /* Value when printed. */
} object_t;
#define OF_MOD 0x01 /* Object value is modifiable. */
#define OF_ODD 0x02 /* It has a somewhat odd value. */
#define OF_BAD 0x04 /* Its value is no good at all. */
/* Events: (Keypress events are the value of the key pressed.) */
#define E_ENTER (-1) /* Cursor moves onto object. */
#define E_LEAVE (-2) /* Cursor leaves object. */
#define E_WRITE (-3) /* Write, but not by typing 'w'. */
/* The O_SIZE objects have a dual identity. */
enum howend { SIZE, LAST } howend= SIZE;
object_t *world= nil;
object_t *curobj= nil;
object_t *newobject(objtype_t type, int flags, int row, int col, int len)
/* Make a new object given a type, flags, position and length on the screen. */
{
object_t *new;
object_t **aop= &world;
new= alloc(sizeof(*new));
new->type= type;
new->flags= flags;
new->row= row;
new->col= col;
new->len= len;
new->entry= nil;
new->text= "";
new->value[0]= 0;
new->next= *aop;
*aop= new;
return new;
}
unsigned long entry2base(struct part_entry *pe)
/* Return the base sector of the partition if defined. */
{
return pe->sysind == NO_PART ? 0 : pe->lowsec;
}
unsigned long entry2last(struct part_entry *pe)
{
return pe->sysind == NO_PART ? -1 : pe->lowsec + pe->size - 1;
}
unsigned long entry2size(struct part_entry *pe)
{
return pe->sysind == NO_PART ? 0 : pe->size;
}
int overlap(unsigned long sec)
/* See if sec is part of another partition. */
{
struct part_entry *pe;
for (pe= table + 1; pe <= table + NR_PARTITIONS; pe++) {
if (pe->sysind == NO_PART) continue;
if (pe->lowsec < sec && sec < pe->lowsec + pe->size)
return 1;
}
return 0;
}
int aligned(unsigned long sec, unsigned unit)
/* True if sec is aligned to unit or if it is no problem if it is unaligned. */
{
return (offset != 0 && extbase == 0) || (sec % unit == 0);
}
void print(object_t *op)
/* Print an object's value if it changed. */
{
struct part_entry *pe= op->entry;
int n;
unsigned long t;
char *name;
int oldflags;
char oldvalue[20];
/* Remember the old flags and value. */
oldflags= op->flags;
strcpy(oldvalue, op->value);
op->flags&= ~(OF_ODD | OF_BAD);
switch (op->type) {
case O_INFO: {
/* Current field. */
static struct field { int type; char *name; } fields[]= {
{ O_DEV, "Select device" },
{ O_NUM, "Active flag" },
{ O_TYPHEX, "Hex partition type" },
{ O_TYPTXT, "Partition type" },
{ O_SCYL, "Start cylinder" },
{ O_SHEAD, "Start head" },
{ O_SSEC, "Start sector" },
{ O_CYL, "Number of cylinders" },
{ O_HEAD, "Number of heads" },
{ O_SEC, "Sectors per track" },
{ O_LCYL, "Last cylinder" },
{ O_LHEAD, "Last head" },
{ O_LSEC, "Last sector" },
{ O_BASE, "Base sector" },
{ O_SIZE, "Size in sectors" },
{ O_KB, "Size in kilobytes" },
{ -1, "?" },
};
struct field *fp= fields;
while (fp->type >= 0 && fp->type != curobj->type) fp++;
strcpy(op->value, fp->name);
op->flags|= OF_ODD;
break; }
case O_TEXT:
/* Simple text field. */
strcpy(op->value, op->text);
break;
case O_DEV:
case O_SUB:
/* Name of currently edited device. */
name= op->type == O_DEV ? curdev->name :
offset == 0 ? "" : curdev->subname;
if ((n= strlen(name)) < op->len) n= op->len;
strcpy(op->value, name + (n - op->len));
if (device < 0 && op->type == O_DEV) op->flags|= OF_BAD;
break;
case O_NUM:
/* Position and active flag. */
sprintf(op->value, "%d%c", (int) (pe - table - 1),
pe->bootind & ACTIVE_FLAG ? '*' : ' ');
break;
case O_SORT:
/* Position if the driver sorts the table. */
sprintf(op->value, "%s%d",
curdev->parttype >= PRIMARY ? "p" :
curdev->parttype == SUBPART ? "s" : "",
(curdev->parttype == SUBPART ||
curdev->parttype == FLOPPY ? pe - table
: sort_index[pe - table]) - 1);
break;
case O_TYPHEX:
/* Hex partition type indicator. */
sprintf(op->value, "%02X", pe->sysind);
break;
case O_TYPTXT:
/* Ascii partition type indicator. */
strcpy(op->value, typ2txt(pe->sysind));
break;
case O_SCYL:
/* Partition's start cylinder. */
sprintf(op->value, "%lu", entry2base(pe) / secpcyl);
