minix/kernel/proto.h
Ben Gras 565f13088f make vfs & filesystems use failable copying
Change the kernel to add features to vircopy and safecopies so that
transparent copy fixing won't happen to avoid deadlocks, and such copies
fail with EFAULT.

Transparently making copying work from filesystems (as normally done by
the kernel & VM when copying fails because of missing/readonly memory)
is problematic as it can happen that, for file-mapped ranges, that that
same filesystem that is blocked on the copy request is needed to satisfy
the memory range, leading to deadlock. Dito for VFS itself, if done with
a blocking call.

This change makes the copying done from a filesystem fail in such cases
with EFAULT by VFS adding the CPF_TRY flag to the grants. If a FS call
fails with EFAULT, VFS will then request the range to be made available
to VM after the FS is unblocked, allowing it to be used to satisfy the
range if need be in another VFS thread.

Similarly, for datacopies that VFS itself does, it uses the failable
vircopy variant and callers use a wrapper that talk to VM if necessary
to get the copy to work.

	. kernel: add CPF_TRY flag to safecopies
	. kernel: only request writable ranges to VM for the
	  target buffer when copying fails
	. do copying in VFS TRY-first
	. some fixes in VM to build SANITYCHECK mode
	. add regression test for the cases where
	  - a FS system call needs memory mapped in a process that the
	    FS itself must map.
	  - such a range covers more than one file-mapped region.
	. add 'try' mode to vircopy, physcopy
	. add flags field to copy kernel call messages
	. if CP_FLAG_TRY is set, do not transparently try
	  to fix memory ranges
	. for use by VFS when accessing user buffers to avoid
	  deadlock
	. remove some obsolete backwards compatability assignments
        . VFS: let thread scheduling work for VM requests too
          Allows VFS to make calls to VM while suspending and resuming
          the currently running thread. Does currently not work for the
          main thread.
        . VM: add fix memory range call for use by VFS

