minix/commands/ps/ps.c
Lionel Sambuc afc1f71188 include/paths.h: merged
Change-Id: I5e2aa0bc99a596f82ef4224f22623bcb83cb98b5
2014-03-03 20:47:01 +01:00

523 lines
14 KiB
C

/* ps - print status Author: Peter Valkenburg */
/* Modified for ProcFS by Alen Stojanov and David van Moolenbroek */
/* Ps.c, Peter Valkenburg (valke@psy.vu.nl), january 1990.
*
* This is a V7 ps(1) look-alike for MINIX >= 1.5.0.
* It does not support the 'k' option (i.e. cannot read memory from core file).
* If you want to compile this for non-IBM PC architectures, the header files
* require that you have your CHIP, MACHINE etc. defined.
* Full syntax:
* ps [-][aeflx]
* Option `a' gives all processes, `l' for detailed info, `x' includes even
* processes without a terminal.
* The `f' and `e' options were added by Kees Bot for the convenience of
* Solaris users accustomed to these options. The `e' option is equivalent to
* `a' and `f' is equivalent to -l. These do not appear in the usage message.
*/
/* Some technical comments on this implementation:
*
* Most fields are similar to V7 ps(1), except for CPU, NICE, PRI which are
* absent, RECV which replaces WCHAN, and PGRP that is an extra.
* The info is obtained from the following fields of proc, mproc and fproc:
* ST - kernel status field, p_rts_flags; pm status field, mp_flags (R if
* p_rts_flags is 0; Z if mp_flags == ZOMBIE; T if mp_flags == STOPPED;
* else W).
* UID - pm eff uid field, mp_effuid
* PID - pm pid field, mp_pid
* PPID - pm parent process index field, mp_parent (used as index in proc).
* PGRP - pm process group field, mp_procgrp
* SZ - memory size, including common and shared memory
* RECV - kernel process index field for message receiving, p_getfrom
* If sleeping, pm's mp_flags, or fs's fp_task are used for more info.
* TTY - fs controlling tty device field, fp_tty.
* TIME - kernel user + system times fields, user_time + sys_time
* CMD - system process index (converted to mnemonic name by using the p_name
* field), or user process argument list (obtained by reading the stack
* frame; the resulting address is used to get the argument vector from
* user space and converted into a concatenated argument list).
*/
#include <minix/config.h>
#include <minix/endpoint.h>
#include <minix/paths.h>
#include <minix/procfs.h>
#include <limits.h>
#include <sys/types.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/dmap.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <dirent.h>
#include <sys/stat.h>
#include <stdio.h>
#include <ttyent.h>
/*----- ps's local stuff below this line ------*/
/* Structure for tty name info. */
typedef struct {
char tty_name[NAME_MAX + 1]; /* file name in /dev */
dev_t tty_dev; /* major/minor pair */
} ttyinfo_t;
ttyinfo_t *ttyinfo; /* ttyinfo holds actual tty info */
size_t n_ttyinfo; /* Number of tty info slots */
u32_t system_hz; /* system clock frequency */
unsigned int nr_procs; /* maximum number of processes */
unsigned int nr_tasks; /* maximum number of tasks */
struct pstat *ptable; /* table with process information */
/* Macro to convert endpoints to slots into ptable */
#define SLOT_NR(e) (_ENDPOINT_P(e) + nr_tasks)
/* Macro to convert memory offsets to rounded kilo-units */
#define off_to_k(off) ((unsigned) (((off) + 512) / 1024))
/* Short and long listing formats:
*
* PID TTY TIME CMD
* ppppp tttmmm:ss cccccccccc...
*
* ST UID PID PPID PGRP SZ RECV TTY TIME CMD
* s uuu ppppp ppppp ppppp ssss rrrrrrrrrr tttmmm:ss cccccccc...
