11be35a165
To do so, a few dependencies have been imported: * external/bsd/lutok * external/mit/lua * external/public-domain/sqlite * external/public-domain/xz The Kyua framework is the new generation of ATF (Automated Test Framework), it is composed of: * external/bsd/atf * external/bsd/kyua-atf-compat * external/bsd/kyua-cli * external/bsd/kyua-tester * tests Kyua/ATF being written in C++, it depends on libstdc++ which is provided by GCC. As this is not part of the sources, Kyua is only compiled when the native GCC utils are installed. To install Kyua do the following: * In a cross-build enviromnent, add the following to the build.sh commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes WARNING: At this point the import is still experimental, and not supported on native builds (a.k.a make build). Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
57 lines
1.6 KiB
Text
57 lines
1.6 KiB
Text
# subexpressions
|
|
a(b)(c)d - abcd abcd b,c
|
|
a(((b)))c - abc abc b,b,b
|
|
a(b|(c))d - abd abd b,-
|
|
a(b*|c|e)d - abbd abbd bb
|
|
a(b*|c|e)d - acd acd c
|
|
a(b*|c|e)d - ad ad @d
|
|
a(b?)c - abc abc b
|
|
a(b?)c - ac ac @c
|
|
a(b+)c - abc abc b
|
|
a(b+)c - abbbc abbbc bbb
|
|
a(b*)c - ac ac @c
|
|
(a|ab)(bc([de]+)f|cde) - abcdef abcdef a,bcdef,de
|
|
# the regression tester only asks for 9 subexpressions
|
|
a(b)(c)(d)(e)(f)(g)(h)(i)(j)k - abcdefghijk abcdefghijk b,c,d,e,f,g,h,i,j
|
|
a(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)l - abcdefghijkl abcdefghijkl b,c,d,e,f,g,h,i,j,k
|
|
a([bc]?)c - abc abc b
|
|
a([bc]?)c - ac ac @c
|
|
a([bc]+)c - abc abc b
|
|
a([bc]+)c - abcc abcc bc
|
|
a([bc]+)bc - abcbc abcbc bc
|
|
a(bb+|b)b - abb abb b
|
|
a(bbb+|bb+|b)b - abb abb b
|
|
a(bbb+|bb+|b)b - abbb abbb bb
|
|
a(bbb+|bb+|b)bb - abbb abbb b
|
|
(.*).* - abcdef abcdef abcdef
|
|
(a*)* - bc @b @b
|
|
|
|
# do we get the right subexpression when it is used more than once?
|
|
a(b|c)*d - ad ad -
|
|
a(b|c)*d - abcd abcd c
|
|
a(b|c)+d - abd abd b
|
|
a(b|c)+d - abcd abcd c
|
|
a(b|c?)+d - ad ad @d
|
|
a(b|c?)+d - abcd abcd @d
|
|
a(b|c){0,0}d - ad ad -
|
|
a(b|c){0,1}d - ad ad -
|
|
a(b|c){0,1}d - abd abd b
|
|
a(b|c){0,2}d - ad ad -
|
|
a(b|c){0,2}d - abcd abcd c
|
|
a(b|c){0,}d - ad ad -
|
|
a(b|c){0,}d - abcd abcd c
|
|
a(b|c){1,1}d - abd abd b
|
|
a(b|c){1,1}d - acd acd c
|
|
a(b|c){1,2}d - abd abd b
|
|
a(b|c){1,2}d - abcd abcd c
|
|
a(b|c){1,}d - abd abd b
|
|
a(b|c){1,}d - abcd abcd c
|
|
a(b|c){2,2}d - acbd acbd b
|
|
a(b|c){2,2}d - abcd abcd c
|
|
a(b|c){2,4}d - abcd abcd c
|
|
a(b|c){2,4}d - abcbd abcbd b
|
|
a(b|c){2,4}d - abcbcd abcbcd c
|
|
a(b|c){2,}d - abcd abcd c
|
|
a(b|c){2,}d - abcbd abcbd b
|
|
a(b+|((c)*))+d - abd abd @d,@d,-
|
|
a(b+|((c)*))+d - abcd abcd @d,@d,-
|