831 lines
22 KiB
C
831 lines
22 KiB
C
|
|
#include "../../kernel.h"
|
|
#include "../../proc.h"
|
|
#include "../../vm.h"
|
|
|
|
#include <minix/type.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/sysutil.h>
|
|
#include <string.h>
|
|
|
|
#include <sys/vm_i386.h>
|
|
|
|
#include <minix/portio.h>
|
|
|
|
#include "proto.h"
|
|
#include "../../proto.h"
|
|
#include "../../debug.h"
|
|
|
|
/* VM functions and data. */
|
|
PRIVATE u32_t vm_cr3;
|
|
PUBLIC u32_t kernel_cr3;
|
|
extern u32_t cswitch;
|
|
u32_t last_cr3 = 0;
|
|
|
|
FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) );
|
|
FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) );
|
|
FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) );
|
|
FORWARD _PROTOTYPE( void set_cr3, (void) );
|
|
FORWARD _PROTOTYPE( void vm_enable_paging, (void) );
|
|
|
|
#if DEBUG_VMASSERT
|
|
#define vmassert(t) { \
|
|
if(!(t)) { minix_panic("vm: assert " #t " failed\n", __LINE__); } }
|
|
#else
|
|
#define vmassert(t) { }
|
|
#endif
|
|
|
|
/* *** Internal VM Functions *** */
|
|
|
|
PUBLIC void vm_init(void)
|
|
{
|
|
int o;
|
|
phys_bytes p, pt_size;
|
|
phys_bytes vm_dir_base, vm_pt_base, phys_mem;
|
|
u32_t entry;
|
|
unsigned pages;
|
|
struct proc* rp;
|
|
struct proc *sys = proc_addr(SYSTEM);
|
|
|
|
if (!vm_size)
|
|
minix_panic("i386_vm_init: no space for page tables", NO_NUM);
|
|
|
|
if(vm_running)
|
|
return;
|
|
|
|
/* Align page directory */
|
|
o= (vm_base % I386_PAGE_SIZE);
|
|
if (o != 0)
|
|
o= I386_PAGE_SIZE-o;
|
|
vm_dir_base= vm_base+o;
|
|
|
|
/* Page tables start after the page directory */
|
|
vm_pt_base= vm_dir_base+I386_PAGE_SIZE;
|
|
|
|
pt_size= (vm_base+vm_size)-vm_pt_base;
|
|
pt_size -= (pt_size % I386_PAGE_SIZE);
|
|
|
|
/* Compute the number of pages based on vm_mem_high */
|
|
pages= (vm_mem_high-1)/I386_PAGE_SIZE + 1;
|
|
|
|
if (pages * I386_VM_PT_ENT_SIZE > pt_size)
|
|
minix_panic("i386_vm_init: page table too small", NO_NUM);
|
|
|
|
for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++)
|
|
{
|
|
phys_mem= p*I386_PAGE_SIZE;
|
|
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
|
|
I386_VM_PRESENT;
|
|
if (phys_mem >= vm_mem_high)
|
|
entry= 0;
|
|
#if VM_KERN_NOPAGEZERO
|
|
if (phys_mem == (sys->p_memmap[T].mem_phys << CLICK_SHIFT) ||
|
|
phys_mem == (sys->p_memmap[D].mem_phys << CLICK_SHIFT)) {
|
|
entry = 0;
|
|
}
|
|
#endif
|
|
phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry);
|
|
}
|
|
|
|
for (p= 0; p < I386_VM_DIR_ENTRIES; p++)
|
|
{
|
|
phys_mem= vm_pt_base + p*I386_PAGE_SIZE;
|
|
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
|
|
I386_VM_PRESENT;
|
|
if (phys_mem >= vm_pt_base + pt_size)
|
|
entry= 0;
|
|
phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry);
|
|
}
|
|
|
|
/* Set this cr3 in all currently running processes for
|
|
* future context switches.