break;
case O_SHEAD:
/* Start head. */
t= entry2base(pe);
sprintf(op->value, "%lu", t % secpcyl / sectors);
if (!aligned(t, secpcyl) && t != table[0].lowsec + sectors)
op->flags|= OF_ODD;
break;
case O_SSEC:
/* Start sector. */
t= entry2base(pe);
sprintf(op->value, "%lu", t % sectors);
if (!aligned(t, sectors)) op->flags|= OF_ODD;
break;
case O_CYL:
/* Number of cylinders. */
sprintf(op->value, "%u", cylinders);
break;
case O_HEAD:
/* Number of heads. */
sprintf(op->value, "%u", heads);
break;
case O_SEC:
/* Number of sectors per track. */
sprintf(op->value, "%u", sectors);
break;
case O_LCYL:
/* Partition's last cylinder. */
t= entry2last(pe);
sprintf(op->value, "%lu", t == -1 ? 0 : t / secpcyl);
break;
case O_LHEAD:
/* Partition's last head. */
t= entry2last(pe);
sprintf(op->value, "%lu", t == -1 ? 0 : t % secpcyl / sectors);
if (!aligned(t + 1, secpcyl)) op->flags|= OF_ODD;
break;
case O_LSEC:
/* Partition's last sector. */
t= entry2last(pe);
if (t == -1) strcpy(op->value, "-1");
else sprintf(op->value, "%lu", t % sectors);
if (!aligned(t + 1, sectors)) op->flags|= OF_ODD;
break;
case O_BASE:
/* Partition's base sector. */
sprintf(op->value, "%lu", entry2base(pe));
if (pe->sysind != NO_PART && pe != &table[0]
&& (pe->lowsec <= table[0].lowsec || overlap(pe->lowsec)))
op->flags|= OF_BAD;
break;
case O_SIZE:
/* Size of partitition in sectors. */
t= howend == SIZE ? entry2size(pe) : entry2last(pe);
sprintf(op->value, "%lu", pe->sysind == NO_PART ? 0 : t);
if (pe->sysind != NO_PART && (pe->size == 0
|| pe->lowsec + pe->size > table[0].lowsec + table[0].size
|| overlap(pe->lowsec + pe->size)))
op->flags|= OF_BAD;
break;
case O_KB:
/* Size of partitition in kilobytes. */
sprintf(op->value, "%lu", entry2size(pe) / 2);
break;
default:
sprintf(op->value, "?? %d ??", op->type);
}
if (device < 0 && computed(op->type)) strcpy(op->value, "?");
/* If a value overflows the print field then show a blank
* reverse video field.
*/
if ((n= strlen(op->value)) > op->len) {
n= 0;
op->flags|= OF_BAD;
}
/* Right or left justified? */
if (rjust(op->type)) {
memmove(op->value + (op->len - n), op->value, n);
memset(op->value, ' ', op->len - n);
} else {
memset(op->value + n, ' ', op->len - n);
}
op->value[(int) op->len]= 0;
if ((op->flags & (OF_ODD | OF_BAD)) == (oldflags & (OF_ODD | OF_BAD))
&& strcmp(op->value, oldvalue) == 0) {
/* The value did not change. */
return;
}
set_cursor(op->row, rjust(op->type) ? op->col - (op->len-1) : op->col);
if (op->flags & OF_BAD) tputs(t_so, 1, putchr);
else
if (op->flags & OF_ODD) tputs(t_md, 1, putchr);
putstr(op->value);
if (op->flags & OF_BAD) tputs(t_se, 1, putchr);
else
if (op->flags & OF_ODD) tputs(t_me, 1, putchr);
}
void display(void)
/* Repaint all objects that changed. */
{
object_t *op;
for (op= world; op != nil; op= op->next) print(op);
}
int typing; /* Set if a digit has been typed to set a value. */
int magic; /* Changes when using the magic key. */
void event(int ev, object_t *op);
void m_redraw(int ev, object_t *op)
/* Redraw the screen. */
{
object_t *op2;
if (ev != ctrl('L')) return;
clear_screen();
for (op2= world; op2 != nil; op2= op2->next) op2->value[0]= 0;
}
void m_toggle(int ev, object_t *op)
/* Toggle between the driver and alternate geometry. */
{
unsigned t;
if (ev != 'X') return;
if (alt_cyls == cylinders && alt_heads == heads && alt_secs == sectors)
return;
t= cylinders; cylinders= alt_cyls; alt_cyls= t;
t= heads; heads= alt_heads; alt_heads= t;
t= sectors; sectors= alt_secs; alt_secs= t;
dirty= 1;
recompute0();
}
char size_last[]= "Size";
void m_orientation(int ev, object_t *op)
{
if (ev != ' ') return;
switch (howend) {
case SIZE:
howend= LAST;
strcpy(size_last, "Last");
break;
case LAST:
howend= SIZE;
strcpy(size_last, "Size");
}
}
void m_move(int ev, object_t *op)
/* Move to the nearest modifiably object in the intended direction. Objects
* on the same row or column are really near.
