84d9c625bf
- Fix for possible unset uid/gid in toproto - Fix for default mtree style - Update libelf - Importing libexecinfo - Resynchronize GCC, mpc, gmp, mpfr - build.sh: Replace params with show-params. This has been done as the make target has been renamed in the same way, while a new target named params has been added. This new target generates a file containing all the parameters, instead of printing it on the console. - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org) get getservbyport() out of the inner loop Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
572 lines
20 KiB
C
572 lines
20 KiB
C
/* $NetBSD: device.h,v 1.144 2013/10/12 16:49:01 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996, 2000 Christopher G. Demetriou
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the
|
|
* NetBSD Project. See http://www.NetBSD.org/ for
|
|
* information about NetBSD.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratories.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)device.h 8.2 (Berkeley) 2/17/94
|
|
*/
|
|
|
|
#ifndef _SYS_DEVICE_H_
|
|
#define _SYS_DEVICE_H_
|
|
|
|
#include <sys/device_if.h>
|
|
#include <sys/evcnt.h>
|
|
#include <sys/queue.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/pmf.h>
|
|
#endif
|
|
|
|
#include <prop/proplib.h>
|
|
|
|
/*
|
|
* Minimal device structures.
|
|
* Note that all ``system'' device types are listed here.
|
|
*/
|
|
typedef enum devclass {
|
|
DV_DULL, /* generic, no special info */
|
|
DV_CPU, /* CPU (carries resource utilization) */
|
|
DV_DISK, /* disk drive (label, etc) */
|
|
DV_IFNET, /* network interface */
|
|
DV_TAPE, /* tape device */
|
|
DV_TTY, /* serial line interface (?) */
|
|
DV_AUDIODEV, /* audio device */
|
|
DV_DISPLAYDEV, /* display device */
|
|
DV_BUS, /* bus device */
|
|
DV_VIRTUAL, /* unbacked virtual device */
|
|
} devclass_t;
|
|
|
|
/*
|
|
* Actions for ca_activate.
|
|
*/
|
|
typedef enum devact {
|
|
DVACT_DEACTIVATE /* deactivate the device */
|
|
} devact_t;
|
|
|
|
typedef enum {
|
|
DVA_SYSTEM,
|
|
DVA_HARDWARE
|
|
} devactive_t;
|
|
|
|
typedef struct cfdata *cfdata_t;
|
|
typedef struct cfdriver *cfdriver_t;
|
|
typedef struct cfattach *cfattach_t;
|
|
|
|
#ifdef _KERNEL
|
|
struct device_lock {
|
|
int dvl_nwait;
|
|
int dvl_nlock;
|
|
lwp_t *dvl_holder;
|
|
kmutex_t dvl_mtx;
|
|
kcondvar_t dvl_cv;
|
|
};
|
|
|
|
struct device_suspensor {
|
|
const device_suspensor_t *ds_delegator;
|
|
char ds_name[32];
|
|
};
|
|
|
|
#define DEVICE_SUSPENSORS_MAX 16
|
|
|
|
struct device {
|
|
devclass_t dv_class; /* this device's classification */
|
|
TAILQ_ENTRY(device) dv_list; /* entry on list of all devices */
|
|
cfdata_t dv_cfdata; /* config data that found us
|
|
(NULL if pseudo-device) */
|
|
cfdriver_t dv_cfdriver; /* our cfdriver */
|
|
cfattach_t dv_cfattach; /* our cfattach */
|
|
int dv_unit; /* device unit number */
|
|
char dv_xname[16]; /* external name (name + unit) */