|
|
*/
|
|
for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
|
|
u32_t mycr3;
|
|
if(isemptyp(rp)) continue;
|
|
rp->p_seg.p_cr3 = vm_dir_base;
|
|
}
|
|
|
|
kernel_cr3 = vm_dir_base;
|
|
|
|
/* Set this cr3 now (not active until paging enabled). */
|
|
vm_set_cr3(vm_dir_base);
|
|
|
|
/* Actually enable paging (activating cr3 load above). */
|
|
level0(vm_enable_paging);
|
|
|
|
/* Don't do this init in the future. */
|
|
vm_running = 1;
|
|
}
|
|
|
|
PRIVATE void phys_put32(addr, value)
|
|
phys_bytes addr;
|
|
u32_t value;
|
|
{
|
|
phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));
|
|
}
|
|
|
|
PRIVATE u32_t phys_get32(addr)
|
|
phys_bytes addr;
|
|
{
|
|
u32_t value;
|
|
|
|
phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value));
|
|
|
|
return value;
|
|
}
|
|
|
|
PRIVATE void vm_set_cr3(value)
|
|
u32_t value;
|
|
{
|
|
vm_cr3= value;
|
|
level0(set_cr3);
|
|
}
|
|
|
|
PRIVATE void set_cr3()
|
|
{
|
|
write_cr3(vm_cr3);
|
|
}
|
|
|
|
PRIVATE void vm_enable_paging(void)
|
|
{
|
|
u32_t cr0, cr4;
|
|
|
|
|
|
cr0= read_cr0();
|
|
cr4= read_cr4();
|
|
|
|
/* First clear PG and PGE flag, as PGE must be enabled after PG. */
|
|
write_cr0(cr0 & ~I386_CR0_PG);
|
|
write_cr4(cr4 & ~I386_CR4_PGE);
|
|
|
|
cr0= read_cr0();
|
|
cr4= read_cr4();
|
|
|
|
/* First enable paging, then enable global page flag. */
|
|
write_cr0(cr0 | I386_CR0_PG);
|
|
write_cr4(cr4 | I386_CR4_PGE);
|
|
}
|
|
|
|
PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
|
|
segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
|
|
int priv)
|
|
{
|
|
phys_bytes offset = 0;
|
|
/* Check if the segment size can be recorded in bytes, that is, check
|
|
* if descriptor's limit field can delimited the allowed memory region
|
|
* precisely. This works up to 1MB. If the size is larger, 4K pages
|
|
* instead of bytes are used.
|
|
*/
|
|
if (size < BYTE_GRAN_MAX) {
|
|
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
|
|
phys, size, priv);
|
|
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
|
|
offset = 0;
|
|
} else {
|
|
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
|
|
phys & ~0xFFFF, 0, priv);
|
|
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
|
|
offset = phys & 0xFFFF;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
|
|
vir_bytes vir_addr, vir_bytes bytes)
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
struct far_mem *fm;
|
|
|
|
#if 0
|
|
if(rp->p_misc_flags & MF_FULLVM) return 0;
|
|
#endif
|
|
|
|
if (bytes <= 0) return( (phys_bytes) 0);
|
|
if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
|
|
|
fm = &rp->p_priv->s_farmem[seg];
|
|
if (! fm->in_use) return( (phys_bytes) 0);
|
|
if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
|
|
|
return(fm->mem_phys + (phys_bytes) vir_addr);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_local *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
vir_clicks vc; /* the virtual address in clicks */
|
|
phys_bytes pa; /* intermediate variables as phys_bytes */
|
|
phys_bytes seg_base;
|
|
|
|
if(seg != T && seg != D && seg != S)
|
|
minix_panic("umap_local: wrong seg", seg);
|
|
|
|
if (bytes <= 0) return( (phys_bytes) 0);
|
|
if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
|
vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
|
|
|
if (seg != T)
|
|
seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
|
|
|
if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
|
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
|
|
|
if (vc >= rp->p_memmap[seg].mem_vir +
|
|
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
|
|
|
seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
|
seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
|
pa = (phys_bytes) vir_addr;
|
|
pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
|
return(seg_base + pa);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_virtual *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
vir_bytes linear;
|
|
u32_t phys = 0;
|
|
|
|
if(seg == MEM_GRANT) {
|
|
phys = umap_grant(rp, vir_addr, bytes);
|
|
} else {
|
|
if(!(linear = umap_local(rp, seg, vir_addr, bytes))) {
|
|
kprintf("SYSTEM:umap_virtual: umap_local failed\n");
|
|
phys = 0;
|
|
} else {
|
|
if(vm_lookup(rp, linear, &phys, NULL) != OK) {
|
|
kprintf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%lx: 0x%lx failed\n", rp->p_name, seg, vir_addr);
|
|
phys = 0;
|
|
}
|
|
if(phys == 0)
|
|
minix_panic("vm_lookup returned phys", phys);
|
|
}
|
|
}
|
|
|
|
if(phys == 0) {
|
|
kprintf("SYSTEM:umap_virtual: lookup failed\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Now make sure addresses are contiguous in physical memory
|
|
* so that the umap makes sense.