*/
{
object_t *near, *op2;
unsigned dist, d2, dr, dc;
if (ev != 'h' && ev != 'j' && ev != 'k' && ev != 'l' && ev != 'H')
return;
if (device < 0) {
/* No device open? Then try to read first. */
event('r', op);
if (device < 0) return;
}
near= op;
dist= -1;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2 == op || !(op2->flags & OF_MOD)) continue;
dr= abs(op2->row - op->row);
dc= abs(op2->col - op->col);
d2= 25*dr*dr + dc*dc;
if (op2->row != op->row && op2->col != op->col) d2+= 1000;
switch (ev) {
case 'h': /* Left */
if (op2->col >= op->col) d2= -1;
break;
case 'j': /* Down */
if (op2->row <= op->row) d2= -1;
break;
case 'k': /* Up */
if (op2->row >= op->row) d2= -1;
break;
case 'l': /* Right */
if (op2->col <= op->col) d2= -1;
break;
case 'H': /* Home */
if (op2->type == O_DEV) d2= 0;
}
if (d2 < dist) { near= op2; dist= d2; }
}
if (near != op) event(E_LEAVE, op);
event(E_ENTER, near);
}
void m_updown(int ev, object_t *op)
/* Move a partition table entry up or down. */
{
int i, j;
struct part_entry tmp;
int tmpx;
if (ev != ctrl('K') && ev != ctrl('J')) return;
if (op->entry == nil) return;
i= op->entry - table;
if (ev == ctrl('K')) {
if (i <= 1) return;
j= i-1;
} else {
if (i >= NR_PARTITIONS) return;
j= i+1;
}
tmp= table[i]; table[i]= table[j]; table[j]= tmp;
tmpx= existing[i]; existing[i]= existing[j]; existing[j]= tmpx;
sort();
dirty= 1;
event(ev == ctrl('K') ? 'k' : 'j', op);
}
void m_enter(int ev, object_t *op)
/* We've moved onto this object. */
{
if (ev != E_ENTER && ev != ' ' && ev != '<' && ev != '>' && ev != 'X')
return;
curobj= op;
typing= 0;
magic= 0;
}
void m_leave(int ev, object_t *op)
/* About to leave this object. */
{
if (ev != E_LEAVE) return;
}
int within(unsigned *var, unsigned low, unsigned value, unsigned high)
/* Only set *var to value if it looks reasonable. */
{
if (low <= value && value <= high) {
*var= value;
return 1;
} else
return 0;
}
int lwithin(unsigned long *var, unsigned long low, unsigned long value,
unsigned long high)
{
if (low <= value && value <= high) {
*var= value;
return 1;
} else
return 0;
}
int nextdevice(object_t *op, int delta)
/* Select the next or previous device from the device list. */
{
dev_t rdev;
if (offset != 0) return 0;
if (dirty) event(E_WRITE, op);
if (dirty) return 0;
if (device >= 0) {
(void) close(device);
device= -1;
}
recompute0();
rdev= curdev->rdev;
if (delta < 0) {
do
curdev= curdev->prev;
while (delta < -1 && major(curdev->rdev) == major(rdev)
&& curdev->rdev < rdev);
} else {
do
curdev= curdev->next;
while (delta > 1 && major(curdev->rdev) == major(rdev)
&& curdev->rdev > rdev);
}
return 1;
}
void check_ind(struct part_entry *pe)
/* If there are no other partitions then make this new one active. */
{
struct part_entry *pe2;
if (pe->sysind != NO_PART) return;
for (pe2= table + 1; pe2 < table + 1 + NR_PARTITIONS; pe2++)
if (pe2->sysind != NO_PART || pe2->bootind & ACTIVE_FLAG) break;
if (pe2 == table + 1 + NR_PARTITIONS) pe->bootind= ACTIVE_FLAG;
}
int check_existing(struct part_entry *pe)
/* Check and if not ask if an existing partition may be modified. */
{
static int expert= 0;
int c;
if (expert || pe == nil || !existing[pe - table]) return 1;
stat_start(1);
putstr("Do you wish to modify existing partitions? (y/n) ");
fflush(stdout);
while ((c= getchar()) != 'y' && c != 'n') {}
putchr(c);
stat_end(3);
return (expert= (c == 'y'));
}
void m_modify(int ev, object_t *op)
/* Increment, decrement, set, or toggle the value of an object, using
* arithmetic tricks the author doesn't understand either.