|
|
device_t dv_parent; /* pointer to parent device
|
|
(NULL if pseudo- or root node) */
|
|
int dv_depth; /* number of parents until root */
|
|
int dv_flags; /* misc. flags; see below */
|
|
void *dv_private; /* this device's private storage */
|
|
int *dv_locators; /* our actual locators (optional) */
|
|
prop_dictionary_t dv_properties;/* properties dictionary */
|
|
|
|
size_t dv_activity_count;
|
|
void (**dv_activity_handlers)(device_t, devactive_t);
|
|
|
|
bool (*dv_driver_suspend)(device_t, const pmf_qual_t *);
|
|
bool (*dv_driver_resume)(device_t, const pmf_qual_t *);
|
|
bool (*dv_driver_shutdown)(device_t, int);
|
|
bool (*dv_driver_child_register)(device_t);
|
|
|
|
void *dv_bus_private;
|
|
bool (*dv_bus_suspend)(device_t, const pmf_qual_t *);
|
|
bool (*dv_bus_resume)(device_t, const pmf_qual_t *);
|
|
bool (*dv_bus_shutdown)(device_t, int);
|
|
void (*dv_bus_deregister)(device_t);
|
|
|
|
void *dv_class_private;
|
|
bool (*dv_class_suspend)(device_t, const pmf_qual_t *);
|
|
bool (*dv_class_resume)(device_t, const pmf_qual_t *);
|
|
void (*dv_class_deregister)(device_t);
|
|
|
|
devgen_t dv_add_gen,
|
|
dv_del_gen;
|
|
|
|
struct device_lock dv_lock;
|
|
const device_suspensor_t
|
|
*dv_bus_suspensors[DEVICE_SUSPENSORS_MAX],
|
|
*dv_driver_suspensors[DEVICE_SUSPENSORS_MAX],
|
|
*dv_class_suspensors[DEVICE_SUSPENSORS_MAX];
|
|
struct device_garbage {
|
|
device_t *dg_devs;
|
|
int dg_ndevs;
|
|
} dv_garbage;
|
|
};
|
|
|
|
/* dv_flags */
|
|
#define DVF_ACTIVE 0x0001 /* device is activated */
|
|
#define DVF_PRIV_ALLOC 0x0002 /* device private storage != device */
|
|
#define DVF_POWER_HANDLERS 0x0004 /* device has suspend/resume support */
|
|
#define DVF_CLASS_SUSPENDED 0x0008 /* device class suspend was called */
|
|
#define DVF_DRIVER_SUSPENDED 0x0010 /* device driver suspend was called */
|
|
#define DVF_BUS_SUSPENDED 0x0020 /* device bus suspend was called */
|
|
#define DVF_DETACH_SHUTDOWN 0x0080 /* device detaches safely at shutdown */
|
|
|
|
TAILQ_HEAD(devicelist, device);
|
|
|
|
enum deviter_flags {
|
|
DEVITER_F_RW = 0x1
|
|
, DEVITER_F_SHUTDOWN = 0x2
|
|
, DEVITER_F_LEAVES_FIRST = 0x4
|
|
, DEVITER_F_ROOT_FIRST = 0x8
|
|
};
|
|
|
|
typedef enum deviter_flags deviter_flags_t;
|
|
|
|
struct deviter {
|
|
device_t di_prev;
|
|
deviter_flags_t di_flags;
|
|
int di_curdepth;
|
|
int di_maxdepth;
|
|
devgen_t di_gen;
|
|
};
|
|
|
|
typedef struct deviter deviter_t;
|
|
|
|
struct shutdown_state {
|
|
bool initialized;
|
|
deviter_t di;
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Description of a locator, as part of interface attribute definitions.
|
|
*/
|
|
struct cflocdesc {
|
|
const char *cld_name;
|
|
const char *cld_defaultstr; /* NULL if no default */
|
|
int cld_default;
|
|
};
|
|
|
|
/*
|
|
* Description of an interface attribute, provided by potential
|
|
* parent device drivers, referred to by child device configuration data.