*/
#define S_HEADER " PID TTY TIME CMD\n"
#define S_FORMAT "%5s %3s %s %s\n"
#define L_HEADER "ST UID PID PPID PGRP SZ RECV TTY TIME CMD\n"
#define L_FORMAT " %c %3d %5s %5d %5d %6d %12s %3s %s %s\n"
struct pstat { /* structure filled by pstat() */
struct pstat *ps_next; /* next in process list */
int ps_task; /* is this process a task or not? */
int ps_endpt; /* process endpoint (NONE means unused slot) */
dev_t ps_dev; /* major/minor of controlling tty */
uid_t ps_ruid; /* real uid */
uid_t ps_euid; /* effective uid */
pid_t ps_pid; /* process id */
pid_t ps_ppid; /* parent process id */
int ps_pgrp; /* process group id */
char ps_state; /* process state */
char ps_pstate; /* sleep state */
char ps_fstate; /* VFS block state */
int ps_ftask; /* VFS suspend task (endpoint) */
vir_bytes ps_memory; /* memory usage */
int ps_recv; /* process number to receive from (endpoint) */
time_t ps_utime; /* accumulated user time */
time_t ps_stime; /* accumulated system time */
char ps_name[PROC_NAME_LEN+1];/* process name */
char *ps_args; /* concatenated argument string */
};
int main(int argc, char *argv []);
void plist(void);
int addrread(int fd, phys_clicks base, vir_bytes addr, char *buf, int
nbytes );
void usage(const char *pname );
void err(const char *s );
int gettynames(void);
/*
* Tname returns mnemonic string for dev_nr. This is "?" for maj/min pairs that
* are not found. It uses the ttyinfo array (prepared by gettynames).
* Tname assumes that the first three letters of the tty's name can be omitted
* and returns the rest (except for the console, which yields "co").
*/
static char *tname(dev_t dev_nr)
{
unsigned int i;
if (major(dev_nr) == TTY_MAJOR && minor(dev_nr) == 0) return "co";
for (i = 0; i < n_ttyinfo && ttyinfo[i].tty_name[0] != '\0'; i++)
if (ttyinfo[i].tty_dev == dev_nr)
return ttyinfo[i].tty_name + 3;
return "?";
}
/* Find a task by its endpoint. */
static struct pstat *findtask(endpoint_t endpt)
{
struct pstat *ps;
unsigned int slot;
slot = SLOT_NR(endpt);
if (slot >= nr_tasks + nr_procs)
return NULL;
ps = &ptable[slot];
if (ps != NULL && ps->ps_endpt == (int) endpt)
return ps;
return NULL;
}
/* Return canonical task name of the given endpoint. */
static char *taskname(endpoint_t endpt)
{
struct pstat *ps;
ps = findtask(endpt);
return ps ? ps->ps_name : "???";
}
/* Prrecv prints the RECV field for process with pstat buffer pointer ps.
* This is either "ANY", "taskname", or "(blockreason) taskname".
*/
static char *prrecv(struct pstat *ps)
{
char *blkstr, *task; /* reason for blocking and task */
static char recvstr[20];
if (ps->ps_recv == ANY) return "ANY";
task = taskname(ps->ps_recv);
if (ps->ps_state != STATE_SLEEP) return task;
blkstr = "?";
if (ps->ps_recv == PM_PROC_NR) {
switch (ps->ps_pstate) {
case PSTATE_WAITING: blkstr = "wait"; break;
case PSTATE_SIGSUSP: blkstr = "sigsusp"; break;
}
} else if (ps->ps_recv == VFS_PROC_NR) {
switch (ps->ps_fstate) {
case FSTATE_PIPE: blkstr = "pipe"; break;
case FSTATE_LOCK: blkstr = "flock"; break;
case FSTATE_POPEN: blkstr = "popen"; break;
case FSTATE_SELECT: blkstr = "select"; break;
case FSTATE_TASK: blkstr = taskname(ps->ps_ftask); break;
default: blkstr = "??"; break;
}
}
(void) sprintf(recvstr, "(%s) %s", blkstr, task);
return recvstr;
}
static void getkinfo(void)
{
FILE *fp;
if ((fp = fopen("kinfo", "r")) == NULL)
err("Unable to open " _PATH_PROC "kinfo");
if (fscanf(fp, "%u %u", &nr_procs, &nr_tasks) != 2)
err("Unable to read from " _PATH_PROC "kinfo");
fclose(fp);
}
/* Main interprets arguments, gathers information, and prints a process list.