|
|
*/
|
|
if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) {
|
|
kprintf("umap_virtual: %s: %d at 0x%lx (vir 0x%lx) not contiguous\n",
|
|
rp->p_name, bytes, linear, vir_addr);
|
|
return 0;
|
|
}
|
|
|
|
/* phys must be larger than 0 (or the caller will think the call
|
|
* failed), and address must not cross a page boundary.
|
|
*/
|
|
vmassert(phys);
|
|
|
|
return phys;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_lookup *
|
|
*===========================================================================*/
|
|
PUBLIC int vm_lookup(struct proc *proc, vir_bytes virtual, vir_bytes *physical, u32_t *ptent)
|
|
{
|
|
u32_t *root, *pt;
|
|
int pde, pte;
|
|
u32_t pde_v, pte_v;
|
|
|
|
vmassert(proc);
|
|
vmassert(physical);
|
|
vmassert(!(proc->p_rts_flags & SLOT_FREE));
|
|
|
|
/* Retrieve page directory entry. */
|
|
root = (u32_t *) proc->p_seg.p_cr3;
|
|
vmassert(!((u32_t) root % I386_PAGE_SIZE));
|
|
pde = I386_VM_PDE(virtual);
|
|
vmassert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
|
|
pde_v = phys_get32((u32_t) (root + pde));
|
|
if(!(pde_v & I386_VM_PRESENT)) {
|
|
#if 0
|
|
kprintf("vm_lookup: %d:%s:0x%lx: cr3 0x%lx: pde %d not present\n",
|
|
proc->p_endpoint, proc->p_name, virtual, root, pde);
|
|
kprintf("kernel stack: ");
|
|
util_stacktrace();
|
|
#endif
|
|
return EFAULT;
|
|
}
|
|
|
|
/* Retrieve page table entry. */
|
|
pt = (u32_t *) I386_VM_PFA(pde_v);
|
|
vmassert(!((u32_t) pt % I386_PAGE_SIZE));
|
|
pte = I386_VM_PTE(virtual);
|
|
vmassert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
|
|
pte_v = phys_get32((u32_t) (pt + pte));
|
|
if(!(pte_v & I386_VM_PRESENT)) {
|
|
#if 0
|
|
kprintf("vm_lookup: %d:%s:0x%lx: cr3 %lx: pde %d: pte %d not present\n",
|
|
proc->p_endpoint, proc->p_name, virtual, root, pde, pte);
|
|
kprintf("kernel stack: ");
|
|
util_stacktrace();
|
|
#endif
|
|
return EFAULT;
|
|
}
|
|
|
|
if(ptent) *ptent = pte_v;
|
|
|
|
/* Actual address now known; retrieve it and add page offset. */
|
|
*physical = I386_VM_PFA(pte_v);
|
|
*physical += virtual % I386_PAGE_SIZE;
|
|
|
|
return OK;
|
|
}
|
|
|
|
/* From virtual address v in process p,
|
|
* lookup physical address and assign it to d.
|
|
* If p is NULL, assume it's already a physical address.
|
|
*/
|
|
#define LOOKUP(d, p, v, flagsp) { \
|
|
int r; \
|
|
if(!(p)) { (d) = (v); } \
|
|
else { \
|
|
if((r=vm_lookup((p), (v), &(d), flagsp)) != OK) { \
|
|
kprintf("vm_copy: lookup failed of 0x%lx in %d (%s)\n"\
|
|
"kernel stacktrace: ", (v), (p)->p_endpoint, \
|
|
(p)->p_name); \
|
|
util_stacktrace(); \
|
|
return r; \
|
|
} } }
|
|
|
|
/*===========================================================================*
|
|
* vm_copy *
|
|
*===========================================================================*/
|
|
int vm_copy(vir_bytes src, struct proc *srcproc,
|
|
vir_bytes dst, struct proc *dstproc, phys_bytes bytes)
|
|
{
|
|
#define WRAPS(v) (ULONG_MAX - (v) <= bytes)
|
|
|
|
if(WRAPS(src) || WRAPS(dst))
|
|
minix_panic("vm_copy: linear address wraps", NO_NUM);
|
|
|
|
while(bytes > 0) {
|
|
u32_t n, flags;
|
|
phys_bytes p_src, p_dst;
|
|
#define PAGEREMAIN(v) (I386_PAGE_SIZE - ((v) % I386_PAGE_SIZE))
|
|
|
|
/* We can copy this number of bytes without
|
|
* crossing a page boundary, but don't copy more
|
|
* than asked.