*/
{
object_t *op2;
struct part_entry *pe= op->entry;
int mul, delta;
unsigned level= 1;
unsigned long surplus;
int radix= op->type == O_TYPHEX ? 0x10 : 10;
unsigned long t;
if (device < 0 && op->type != O_DEV) return;
switch (ev) {
case '-':
mul= radix; delta= -1; typing= 0;
break;
case '+':
mul= radix; delta= 1; typing= 0;
break;
case '\b':
if (!typing) return;
mul= 1; delta= 0;
break;
case '\r':
typing= 0;
return;
default:
if ('0' <= ev && ev <= '9')
delta= ev - '0';
else
if (radix == 0x10 && 'a' <= ev && ev <= 'f')
delta= ev - 'a' + 10;
else
if (radix == 0x10 && 'A' <= ev && ev <= 'F')
delta= ev - 'A' + 10;
else
return;
mul= typing ? radix*radix : 0;
typing= 1;
}
magic= 0;
if (!check_existing(pe)) return;
switch (op->type) {
case O_DEV:
if (ev != '-' && ev != '+') return;
if (!nextdevice(op, delta)) return;
break;
case O_CYL:
if (!within(&cylinders, 1,
cylinders * mul / radix + delta, 1024)) return;
recompute0();
break;
case O_HEAD:
if (!within(&heads, 1, heads * mul / radix + delta, 255))
return;
recompute0();
break;
case O_SEC:
if (!within(&sectors, 1, sectors * mul / radix + delta, 63))
return;
recompute0();
break;
case O_NUM:
if (ev != '-' && ev != '+') return;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2->type == O_NUM && ev == '+')
op2->entry->bootind= 0;
}
op->entry->bootind= ev == '+' ? ACTIVE_FLAG : 0;
break;
case O_TYPHEX:
check_ind(pe);
pe->sysind= pe->sysind * mul / radix + delta;
break;
case O_TYPTXT:
if (ev != '-' && ev != '+') return;
check_ind(pe);
pe->sysind= round_sysind(pe->sysind, delta);
break;
case O_SCYL:
level= heads;
case O_SHEAD:
level*= sectors;
case O_SSEC:
if (op->type != O_SCYL && ev != '-' && ev != '+') return;
case O_BASE:
if (pe->sysind == NO_PART) memset(pe, 0, sizeof(*pe));
t= pe->lowsec;
surplus= t % level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
if (howend == LAST || op->type != O_BASE)
pe->size-= t - pe->lowsec;
pe->lowsec= t;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
case O_LCYL:
level= heads;
case O_LHEAD:
level*= sectors;
case O_LSEC:
if (op->type != O_LCYL && ev != '-' && ev != '+') return;
if (pe->sysind == NO_PART) memset(pe, 0, sizeof(*pe));
t= pe->lowsec + pe->size - 1 + level;
surplus= t % level - mul / radix * level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
pe->size= t - pe->lowsec + 1;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
case O_KB:
level= 2;
if (mul == 0) pe->size= 0; /* new value, no surplus */
case O_SIZE:
if (pe->sysind == NO_PART) {
if (op->type == O_KB || howend == SIZE) {
/* First let loose magic to set the base. */
event('m', op);
magic= 0;
pe->size= 0;
event(ev, op);
return;
}
memset(pe, 0, sizeof(*pe));
}
t= (op->type == O_KB || howend == SIZE) ? pe->size
: pe->lowsec + pe->size - 1;
surplus= t % level;
if (!lwithin(&t, 0L,
(t / level * mul / radix + delta) * level + surplus,
MAXSIZE)) return;
pe->size= (op->type == O_KB || howend == SIZE) ? t :
t - pe->lowsec + 1;
check_ind(pe);
if (pe->sysind == NO_PART) pe->sysind= MINIX_PART;
break;
default:
return;
}
/* The order among the entries may have changed. */
sort();
dirty= 1;
}
unsigned long spell[3 + 4 * (1+NR_PARTITIONS)];
int nspells;
objtype_t touching;
void newspell(unsigned long charm)
/* Add a new spell, descending order for the base, ascending for the size. */
{
int i, j;
if (charm - table[0].lowsec > table[0].size) return;
for (i= 0; i < nspells; i++) {
if (charm == spell[i]) return; /* duplicate */
if (touching == O_BASE) {
if (charm == table[0].lowsec + table[0].size) return;
if ((spell[0] - charm) < (spell[0] - spell[i])) break;
} else {
if (charm == table[0].lowsec) return;
if ((charm - spell[0]) < (spell[i] - spell[0])) break;
}
}
for (j= ++nspells; j > i; j--) spell[j]= spell[j-1];
spell[i]= charm;
}
void m_magic(int ev, object_t *op)
/* Apply magic onto a base or size number. */
{
struct part_entry *pe= op->entry, *pe2;
int rough= (offset != 0 && extbase == 0);
if (ev != 'm' || device < 0) return;
typing= 0;
if (!check_existing(pe)) return;
if (magic == 0) {
/* See what magic we can let loose on this value. */
nspells= 1;
/* First spell, the current value. */
switch (op->type) {
case O_SCYL:
case O_SHEAD: /* Start of partition. */
case O_SSEC:
case O_BASE:
touching= O_BASE;
spell[0]= pe->lowsec;
break;
case O_LCYL:
case O_LHEAD:
case O_LSEC: /* End of partition. */
case O_KB:
case O_SIZE:
touching= O_SIZE;
spell[0]= pe->lowsec + pe->size;
break;
default:
return;
}
if (pe->sysind == NO_PART) {
memset(pe, 0, sizeof(*pe));
check_ind(pe);
pe->sysind= MINIX_PART;
spell[0]= 0;
if (touching == O_SIZE) {
/* First let loose magic on the base. */
object_t *op2;
for (op2= world; op2 != nil; op2= op2->next) {
if (op2->row == op->row &&
op2->type == O_BASE) {
event('m', op2);
}
}
magic= 0;
event('m', op);
return;
}
}
/* Avoid the first sector on the device. */
if (spell[0] == table[0].lowsec) newspell(spell[0] + 1);
/* Further interesting values are the the bases of other
* partitions or their ends.
*/
for (pe2= table; pe2 < table + 1 + NR_PARTITIONS; pe2++) {
if (pe2 == pe || pe2->sysind == NO_PART) continue;
if (pe2->lowsec == table[0].lowsec)
newspell(table[0].lowsec + 1);
else
newspell(pe2->lowsec);
newspell(pe2->lowsec + pe2->size);
if (touching == O_BASE && howend == SIZE) {
newspell(pe2->lowsec - pe->size);
newspell(pe2->lowsec + pe2->size - pe->size);
}
if (pe2->lowsec % sectors != 0) rough= 1;
}
/* Present values rounded up to the next cylinder unless
* the table is already a mess. Use "start + 1 track" instead
* of "start + 1 cylinder". Also add the end of the last
* cylinder.