*/
int main(argc, argv)
int argc;
char *argv[];
{
int i;
unsigned int n;
struct pstat *ps;
int uid = getuid(); /* real uid of caller */
char *opt;
int opt_all = FALSE; /* -a */
int opt_long = FALSE; /* -l */
int opt_notty = FALSE; /* -x */
int opt_endpoint = FALSE; /* -E */
char pid[2 + sizeof(pid_t) * 3];
unsigned long ustime;
char cpu[sizeof(clock_t) * 3 + 1 + 2];
/* Parse arguments; a '-' need not be present (V7/BSD compatability) */
for (i = 1; i < argc; i++) {
opt = argv[i];
if (opt[0] == '-') opt++;
while (*opt != 0) switch (*opt++) {
case 'a': opt_all = TRUE; break;
case 'E': opt_endpoint = TRUE; break;
case 'e': opt_all = opt_notty = TRUE; break;
case 'f':
case 'l': opt_long = TRUE; break;
case 'x': opt_notty = TRUE; break;
default: usage(argv[0]);
}
}
if (gettynames() == -1) err("Can't get tty names");
if (chdir(_PATH_PROC) != 0) err("Can't chdir to /proc");
/* Get information from the proc file system */
system_hz = (u32_t) sysconf(_SC_CLK_TCK);
getkinfo();
plist();
/* Now loop through process table and handle each entry */
printf("%s", opt_long ? L_HEADER : S_HEADER);
for (n = 0; n < nr_procs + nr_tasks; n++) {
ps = &ptable[n];
if (ps->ps_endpt == NONE)
continue;
if ((opt_all || ps->ps_euid == uid || ps->ps_ruid == uid) &&
(opt_notty || major(ps->ps_dev) == TTY_MAJOR)) {
if (ps->ps_task) {
sprintf(pid, "(%d)", ps->ps_pid);
} else {
sprintf(pid, "%d",
opt_endpoint ? ps->ps_endpt : ps->ps_pid);
}
ustime = (ps->ps_utime + ps->ps_stime) / system_hz;
if (ustime < 60 * 60) {
sprintf(cpu, "%2lu:%02lu", ustime / 60, ustime % 60);
} else
if (ustime < 100L * 60 * 60) {
ustime /= 60;
sprintf(cpu, "%2luh%02lu", ustime / 60, ustime % 60);
} else {
sprintf(cpu, "%4luh", ustime / 3600);
}
if (opt_long) printf(L_FORMAT,
ps->ps_state,
ps->ps_euid, pid, ps->ps_ppid,
ps->ps_pgrp,
off_to_k(ps->ps_memory),
(ps->ps_recv != NONE ? prrecv(ps) : ""),
tname((dev_t) ps->ps_dev),
cpu,
ps->ps_args != NULL ? ps->ps_args : ps->ps_name
);
else
printf(S_FORMAT,
pid, tname((dev_t) ps->ps_dev),
cpu,
ps->ps_args != NULL ? ps->ps_args : ps->ps_name
);
}
}
return(0);
}
/* Get_args obtains the command line of a process. */
char *get_args(struct pstat *ps)
{
char path[PATH_MAX], buf[4096];
ssize_t i, n;
int fd;
/* Get a reasonable subset of the contents of the 'cmdline' file from procfs.
* It contains all arguments, separated and terminated by null characters.
*/
sprintf(path, "%d/cmdline", ps->ps_pid);
fd = open(path, O_RDONLY);
if (fd < 0) return NULL;
n = read(fd, buf, sizeof(buf));
if (n <= 0) {
close(fd);
return NULL;
}
close(fd);
/* Replace all argument separating null characters with spaces. */
for (i = 0; i < n-1; i++)
if (buf[i] == '\0')
buf[i] = ' ';
/* The last character should already be null, except if it got cut off. */
buf[n-1] = '\0';
return strdup(buf);
}
/* Pstat obtains the actual information for the given process, and stores it
* in the pstat structure. The outside world may change while we are doing
* this, so nothing is reported in case any of the calls fail.