|
|
*/
|
|
n = MIN(PAGEREMAIN(src), PAGEREMAIN(dst));
|
|
n = MIN(n, bytes);
|
|
vmassert(n > 0);
|
|
vmassert(n <= I386_PAGE_SIZE);
|
|
|
|
/* Convert both virtual addresses to physical and do
|
|
* copy.
|
|
*/
|
|
LOOKUP(p_src, srcproc, src, NULL);
|
|
LOOKUP(p_dst, dstproc, dst, &flags);
|
|
if(!(flags & I386_VM_WRITE)) {
|
|
kprintf("vm_copy: copying to nonwritable page\n");
|
|
kprintf("kernel stack: ");
|
|
util_stacktrace();
|
|
return EFAULT;
|
|
}
|
|
phys_copy(p_src, p_dst, n);
|
|
|
|
/* Book number of bytes copied. */
|
|
vmassert(bytes >= n);
|
|
bytes -= n;
|
|
src += n;
|
|
dst += n;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_contiguous *
|
|
*===========================================================================*/
|
|
PUBLIC int vm_contiguous(struct proc *targetproc, u32_t vir_buf, size_t bytes)
|
|
{
|
|
int first = 1, r, boundaries = 0;
|
|
u32_t prev_phys, po;
|
|
u32_t prev_vir;
|
|
|
|
vmassert(targetproc);
|
|
vmassert(bytes > 0);
|
|
vmassert(vm_running);
|
|
|
|
/* Start and end at page boundary to make logic simpler. */
|
|
po = vir_buf % I386_PAGE_SIZE;
|
|
if(po > 0) {
|
|
bytes += po;
|
|
vir_buf -= po;
|
|
}
|
|
po = (vir_buf + bytes) % I386_PAGE_SIZE;
|
|
if(po > 0)
|
|
bytes += I386_PAGE_SIZE - po;
|
|
|
|
/* Keep going as long as we cross a page boundary. */
|
|
while(bytes > 0) {
|
|
u32_t phys;
|
|
|
|
if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) {
|
|
kprintf("vm_contiguous: vm_lookup failed, %d\n", r);
|
|
kprintf("kernel stack: ");
|
|
util_stacktrace();
|
|
return 0;
|
|
}
|
|
|
|
if(!first) {
|
|
if(prev_phys+I386_PAGE_SIZE != phys) {
|
|
kprintf("vm_contiguous: no (0x%lx, 0x%lx)\n",
|
|
prev_phys, phys);
|
|
kprintf("kernel stack: ");
|
|
util_stacktrace();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
first = 0;
|
|
|
|
prev_phys = phys;
|
|
prev_vir = vir_buf;
|
|
vir_buf += I386_PAGE_SIZE;
|
|
bytes -= I386_PAGE_SIZE;
|
|
boundaries++;
|
|
}
|
|
|
|
if(verbose_vm)
|
|
kprintf("vm_contiguous: yes (%d boundaries tested)\n",
|
|
boundaries);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int vm_checkrange_verbose = 0;
|
|
|
|
/*===========================================================================*
|
|
* vm_checkrange *
|
|
*===========================================================================*/
|
|
PUBLIC int vm_checkrange(struct proc *caller, struct proc *target,
|
|
vir_bytes vir, vir_bytes bytes, int wrfl, int checkonly)
|
|
{
|
|
u32_t flags, po, v;
|
|
int r;
|
|
|
|
vmassert(vm_running);
|
|
|
|
|
|
/* If caller has had a reply to this request, return it. */
|
|
if(RTS_ISSET(caller, VMREQUEST)) {
|
|
if(caller->p_vmrequest.who == target->p_endpoint) {
|
|
if(caller->p_vmrequest.vmresult == VMSUSPEND)
|
|
minix_panic("check sees VMSUSPEND?", NO_NUM);
|
|
RTS_LOCK_UNSET(caller, VMREQUEST);
|
|
#if 0
|
|
kprintf("SYSTEM: vm_checkrange: returning vmresult %d\n",
|
|
caller->p_vmrequest.vmresult);
|
|
#endif
|
|
return caller->p_vmrequest.vmresult;
|
|
} else {
|
|
#if 0
|
|
kprintf("SYSTEM: vm_checkrange: caller has a request for %d, "
|
|
"but our target is %d\n",
|
|
caller->p_vmrequest.who, target->p_endpoint);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
po = vir % I386_PAGE_SIZE;
|
|
if(po > 0) {
|
|
vir -= po;
|
|
bytes += po;
|
|
}
|
|
|
|
vmassert(target);
|
|
vmassert(bytes > 0);
|
|
|
|
for(v = vir; v < vir + bytes; v+= I386_PAGE_SIZE) {
|
|
u32_t phys;
|
|
|
|
/* If page exists and it's writable if desired, we're OK
|
|
* for this page.