*/
if (!rough) {
unsigned long n= spell[0];
if (n == table[0].lowsec) n++;
n= (n + sectors - 1) / sectors * sectors;
if (n != table[0].lowsec + sectors)
n= (n + secpcyl - 1) / secpcyl * secpcyl;
newspell(n);
if (touching == O_SIZE)
newspell(table[0].size / secpcyl * secpcyl);
}
}
/* Magic has been applied, a spell needs to be chosen. */
if (++magic == nspells) magic= 0;
if (touching == O_BASE) {
if (howend == LAST) pe->size-= spell[magic] - pe->lowsec;
pe->lowsec= spell[magic];
} else
pe->size= spell[magic] - pe->lowsec;
/* The order among the entries may have changed. */
sort();
dirty= 1;
}
typedef struct diving {
struct diving *up;
struct part_entry old0;
char *oldsubname;
parttype_t oldparttype;
unsigned long oldoffset;
unsigned long oldextbase;
} diving_t;
diving_t *diving= nil;
void m_in(int ev, object_t *op)
/* Go down into a primary or extended partition. */
{
diving_t *newdiv;
struct part_entry *pe= op->entry, ext;
int n;
if (ev != '>' || device < 0 || pe == nil || pe == &table[0]
|| (!(pe->sysind == MINIX_PART && offset == 0)
&& !ext_part(pe->sysind))
|| pe->size == 0) return;
ext= *pe;
if (extbase != 0) ext.size= extbase + extsize - ext.lowsec;
if (dirty) event(E_WRITE, op);
if (dirty) return;
if (device >= 0) { close(device); device= -1; }
newdiv= alloc(sizeof(*newdiv));
newdiv->old0= table[0];
newdiv->oldsubname= curdev->subname;
newdiv->oldparttype= curdev->parttype;
newdiv->oldoffset= offset;
newdiv->oldextbase= extbase;
newdiv->up= diving;
diving= newdiv;
table[0]= ext;
n= strlen(diving->oldsubname);
curdev->subname= alloc((n + 3) * sizeof(curdev->subname[0]));
strcpy(curdev->subname, diving->oldsubname);
curdev->subname[n++]= ':';
curdev->subname[n++]= '0' + (pe - table - 1);
curdev->subname[n]= 0;
curdev->parttype= curdev->parttype == PRIMARY ? SUBPART : DUNNO;
offset= ext.lowsec;
if (ext_part(ext.sysind) && extbase == 0) {
extbase= ext.lowsec;
extsize= ext.size;
curdev->parttype= DUNNO;
}
submerged= 1;
event('r', op);
}
void m_out(int ev, object_t *op)
/* Go up from an extended or subpartition table to its enclosing. */
{
diving_t *olddiv;
if (ev != '<' || diving == nil) return;
if (dirty) event(E_WRITE, op);
if (dirty) return;
if (device >= 0) { close(device); device= -1; }
olddiv= diving;
diving= olddiv->up;
table[0]= olddiv->old0;
free(curdev->subname);
curdev->subname= olddiv->oldsubname;
curdev->parttype= olddiv->oldparttype;
offset= olddiv->oldoffset;
extbase= olddiv->oldextbase;
free(olddiv);
event('r', op);
if (diving == nil) submerged= 0; /* We surfaced. */
}
void installboot(unsigned char *bootblock, char *masterboot)
/* Install code from a master bootstrap into a boot block. */
{
FILE *mfp;
unsigned char buf[SECTOR_SIZE];
int n;
char *err;
if ((mfp= fopen(masterboot, "r")) == nil) {
err= strerror(errno);
goto m_err;
}
n= fread(buf, sizeof(char), SECTOR_SIZE, mfp);
if (ferror(mfp)) {
err= strerror(errno);
fclose(mfp);
goto m_err;
}
else if (n < 256) {
err= "Is probably not a boot sector, too small";
fclose(mfp);
goto m_err;
}
else if (n < SECTOR_SIZE && n > PART_TABLE_OFF) {
/* if only code, it cannot override partition table */
err= "Does not fit in a boot sector";
fclose(mfp);
goto m_err;
}
else if (n == SECTOR_SIZE) {
if (buf[510] != 0x55 || buf[511] != 0xaa) {
err= "Is not a boot sector (bad magic)";
fclose(mfp);
goto m_err;
}
n = PART_TABLE_OFF;
}
if (n > PART_TABLE_OFF) {
err= "Does not fit in a boot sector";
fclose(mfp);
goto m_err;
}
memcpy(bootblock, buf, n);
fclose(mfp);
/* Bootstrap installed. */
return;
m_err:
stat_start(1);
printf("%s: %s", masterboot, err);
stat_end(5);
}
ssize_t boot_readwrite(int rw)
/* Read (0) or write (1) the boot sector. */
{
int r = 0;
if (lseek(device, offset * SECTOR_SIZE, SEEK_SET) < 0)
return -1;
switch (rw) {
case 0: r= read(device, bootblock, SECTOR_SIZE); break;
case 1: r= write(device, bootblock, SECTOR_SIZE); break;
}
return r;
}
void m_read(int ev, object_t *op)
/* Read the partition table from the current device. */
{
int i, mode, n;
struct part_entry *pe;