*/
int pstat(struct pstat *ps, pid_t pid)
{
FILE *fp;
int version, ruid, euid, dev;
char type, path[PATH_MAX], name[256];
ps->ps_pid = pid;
ps->ps_next = NULL;
sprintf(path, "%d/psinfo", pid);
if ((fp = fopen(path, "r")) == NULL)
return -1;
if (fscanf(fp, "%d", &version) != 1) {
fclose(fp);
return -1;
}
/* The psinfo file's version must match what we expect. */
if (version != PSINFO_VERSION) {
fputs("procfs version mismatch!\n", stderr);
exit(1);
}
if (fscanf(fp, " %c %d %255s %c %d %*d %u %u %*u %*u",
&type, &ps->ps_endpt, name, &ps->ps_state,
&ps->ps_recv, &ps->ps_utime, &ps->ps_stime) != 7) {
fclose(fp);
return -1;
}
strncpy(ps->ps_name, name, sizeof(ps->ps_name)-1);
ps->ps_name[sizeof(ps->ps_name)-1] = 0;
ps->ps_task = type == TYPE_TASK;
if (!ps->ps_task) {
if (fscanf(fp, " %lu %*u %*u %c %d %u %u %u %*d %c %d %u",
&ps->ps_memory, &ps->ps_pstate, &ps->ps_ppid,
&ruid, &euid, &ps->ps_pgrp, &ps->ps_fstate,
&ps->ps_ftask, &dev) != 9) {
fclose(fp);
return -1;
}
ps->ps_ruid = ruid;
ps->ps_euid = euid;
ps->ps_dev = dev;
} else {
ps->ps_memory = 0L;
ps->ps_pstate = PSTATE_NONE;
ps->ps_ppid = 0;
ps->ps_ruid = 0;
ps->ps_euid = 0;
ps->ps_pgrp = 0;
ps->ps_fstate = FSTATE_NONE;
ps->ps_ftask = NONE;
ps->ps_dev = NO_DEV;
}
fclose(fp);
if (ps->ps_state == STATE_ZOMBIE)
ps->ps_args = "<defunct>";
else if (!ps->ps_task)
ps->ps_args = get_args(ps);
else
ps->ps_args = NULL;
return 0;
}
/* Plist creates a list of processes with status information. */
void plist(void)
{
DIR *p_dir;
struct dirent *p_ent;
struct pstat pbuf;
pid_t pid;
char *end;
unsigned int slot;
/* Allocate a table for process information. Initialize all slots' endpoints
* to NONE, indicating those slots are not used.
*/
if ((ptable = malloc((nr_tasks + nr_procs) * sizeof(struct pstat))) == NULL)
err("Out of memory!");
for (slot = 0; slot < nr_tasks + nr_procs; slot++)
ptable[slot].ps_endpt = NONE;
/* Fill in the table slots for all existing processes, by retrieving all PID
* entries from the /proc directory.
*/
p_dir = opendir(".");
if (p_dir == NULL) err("Can't open " _PATH_PROC);
p_ent = readdir(p_dir);
while (p_ent != NULL) {
pid = strtol(p_ent->d_name, &end, 10);
if (!end[0] && pid != 0 && !pstat(&pbuf, pid)) {
slot = SLOT_NR(pbuf.ps_endpt);
if (slot < nr_tasks + nr_procs)
memcpy(&ptable[slot], &pbuf, sizeof(pbuf));
}
p_ent = readdir(p_dir);
}
closedir(p_dir);
}
void usage(const char *pname)
{
fprintf(stderr, "Usage: %s [-][aeflx]\n", pname);
exit(1);
}
void err(const char *s)
{
extern int errno;
if (errno == 0)
fprintf(stderr, "ps: %s\n", s);
else
fprintf(stderr, "ps: %s: %s\n", s, strerror(errno));
exit(2);
}
/* Fill ttyinfo by fstatting character specials in /dev. */
int gettynames(void)
{
static char dev_path[] = "/dev/";
struct stat statbuf;
static char path[sizeof(dev_path) + NAME_MAX];
unsigned int index;
struct ttyent *ttyp;
index = 0;
while ((ttyp = getttyent()) != NULL) {
strcpy(path, dev_path);
strcat(path, ttyp->ty_name);
if (stat(path, &statbuf) == -1 || !S_ISCHR(statbuf.st_mode))
continue;
if (index >= n_ttyinfo) {
n_ttyinfo= (index+16) * 2;
ttyinfo = realloc(ttyinfo, n_ttyinfo * sizeof(ttyinfo[0]));
if (ttyinfo == NULL) err("Out of memory");
}
ttyinfo[index].tty_dev = statbuf.st_rdev;
strcpy(ttyinfo[index].tty_name, ttyp->ty_name);
index++;
}
endttyent();
while (index < n_ttyinfo) ttyinfo[index++].tty_dev= 0;
return 0;
}