|
|
*/
|
|
struct cfiattrdata {
|
|
const char *ci_name;
|
|
int ci_loclen;
|
|
const struct cflocdesc ci_locdesc[
|
|
#if defined(__GNUC__) && __GNUC__ <= 2
|
|
0
|
|
#endif
|
|
];
|
|
};
|
|
|
|
/*
|
|
* Description of a configuration parent. Each device attachment attaches
|
|
* to an "interface attribute", which is given in this structure. The parent
|
|
* *must* carry this attribute. Optionally, an individual device instance
|
|
* may also specify a specific parent device instance.
|
|
*/
|
|
struct cfparent {
|
|
const char *cfp_iattr; /* interface attribute */
|
|
const char *cfp_parent; /* optional specific parent */
|
|
int cfp_unit; /* optional specific unit
|
|
(DVUNIT_ANY to wildcard) */
|
|
};
|
|
|
|
/*
|
|
* Configuration data (i.e., data placed in ioconf.c).
|
|
*/
|
|
struct cfdata {
|
|
const char *cf_name; /* driver name */
|
|
const char *cf_atname; /* attachment name */
|
|
short cf_unit; /* unit number */
|
|
short cf_fstate; /* finding state (below) */
|
|
int *cf_loc; /* locators (machine dependent) */
|
|
int cf_flags; /* flags from config */
|
|
const struct cfparent *cf_pspec;/* parent specification */
|
|
};
|
|
#define FSTATE_NOTFOUND 0 /* has not been found */
|
|
#define FSTATE_FOUND 1 /* has been found */
|
|
#define FSTATE_STAR 2 /* duplicable */
|
|
#define FSTATE_DSTAR 3 /* has not been found, and disabled */
|
|
#define FSTATE_DNOTFOUND 4 /* duplicate, and disabled */
|
|
|
|
/*
|
|
* Multiple configuration data tables may be maintained. This structure
|
|
* provides the linkage.
|
|
*/
|
|
struct cftable {
|
|
cfdata_t ct_cfdata; /* pointer to cfdata table */
|
|
TAILQ_ENTRY(cftable) ct_list; /* list linkage */
|
|
};
|
|
TAILQ_HEAD(cftablelist, cftable);
|
|
|
|
typedef int (*cfsubmatch_t)(device_t, cfdata_t, const int *, void *);
|
|
|
|
/*
|
|
* `configuration' attachment and driver (what the machine-independent
|
|
* autoconf uses). As devices are found, they are applied against all
|
|
* the potential matches. The one with the best match is taken, and a
|
|
* device structure (plus any other data desired) is allocated. Pointers
|
|
* to these are placed into an array of pointers. The array itself must
|
|
* be dynamic since devices can be found long after the machine is up
|
|
* and running.
|
|
*
|
|
* Devices can have multiple configuration attachments if they attach
|
|
* to different attributes (busses, or whatever), to allow specification
|
|
* of multiple match and attach functions. There is only one configuration
|
|
* driver per driver, so that things like unit numbers and the device
|
|
* structure array will be shared.