if (ev != 'r' || device >= 0) return;
/* Open() may cause kernel messages: */
stat_start(0);
fflush(stdout);
if (((device= open(curdev->name, mode= O_RDWR, 0666)) < 0
&& (errno != EACCES
|| (device= open(curdev->name, mode= O_RDONLY)) < 0))
) {
stat_start(1);
printf("%s: %s", curdev->name, strerror(errno));
stat_end(5);
if (device >= 0) { close(device); device= -1; }
return;
}
/* Assume up to five lines of kernel messages. */
statusrow+= 5-1;
stat_end(5);
if (mode == O_RDONLY) {
stat_start(1);
printf("%s: Readonly", curdev->name);
stat_end(5);
}
memset(bootblock, 0, sizeof(bootblock));
n= boot_readwrite(0);
if (n <= 0) stat_start(1);
if (n < 0) {
printf("%s: %s", curdev->name, strerror(errno));
close(device);
device= -1;
} else
if (n < SECTOR_SIZE) printf("%s: Unexpected EOF", curdev->subname);
if (n <= 0) stat_end(5);
if (n < SECTOR_SIZE) n= SECTOR_SIZE;
memcpy(table+1, bootblock+PART_TABLE_OFF,
NR_PARTITIONS * sizeof(table[1]));
for (i= 1; i <= NR_PARTITIONS; i++) {
if ((table[i].bootind & ~ACTIVE_FLAG) != 0) break;
}
if (i <= NR_PARTITIONS || bootblock[510] != 0x55
|| bootblock[511] != 0xAA) {
/* Invalid boot block, install bootstrap, wipe partition table.
*/
memset(bootblock, 0, sizeof(bootblock));
installboot(bootblock, MASTERBOOT);
memset(table+1, 0, NR_PARTITIONS * sizeof(table[1]));
stat_start(1);
printf("%s: Invalid partition table (reset)", curdev->subname);
stat_end(5);
}
/* Fix an extended partition table up to something mere mortals can
* understand. Record already defined partitions.
*/
for (i= 1; i <= NR_PARTITIONS; i++) {
pe= &table[i];
if (extbase != 0 && pe->sysind != NO_PART)
pe->lowsec+= ext_part(pe->sysind) ? extbase : offset;
existing[i]= pe->sysind != NO_PART;
}
geometry();
dirty= 0;
/* Warn about grave dangers ahead. */
if (extbase != 0) {
stat_start(1);
printf("Warning: You are in an extended partition.");
stat_end(5);
}
}
void m_write(int ev, object_t *op)
/* Write the partition table back if modified. */
{
int c;
struct part_entry new_table[NR_PARTITIONS], *pe;
if (ev != 'w' && ev != E_WRITE) return;
if (device < 0) { dirty= 0; return; }
if (!dirty) {
if (ev == 'w') {
stat_start(1);
printf("%s is not changed, or has already been written",
curdev->subname);
stat_end(2);
}
return;
}
if (bootblock[510] != 0x55 || bootblock[511] != 0xAA) {
/* Invalid boot block, warn user. */
stat_start(1);
printf("Warning: About to write a new table on %s",
curdev->subname);
stat_end(5);
}
if (extbase != 0) {
/* Will this stop the luser? Probably not... */
stat_start(1);
printf("You have changed an extended partition. Bad Idea.");
stat_end(5);
}
stat_start(1);
putstr("Save partition table? (y/n) ");
fflush(stdout);
while ((c= getchar()) != 'y' && c != 'n' && c != ctrl('?')) {}
if (c == ctrl('?')) putstr("DEL"); else putchr(c);
stat_end(5);
if (c == 'n' && ev == E_WRITE) dirty= 0;
if (c != 'y') return;
memcpy(new_table, table+1, NR_PARTITIONS * sizeof(table[1]));
for (pe= new_table; pe < new_table + NR_PARTITIONS; pe++) {
if (pe->sysind == NO_PART) {
memset(pe, 0, sizeof(*pe));
} else {
abs2dos(&pe->start_head, pe->lowsec);
abs2dos(&pe->last_head, pe->lowsec + pe->size - 1);
/* Fear and loathing time: */
if (extbase != 0)
pe->lowsec-= ext_part(pe->sysind)
? extbase : offset;
}
}
memcpy(bootblock+PART_TABLE_OFF, new_table, sizeof(new_table));
bootblock[510]= 0x55;
bootblock[511]= 0xAA;
if (boot_readwrite(1) < 0) {
stat_start(1);
printf("%s: %s", curdev->name, strerror(errno));
stat_end(5);
return;
}
dirty= 0;
}
void m_shell(int ev, object_t *op)
/* Shell escape, to do calculations for instance. */
{
int r, pid, status;
void (*sigint)(int), (*sigquit)(int), (*sigterm)(int);
if (ev != 's') return;
reset_tty();
fflush(stdout);
switch (pid= fork()) {
case -1:
stat_start(1);
printf("can't fork: %s\n", strerror(errno));
stat_end(3);
break;
case 0:
if (device >= 0) (void) close(device);
execl("/bin/sh", "sh", (char *) nil);
r= errno;
stat_start(1);
printf("/bin/sh: %s\n", strerror(errno));
stat_end(3);
exit(127);
}
