minix/tests/lib/libc/regex/data/subexp.in
Lionel Sambuc 11be35a165 Importing NetBSD "Kyua" test framework
To do so, a few dependencies have been imported:

 * external/bsd/lutok
 * external/mit/lua
 * external/public-domain/sqlite
 * external/public-domain/xz

The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:

 * external/bsd/atf
 * external/bsd/kyua-atf-compat
 * external/bsd/kyua-cli
 * external/bsd/kyua-tester
 * tests

Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.

To install Kyua do the following:

 * In a cross-build enviromnent, add the following to the build.sh
   commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes

WARNING:
  At this point the import is still experimental, and not supported
  on native builds (a.k.a make build).

Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
2013-07-23 20:43:41 +02:00

57 lines
1.6 KiB
Text

# subexpressions
a(b)(c)d - abcd abcd b,c
a(((b)))c - abc abc b,b,b
a(b|(c))d - abd abd b,-
a(b*|c|e)d - abbd abbd bb
a(b*|c|e)d - acd acd c
a(b*|c|e)d - ad ad @d
a(b?)c - abc abc b
a(b?)c - ac ac @c
a(b+)c - abc abc b
a(b+)c - abbbc abbbc bbb
a(b*)c - ac ac @c
(a|ab)(bc([de]+)f|cde) - abcdef abcdef a,bcdef,de
# the regression tester only asks for 9 subexpressions
a(b)(c)(d)(e)(f)(g)(h)(i)(j)k - abcdefghijk abcdefghijk b,c,d,e,f,g,h,i,j
a(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)l - abcdefghijkl abcdefghijkl b,c,d,e,f,g,h,i,j,k
a([bc]?)c - abc abc b
a([bc]?)c - ac ac @c
a([bc]+)c - abc abc b
a([bc]+)c - abcc abcc bc
a([bc]+)bc - abcbc abcbc bc
a(bb+|b)b - abb abb b
a(bbb+|bb+|b)b - abb abb b
a(bbb+|bb+|b)b - abbb abbb bb
a(bbb+|bb+|b)bb - abbb abbb b
(.*).* - abcdef abcdef abcdef
(a*)* - bc @b @b
# do we get the right subexpression when it is used more than once?
a(b|c)*d - ad ad -
a(b|c)*d - abcd abcd c
a(b|c)+d - abd abd b
a(b|c)+d - abcd abcd c
a(b|c?)+d - ad ad @d
a(b|c?)+d - abcd abcd @d
a(b|c){0,0}d - ad ad -
a(b|c){0,1}d - ad ad -
a(b|c){0,1}d - abd abd b
a(b|c){0,2}d - ad ad -
a(b|c){0,2}d - abcd abcd c
a(b|c){0,}d - ad ad -
a(b|c){0,}d - abcd abcd c
a(b|c){1,1}d - abd abd b
a(b|c){1,1}d - acd acd c
a(b|c){1,2}d - abd abd b
a(b|c){1,2}d - abcd abcd c
a(b|c){1,}d - abd abd b
a(b|c){1,}d - abcd abcd c
a(b|c){2,2}d - acbd acbd b
a(b|c){2,2}d - abcd abcd c
a(b|c){2,4}d - abcd abcd c
a(b|c){2,4}d - abcbd abcbd b
a(b|c){2,4}d - abcbcd abcbcd c
a(b|c){2,}d - abcd abcd c
a(b|c){2,}d - abcbd abcbd b
a(b+|((c)*))+d - abd abd @d,@d,-
a(b+|((c)*))+d - abcd abcd @d,@d,-