|
|
*/
|
|
struct cfattach {
|
|
const char *ca_name; /* name of attachment */
|
|
LIST_ENTRY(cfattach) ca_list; /* link on cfdriver's list */
|
|
size_t ca_devsize; /* size of dev data (for alloc) */
|
|
int ca_flags; /* flags for driver allocation etc */
|
|
int (*ca_match)(device_t, cfdata_t, void *);
|
|
void (*ca_attach)(device_t, device_t, void *);
|
|
int (*ca_detach)(device_t, int);
|
|
int (*ca_activate)(device_t, devact_t);
|
|
/* technically, the next 2 belong into "struct cfdriver" */
|
|
int (*ca_rescan)(device_t, const char *,
|
|
const int *); /* scan for new children */
|
|
void (*ca_childdetached)(device_t, device_t);
|
|
};
|
|
LIST_HEAD(cfattachlist, cfattach);
|
|
|
|
#define CFATTACH_DECL3_NEW(name, ddsize, matfn, attfn, detfn, actfn, \
|
|
rescanfn, chdetfn, __flags) \
|
|
struct cfattach __CONCAT(name,_ca) = { \
|
|
.ca_name = ___STRING(name), \
|
|
.ca_devsize = ddsize, \
|
|
.ca_flags = (__flags) | DVF_PRIV_ALLOC, \
|
|
.ca_match = matfn, \
|
|
.ca_attach = attfn, \
|
|
.ca_detach = detfn, \
|
|
.ca_activate = actfn, \
|
|
.ca_rescan = rescanfn, \
|
|
.ca_childdetached = chdetfn, \
|
|
}
|
|
|
|
#define CFATTACH_DECL2_NEW(name, ddsize, matfn, attfn, detfn, actfn, \
|
|
rescanfn, chdetfn) \
|
|
CFATTACH_DECL3_NEW(name, ddsize, matfn, attfn, detfn, actfn, \
|
|
rescanfn, chdetfn, 0)
|
|
|
|
#define CFATTACH_DECL_NEW(name, ddsize, matfn, attfn, detfn, actfn) \
|
|
CFATTACH_DECL2_NEW(name, ddsize, matfn, attfn, detfn, actfn, NULL, NULL)
|
|
|
|
/* Flags given to config_detach(), and the ca_detach function. */
|
|
#define DETACH_FORCE 0x01 /* force detachment; hardware gone */
|
|
#define DETACH_QUIET 0x02 /* don't print a notice */
|
|
#define DETACH_SHUTDOWN 0x04 /* detach because of system shutdown */
|
|
|
|
struct cfdriver {
|
|
LIST_ENTRY(cfdriver) cd_list; /* link on allcfdrivers */
|
|
struct cfattachlist cd_attach; /* list of all attachments */
|
|
device_t *cd_devs; /* devices found */
|
|
const char *cd_name; /* device name */
|
|
enum devclass cd_class; /* device classification */
|
|
int cd_ndevs; /* size of cd_devs array */
|
|
const struct cfiattrdata * const *cd_attrs; /* attributes provided */
|
|
};
|
|
LIST_HEAD(cfdriverlist, cfdriver);
|
|
|
|
#define CFDRIVER_DECL(name, class, attrs) \
|
|
struct cfdriver __CONCAT(name,_cd) = { \
|
|
.cd_name = ___STRING(name), \
|
|
.cd_class = class, \
|
|
.cd_attrs = attrs, \
|
|
}
|
|
|
|
/*
|
|
* The cfattachinit is a data structure used to associate a list of
|
|
* cfattach's with cfdrivers as found in the static kernel configuration.
|
|
*/
|
|
struct cfattachinit {
|
|
const char *cfai_name; /* driver name */
|
|
struct cfattach * const *cfai_list;/* list of attachments */
|
|
};
|
|
/*
|
|
* the same, but with a non-constant list so it can be modified
|
|
* for module bookkeeping
|
|
*/
|
|
struct cfattachlkminit {
|
|
const char *cfai_name; /* driver name */
|
|
struct cfattach **cfai_list; /* list of attachments */
|
|
};
|
|
|
|
/*
|
|
* Configuration printing functions, and their return codes. The second
|
|
* argument is NULL if the device was configured; otherwise it is the name
|
|
* of the parent device. The return value is ignored if the device was
|
|
* configured, so most functions can return UNCONF unconditionally.
|
|
*/
|
|
typedef int (*cfprint_t)(void *, const char *); /* XXX const char * */
|
|
#define QUIET 0 /* print nothing */
|
|
#define UNCONF 1 /* print " not configured\n" */
|
|
#define UNSUPP 2 /* print " not supported\n" */
|
|
|
|
/*
|
|
* Pseudo-device attach information (function + number of pseudo-devs).