Change-Id: I295794269cea51a3163519a9cfe5901301d90b32
2014-07-28 17:05:14 +02:00

232 lines
7.8 KiB
C

/* Function prototypes. */
/* FIXME this is a hack how to avoid inclusion conflicts */
#ifdef __kernel__
#ifndef PROTO_H
#define PROTO_H
#include <minix/safecopies.h>
#include <machine/archtypes.h>
#include <machine/signal.h>
#include <machine/frame.h>
/* Struct declarations. */
struct proc;
/* clock.c */
clock_t get_realtime(void);
void set_realtime(clock_t);
void set_adjtime_delta(int32_t);
clock_t get_monotonic(void);
void set_kernel_timer(minix_timer_t *tp, clock_t t, tmr_func_t f);
void reset_kernel_timer(minix_timer_t *tp);
void ser_dump_proc(void);
void cycles_accounting_init(void);
/*
* This functions start and stop accounting for process, kernel or idle cycles.
* It inherently have to account for some kernel cycles for process too,
* therefore it should be called asap after trapping to kernel and as late as
* possible before returning to userspace. These function is architecture
* dependent
*/
void context_stop(struct proc * p);
/* this is a wrapper to make calling it from assembly easier */
void context_stop_idle(void);
int restore_fpu(struct proc *);
void save_fpu(struct proc *);
void save_local_fpu(struct proc *, int retain);
void fpu_sigcontext(struct proc *, struct sigframe_sigcontext *fr, struct
sigcontext *sc);
/* main.c */
#ifndef UNPAGED
#define kmain __k_unpaged_kmain
#endif
void kmain(kinfo_t *cbi);
void prepare_shutdown(int how);
__dead void minix_shutdown(minix_timer_t *tp);
void bsp_finish_booting(void);
/* proc.c */
int do_ipc(reg_t r1, reg_t r2, reg_t r3);
void proc_init(void);
int cancel_async(struct proc *src, struct proc *dst);
int has_pending_notify(struct proc * caller, int src_p);
int has_pending_asend(struct proc * caller, int src_p);
void unset_notify_pending(struct proc * caller, int src_p);
int mini_notify(const struct proc *src, endpoint_t dst);
void enqueue(struct proc *rp);
void dequeue(struct proc *rp);
void switch_to_user(void);
void arch_proc_reset(struct proc *rp);
void arch_proc_setcontext(struct proc *rp, struct stackframe_s *state,
int user, int restorestyle);
struct proc * arch_finish_switch_to_user(void);
struct proc *endpoint_lookup(endpoint_t ep);
#if DEBUG_ENABLE_IPC_WARNINGS
int isokendpt_f(const char *file, int line, endpoint_t e, int *p, int
f);
#define isokendpt_d(e, p, f) isokendpt_f(__FILE__, __LINE__, (e), (p), (f))
#else
int isokendpt_f(endpoint_t e, int *p, int f);
#define isokendpt_d(e, p, f) isokendpt_f((e), (p), (f))
#endif
void proc_no_time(struct proc *p);
void reset_proc_accounting(struct proc *p);
void increase_proc_signals(struct proc *p);
void flag_account(struct proc *p, int flag);
int try_deliver_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
size);
/* start.c */
void cstart();
char *env_get(const char *key);
/* system.c */
int get_priv(register struct proc *rc, int proc_type);
void set_sendto_bit(const struct proc *rc, int id);
void unset_sendto_bit(const struct proc *rc, int id);
void fill_sendto_mask(const struct proc *rc, sys_map_t *map);
int send_sig(endpoint_t proc_nr, int sig_nr);
void cause_sig(proc_nr_t proc_nr, int sig_nr);
void sig_delay_done(struct proc *rp);
void send_diag_sig(void);
void kernel_call(message *m_user, struct proc * caller);
void system_init(void);
void clear_endpoint(struct proc *rc);
void clear_ipc_refs(struct proc *rc, int caller_ret);
void kernel_call_resume(struct proc *p);
int sched_proc(struct proc *rp, int priority, int quantum, int cpu);
/* system/do_vtimer.c */
void vtimer_check(struct proc *rp);
/* interrupt.c */
void put_irq_handler(irq_hook_t *hook, int irq, irq_handler_t handler);
void rm_irq_handler(const irq_hook_t *hook);
void enable_irq(const irq_hook_t *hook);
int disable_irq(const irq_hook_t *hook);
void interrupts_enable(void);
void interrupts_disable(void);
/* debug.c */
int runqueues_ok(void);
#ifndef CONFIG_SMP
#define runqueues_ok_local runqueues_ok
#else
#define runqueues_ok_local() runqueues_ok_cpu(cpuid)
int runqueues_ok_cpu(unsigned cpu);
#endif
char *rtsflagstr(u32_t flags);
char *miscflagstr(u32_t flags);
char *schedulerstr(struct proc *scheduler);
/* prints process information */
void print_proc(struct proc *pp);
/* prints the given process and recursively all processes it depends on */
void print_proc_recursive(struct proc *pp);
#if DEBUG_IPC_HOOK
void hook_ipc_msgrecv(message *msg, struct proc *src, struct proc *dst);
void hook_ipc_msgsend(message *msg, struct proc *src, struct proc *dst);
void hook_ipc_msgkcall(message *msg, struct proc *proc);
void hook_ipc_msgkresult(message *msg, struct proc *proc);
void hook_ipc_clear(struct proc *proc);
#endif
/* system/do_safecopy.c */
int verify_grant(endpoint_t, endpoint_t, cp_grant_id_t, vir_bytes, int,
vir_bytes, vir_bytes *, endpoint_t *, u32_t *);
/* system/do_diagctl.c */
int do_diagctl(struct proc * caller, message *m);
#if SPROFILE
/* profile.c */
void init_profile_clock(u32_t);
void stop_profile_clock(void);
#endif
/* functions defined in architecture-dependent files. */
void prot_init();
void arch_post_init();
void arch_set_secondary_ipc_return(struct proc *, u32_t val);
phys_bytes phys_copy(phys_bytes source, phys_bytes dest, phys_bytes
count);
void phys_copy_fault(void);
void phys_copy_fault_in_kernel(void);
void memset_fault(void);
void memset_fault_in_kernel(void);
#define virtual_copy(src, dst, bytes) \
virtual_copy_f(NULL, src, dst, bytes, 0)
#define virtual_copy_vmcheck(caller, src, dst, bytes) \
virtual_copy_f(caller, src, dst, bytes, 1)
int virtual_copy_f(struct proc * caller, struct vir_addr *src, struct
vir_addr *dst, vir_bytes bytes, int vmcheck);
int data_copy(endpoint_t from, vir_bytes from_addr, endpoint_t to,
vir_bytes to_addr, size_t bytes);
int data_copy_vmcheck(struct proc *, endpoint_t from, vir_bytes
from_addr, endpoint_t to, vir_bytes to_addr, size_t bytes);
phys_bytes umap_virtual(struct proc* rp, int seg, vir_bytes vir_addr,
vir_bytes bytes);
phys_bytes seg2phys(u16_t);
int vm_memset(struct proc *caller, endpoint_t who, phys_bytes dst,
int pattern, phys_bytes count);
int intr_init(int);
void halt_cpu(void);
void arch_init(void);
void arch_boot_proc(struct boot_image *b, struct proc *p);
void cpu_identify(void);
/* arch dependent FPU initialization per CPU */
void fpu_init(void);
/* returns true if pfu is present and initialized */
int is_fpu(void);
void ser_putc(char);
__dead void arch_shutdown(int);
void restore_user_context(struct proc * p);
void read_tsc(u32_t *high, u32_t *low);
int arch_init_profile_clock(u32_t freq);
void arch_stop_profile_clock(void);
void arch_ack_profile_clock(void);
void do_ser_debug(void);
int arch_get_params(char *parm, int max);
void memory_init(void);
void mem_clear_mapcache(void);
void arch_proc_init(struct proc *pr, u32_t, u32_t, u32_t, char *);
int arch_do_vmctl(message *m_ptr, struct proc *p);
int vm_contiguous(const struct proc *targetproc, vir_bytes vir_buf,
size_t count);
void proc_stacktrace(struct proc *proc);
int vm_lookup(const struct proc *proc, vir_bytes virtual, phys_bytes
*result, u32_t *ptent);
size_t vm_lookup_range(const struct proc *proc,
vir_bytes vir_addr, phys_bytes *phys_addr, size_t bytes);
void delivermsg(struct proc *target);
void arch_do_syscall(struct proc *proc);
int arch_phys_map(int index, phys_bytes *addr, phys_bytes *len, int
*flags);
int arch_phys_map_reply(int index, vir_bytes addr);
reg_t arch_get_sp(struct proc *p);
int arch_enable_paging(struct proc * caller);
int vm_check_range(struct proc *caller,
struct proc *target, vir_bytes vir_addr, size_t bytes, int writable);
int copy_msg_from_user(message * user_mbuf, message * dst);
int copy_msg_to_user(message * src, message * user_mbuf);
void switch_address_space(struct proc * p);
void release_address_space(struct proc *pr);
void enable_fpu_exception(void);
void disable_fpu_exception(void);
void release_fpu(struct proc * p);
void arch_pause(void);
short cpu_load(void);
void busy_delay_ms(int ms);
/* utility.c */
void cpu_print_freq(unsigned cpu);
#endif /* __kernel__ */
#endif /* PROTO_H */