sigint= signal(SIGINT, SIG_IGN);
sigquit= signal(SIGQUIT, SIG_IGN);
sigterm= signal(SIGTERM, SIG_IGN);
while (pid >= 0 && (r= wait(&status)) >= 0 && r != pid) {}
(void) signal(SIGINT, sigint);
(void) signal(SIGQUIT, sigquit);
(void) signal(SIGTERM, sigterm);
tty_raw();
if (pid < 0)
;
else
if (WIFEXITED(status) && WEXITSTATUS(status) == 127)
stat_start(0); /* Match the stat_start in the child. */
else
event(ctrl('L'), op);
}
void m_dump(int ev, object_t *op)
/* Raw dump of the partition table. */
{
struct part_entry table[NR_PARTITIONS], *pe;
int i;
unsigned chs[3];
if (ev != 'p' || device < 0) return;
memcpy(table, bootblock+PART_TABLE_OFF,
NR_PARTITIONS * sizeof(table[0]));
for (i= 0; i < NR_PARTITIONS; i++) {
pe= &table[i];
stat_start(0);
dos2chs(&pe->start_head, chs);
printf("%2d%c %02X%15d%5d%4d",
i+1,
pe->bootind & ACTIVE_FLAG ? '*' : ' ',
pe->sysind,
chs[0], chs[1], chs[2]);
dos2chs(&pe->last_head, chs);
printf("%6d%5d%4d%10lu%10ld%9lu",
chs[0], chs[1], chs[2],
pe->lowsec,
howend == SIZE ? pe->size : pe->size + pe->lowsec - 1,
pe->size / 2);
stat_end(10);
}
stat_start(0);
printf("(Raw dump of the original %.40s table)",
curdev->subname);
stat_end(10);
}
int quitting= 0;
void m_quit(int ev, object_t *op)
/* Write the partition table if modified and exit. */
{
if (ev != 'q' && ev != 'x') return;
quitting= 1;
if (dirty) event(E_WRITE, op);
if (dirty) quitting= 0;
}
void m_help(int ev, object_t *op)
/* For people without a clue; let's hope they can find the '?' key. */
{
static struct help {
char *keys;
char *what;
} help[]= {
{ "? !", "This help / more advice!" },
{ "+ - (= _ PgUp PgDn)","Select/increment/decrement/make active" },
{ "0-9 (a-f)", "Enter value" },
{ "hjkl (arrow keys)", "Move around" },
{ "CTRL-K CTRL-J", "Move entry up/down" },
{ "CTRL-L", "Redraw screen" },
{ ">", "Start a subpartition table" },
{ "<", "Back to the primary partition table" },
{ "m", "Cycle through magic values" },
{ "spacebar", "Show \"Size\" or \"Last\"" },
{ "r w", "Read/write partition table" },
{ "p s q x", "Raw dump / Shell escape / Quit / Exit" },
{ "y n DEL", "Answer \"yes\", \"no\", \"cancel\"" },
};
static char *advice[] = {
"* Choose a disk with '+' and '-', then hit 'r'.",
"* To change any value: Move to it and use '+', '-' or type the desired value.",
"* To make a new partition: Move over to the Size or Kb field of an unused",
" partition and type the size. Hit the 'm' key to pad the partition out to",
" a cylinder boundary. Hit 'm' again to pad it out to the end of the disk.",
" You can hit 'm' more than once on a base or size field to see several",
" interesting values go by. Note: Other Operating Systems can be picky about",
" partitions that are not padded to cylinder boundaries. Look for highlighted",
" head or sector numbers.",
"* To reuse a partition: Change the type to MINIX.",
"* To delete a partition: Type a zero in the hex Type field.",
"* To make a partition active: Type '+' in the Num field.",
"* To study the list of keys: Type '?'.",
};
if (ev == '?') {
struct help *hp;
for (hp= help; hp < arraylimit(help); hp++) {
stat_start(0);
printf("%-25s - %s", hp->keys, hp->what);
stat_end(0);
}
stat_start(0);
putstr("Things like ");
putstr(t_so); putstr("this"); putstr(t_se);
putstr(" must be checked, but ");
putstr(t_md); putstr("this"); putstr(t_me);
putstr(" is not really a problem");
stat_end(0);
} else
if (ev == '!') {
char **ap;
for (ap= advice; ap < arraylimit(advice); ap++) {
stat_start(0);
putstr(*ap);
stat_end(0);
}
}
}
void event(int ev, object_t *op)
/* Simply call all modifiers for an event, each one knows when to act. */
{
m_help(ev, op);
m_redraw(ev, op);
m_toggle(ev, op);
m_orientation(ev, op);
m_move(ev, op);
m_updown(ev, op);
m_enter(ev, op);
m_leave(ev, op);
m_modify(ev, op);
m_magic(ev, op);
m_in(ev, op);
m_out(ev, op);
m_read(ev, op);
m_write(ev, op);
m_shell(ev, op);
m_dump(ev, op);
m_quit(ev, op);
}
int keypress(void)
/* Get a single keypress. Translate compound keypresses (arrow keys) to
* their simpler equivalents.