|
|
*/
|
|
struct pdevinit {
|
|
void (*pdev_attach)(int);
|
|
int pdev_count;
|
|
};
|
|
|
|
/* This allows us to wildcard a device unit. */
|
|
#define DVUNIT_ANY -1
|
|
|
|
#ifdef _KERNEL
|
|
|
|
extern struct cfdriverlist allcfdrivers;/* list of all cfdrivers */
|
|
extern struct cftablelist allcftables; /* list of all cfdata tables */
|
|
extern device_t booted_device; /* the device we booted from */
|
|
extern int booted_partition; /* the partition on that device */
|
|
extern daddr_t booted_startblk; /* or the start of a wedge */
|
|
extern uint64_t booted_nblks; /* and the size of that wedge */
|
|
|
|
struct vnode *opendisk(device_t);
|
|
int getdisksize(struct vnode *, uint64_t *, unsigned int *);
|
|
struct dkwedge_info;
|
|
int getdiskinfo(struct vnode *, struct dkwedge_info *);
|
|
|
|
void config_init(void);
|
|
int config_init_component(struct cfdriver *const*,
|
|
const struct cfattachinit *, struct cfdata *);
|
|
int config_fini_component(struct cfdriver *const*,
|
|
const struct cfattachinit *, struct cfdata *);
|
|
void config_init_mi(void);
|
|
void drvctl_init(void);
|
|
|
|
int config_cfdriver_attach(struct cfdriver *);
|
|
int config_cfdriver_detach(struct cfdriver *);
|
|
|
|
int config_cfattach_attach(const char *, struct cfattach *);
|
|
int config_cfattach_detach(const char *, struct cfattach *);
|
|
|
|
int config_cfdata_attach(cfdata_t, int);
|
|
int config_cfdata_detach(cfdata_t);
|
|
|
|
struct cfdriver *config_cfdriver_lookup(const char *);
|
|
struct cfattach *config_cfattach_lookup(const char *, const char *);
|
|
const struct cfiattrdata *cfiattr_lookup(const char *, const struct cfdriver *);
|
|
|
|
const char *cfdata_ifattr(const struct cfdata *);
|
|
|
|
int config_stdsubmatch(device_t, cfdata_t, const int *, void *);
|
|
cfdata_t config_search_loc(cfsubmatch_t, device_t,
|
|
const char *, const int *, void *);
|
|
cfdata_t config_search_ia(cfsubmatch_t, device_t,
|
|
const char *, void *);
|
|
cfdata_t config_rootsearch(cfsubmatch_t, const char *, void *);
|
|
device_t config_found_sm_loc(device_t, const char *, const int *,
|
|
void *, cfprint_t, cfsubmatch_t);
|
|
device_t config_found_ia(device_t, const char *, void *, cfprint_t);
|
|
device_t config_found(device_t, void *, cfprint_t);
|
|
device_t config_rootfound(const char *, void *);
|
|
device_t config_attach_loc(device_t, cfdata_t, const int *, void *, cfprint_t);
|
|
device_t config_attach(device_t, cfdata_t, void *, cfprint_t);
|
|
int config_match(device_t, cfdata_t, void *);
|
|
|
|
bool ifattr_match(const char *, const char *);
|
|
|
|
device_t config_attach_pseudo(cfdata_t);
|
|
|
|
int config_detach(device_t, int);
|
|
int config_detach_children(device_t, int flags);
|
|
bool config_detach_all(int);
|
|
int config_deactivate(device_t);
|
|
void config_defer(device_t, void (*)(device_t));
|
|
void config_deferred(device_t);
|
|
void config_interrupts(device_t, void (*)(device_t));
|
|
void config_mountroot(device_t, void (*)(device_t));
|
|
void config_pending_incr(device_t);
|
|
void config_pending_decr(device_t);
|
|
void config_create_interruptthreads(void);
|
|
void config_create_mountrootthreads(void);
|
|
|
|
int config_finalize_register(device_t, int (*)(device_t));
|
|
void config_finalize(void);
|
|
|
|
void config_twiddle_init(void);
|
|
void config_twiddle_fn(void *);