*/
{
char ch;
int c;
int esc= 0;
set_cursor(curobj->row, curobj->col);
fflush(stdout);
do {
if (read(0, &ch, sizeof(ch)) < 0) fatal("stdin");
c= (unsigned char) ch;
switch (esc) {
case 0:
switch (c) {
case ctrl('['): esc= 1; break;
case '_': c= '-'; break;
case '=': c= '+'; break;
}
break;
case 1:
esc= c == '[' ? 2 : 0;
break;
case 2:
switch (c) {
case 'D': c= 'h'; break;
case 'B': c= 'j'; break;
case 'A': c= 'k'; break;
case 'C': c= 'l'; break;
case 'H': c= 'H'; break;
case 'U':
case 'S': c= '-'; break;
case 'V':
case 'T': c= '+'; break;
}
/*FALL THROUGH*/
default:
esc= 0;
}
} while (esc > 0);
switch (c) {
case ctrl('B'): c= 'h'; break;
case ctrl('N'): c= 'j'; break;
case ctrl('P'): c= 'k'; break;
case ctrl('F'): c= 'l'; break;
}
return c;
}
void mainloop(void)
/* Get keypress, handle event, display results, reset screen, ad infinitum. */
{
int key;
while (!quitting) {
stat_reset();
key= keypress();
event(key, curobj);
display();
}
}
int main(int argc, char **argv)
{
object_t *op;
int i, r, key;
struct part_entry *pe;
/* Define a few objects to show on the screen. First text: */
op= newobject(O_INFO, 0, 0, 2, 19);
op= newobject(O_TEXT, 0, 0, 22, 13); op->text= "----first----";
op= newobject(O_TEXT, 0, 0, 37, 13); op->text= "--geom/last--";
op= newobject(O_TEXT, 0, 0, 52, 18); op->text= "------sectors-----";
op= newobject(O_TEXT, 0, 1, 4, 6); op->text= "Device";
op= newobject(O_TEXT, 0, 1, 23, 12); op->text= "Cyl Head Sec";
op= newobject(O_TEXT, 0, 1, 38, 12); op->text= "Cyl Head Sec";
op= newobject(O_TEXT, 0, 1, 56, 4); op->text= "Base";
op= newobject(O_TEXT, 0, 1, 66, 4); op->text= size_last;
op= newobject(O_TEXT, 0, 1, 78, 2); op->text= "Kb";
op= newobject(O_TEXT, 0, 4, 0, 15); op->text= "Num Sort Type";
/* The device is the current object: */
curobj= newobject(O_DEV, OF_MOD, 2, 4, 15);
op= newobject(O_SUB, 0, 3, 4, 15);
/* Geometry: */
op= newobject(O_CYL, OF_MOD, 2, 40, 5); op->entry= &table[0];
op= newobject(O_HEAD, OF_MOD, 2, 45, 3); op->entry= &table[0];
op= newobject(O_SEC, OF_MOD, 2, 49, 2); op->entry= &table[0];
/* Objects for the device: */
op= newobject(O_SCYL, 0, 3, 25, 5); op->entry= &table[0];
op= newobject(O_SHEAD, 0, 3, 30, 3); op->entry= &table[0];
op= newobject(O_SSEC, 0, 3, 34, 2); op->entry= &table[0];
op= newobject(O_LCYL, 0, 3, 40, 5); op->entry= &table[0];
op= newobject(O_LHEAD, 0, 3, 45, 3); op->entry= &table[0];
op= newobject(O_LSEC, 0, 3, 49, 2); op->entry= &table[0];
op= newobject(O_BASE, 0, 3, 59, 9); op->entry= &table[0];
op= newobject(O_SIZE, 0, 3, 69, 9); op->entry= &table[0];
op= newobject(O_KB, 0, 3, 79, 9); op->entry= &table[0];
/* Objects for each partition: */
for (r= 5, pe= table+1; pe <= table+NR_PARTITIONS; r++, pe++) {
op= newobject(O_NUM, OF_MOD, r, 1, 2); op->entry= pe;
op= newobject(O_SORT, 0, r, 5, 2); op->entry= pe;
op= newobject(O_TYPHEX, OF_MOD, r, 10, 2); op->entry= pe;
op= newobject(O_TYPTXT, OF_MOD, r, 12, 9); op->entry= pe;
op= newobject(O_SCYL, OF_MOD, r, 25, 5); op->entry= pe;
op= newobject(O_SHEAD, OF_MOD, r, 30, 3); op->entry= pe;
op= newobject(O_SSEC, OF_MOD, r, 34, 2); op->entry= pe;
op= newobject(O_LCYL, OF_MOD, r, 40, 5); op->entry= pe;
op= newobject(O_LHEAD, OF_MOD, r, 45, 3); op->entry= pe;
op= newobject(O_LSEC, OF_MOD, r, 49, 2); op->entry= pe;
op= newobject(O_BASE, OF_MOD, r, 59, 9); op->entry= pe;
op= newobject(O_SIZE, OF_MOD, r, 69, 9); op->entry= pe;
op= newobject(O_KB, OF_MOD, r, 79, 9); op->entry= pe;
}
for (i= 1; i < argc; i++) newdevice(argv[i], 0);
if (firstdev == nil) {
getdevices();
key= ctrl('L');
} else {
key= 'r';
}
if (firstdev != nil) {
init_tty();
clear_screen();
event(key, curobj);
display();
mainloop();
reset_tty();
}
exit(0);
}