|
|
|
|
void null_childdetached(device_t, device_t);
|
|
|
|
device_t device_lookup(cfdriver_t, int);
|
|
void *device_lookup_private(cfdriver_t, int);
|
|
void device_register(device_t, void *);
|
|
void device_register_post_config(device_t, void *);
|
|
|
|
devclass_t device_class(device_t);
|
|
cfdata_t device_cfdata(device_t);
|
|
cfdriver_t device_cfdriver(device_t);
|
|
cfattach_t device_cfattach(device_t);
|
|
int device_unit(device_t);
|
|
const char *device_xname(device_t);
|
|
device_t device_parent(device_t);
|
|
bool device_is_active(device_t);
|
|
bool device_activation(device_t, devact_level_t);
|
|
bool device_is_enabled(device_t);
|
|
bool device_has_power(device_t);
|
|
int device_locator(device_t, u_int);
|
|
void *device_private(device_t);
|
|
prop_dictionary_t device_properties(device_t);
|
|
|
|
device_t deviter_first(deviter_t *, deviter_flags_t);
|
|
void deviter_init(deviter_t *, deviter_flags_t);
|
|
device_t deviter_next(deviter_t *);
|
|
void deviter_release(deviter_t *);
|
|
|
|
bool device_active(device_t, devactive_t);
|
|
bool device_active_register(device_t,
|
|
void (*)(device_t, devactive_t));
|
|
void device_active_deregister(device_t,
|
|
void (*)(device_t, devactive_t));
|
|
|
|
bool device_is_a(device_t, const char *);
|
|
|
|
device_t device_find_by_xname(const char *);
|
|
device_t device_find_by_driver_unit(const char *, int);
|
|
|
|
bool device_pmf_is_registered(device_t);
|
|
|
|
bool device_pmf_driver_suspend(device_t, const pmf_qual_t *);
|
|
bool device_pmf_driver_resume(device_t, const pmf_qual_t *);
|
|
bool device_pmf_driver_shutdown(device_t, int);
|
|
|
|
bool device_pmf_driver_register(device_t,
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
bool (*)(device_t, int));
|
|
void device_pmf_driver_deregister(device_t);
|
|
|
|
bool device_pmf_driver_child_register(device_t);
|
|
void device_pmf_driver_set_child_register(device_t,
|
|
bool (*)(device_t));
|
|
|
|
void *device_pmf_bus_private(device_t);
|
|
bool device_pmf_bus_suspend(device_t, const pmf_qual_t *);
|
|
bool device_pmf_bus_resume(device_t, const pmf_qual_t *);
|
|
bool device_pmf_bus_shutdown(device_t, int);
|
|
|
|
device_lock_t device_getlock(device_t);
|
|
void device_pmf_unlock(device_t);
|
|
bool device_pmf_lock(device_t);
|
|
|
|
bool device_is_self_suspended(device_t);
|
|
void device_pmf_self_suspend(device_t, const pmf_qual_t *);
|
|
void device_pmf_self_resume(device_t, const pmf_qual_t *);
|
|
bool device_pmf_self_wait(device_t, const pmf_qual_t *);
|
|
|
|
void device_pmf_bus_register(device_t, void *,
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
bool (*)(device_t, int),
|
|
void (*)(device_t));
|
|
void device_pmf_bus_deregister(device_t);
|
|
|
|
void *device_pmf_class_private(device_t);
|
|
bool device_pmf_class_suspend(device_t, const pmf_qual_t *);
|
|
bool device_pmf_class_resume(device_t, const pmf_qual_t *);
|
|
|
|
void device_pmf_class_register(device_t, void *,
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
bool (*)(device_t, const pmf_qual_t *),
|
|
void (*)(device_t));
|
|
void device_pmf_class_deregister(device_t);
|
|
|
|
device_t shutdown_first(struct shutdown_state *);
|
|
device_t shutdown_next(struct shutdown_state *);
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* !_SYS_DEVICE_H_ */
|