|
|
*/
|
|
if(vm_lookup(target, v, &phys, &flags) == OK &&
|
|
!(wrfl && !(flags & I386_VM_WRITE))) {
|
|
if(vm_checkrange_verbose) {
|
|
#if 0
|
|
kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, OK\n",
|
|
target->p_name, target->p_endpoint, v, wrfl, flags, phys);
|
|
#endif
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if(vm_checkrange_verbose) {
|
|
kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, NOT OK\n",
|
|
target->p_name, target->p_endpoint, v, wrfl, flags, phys);
|
|
}
|
|
|
|
if(checkonly) {
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
/* This range is not OK for this process. Set parameters
|
|
* of the request and notify VM about the pending request.
|
|
*/
|
|
if(RTS_ISSET(caller, VMREQUEST))
|
|
minix_panic("VMREQUEST already set", caller->p_endpoint);
|
|
RTS_LOCK_SET(caller, VMREQUEST);
|
|
|
|
/* Set parameters in caller. */
|
|
caller->p_vmrequest.writeflag = wrfl;
|
|
caller->p_vmrequest.start = vir;
|
|
caller->p_vmrequest.length = bytes;
|
|
caller->p_vmrequest.who = target->p_endpoint;
|
|
|
|
/* Set caller in target. */
|
|
target->p_vmrequest.requestor = caller;
|
|
|
|
/* Connect caller on vmrequest wait queue. */
|
|
caller->p_vmrequest.nextrequestor = vmrequest;
|
|
vmrequest = caller;
|
|
if(!caller->p_vmrequest.nextrequestor) {
|
|
int n = 0;
|
|
struct proc *vmr;
|
|
for(vmr = vmrequest; vmr; vmr = vmr->p_vmrequest.nextrequestor)
|
|
n++;
|
|
soft_notify(VM_PROC_NR);
|
|
#if 0
|
|
kprintf("(%d) ", n);
|
|
kprintf("%d/%d ",
|
|
caller->p_endpoint, target->p_endpoint);
|
|
util_stacktrace();
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
kprintf("SYSTEM: vm_checkrange: range bad for "
|
|
"target %s:0x%lx-0x%lx, caller %s\n",
|
|
target->p_name, vir, vir+bytes, caller->p_name);
|
|
|
|
kprintf("vm_checkrange kernel trace: ");
|
|
util_stacktrace();
|
|
kprintf("target trace: ");
|
|
proc_stacktrace(target);
|
|
#endif
|
|
|
|
if(target->p_endpoint == VM_PROC_NR) {
|
|
kprintf("caller trace: ");
|
|
proc_stacktrace(caller);
|
|
kprintf("target trace: ");
|
|
proc_stacktrace(target);
|
|
minix_panic("VM ranges should be OK", NO_NUM);
|
|
}
|
|
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
char *flagstr(u32_t e, int dir)
|
|
{
|
|
static char str[80];
|
|
strcpy(str, "");
|
|
#define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); } } while(0)
|
|
FLAG(I386_VM_PRESENT);
|
|
FLAG(I386_VM_WRITE);
|
|
FLAG(I386_VM_USER);
|
|
FLAG(I386_VM_PWT);
|
|
FLAG(I386_VM_PCD);
|
|
if(dir)
|
|
FLAG(I386_VM_BIGPAGE); /* Page directory entry only */
|
|
else
|
|
FLAG(I386_VM_DIRTY); /* Page table entry only */
|
|
|
|
return str;
|
|
}
|
|
|
|
void vm_pt_print(u32_t *pagetable, u32_t v)
|
|
{
|
|
int pte, l = 0;
|
|
int col = 0;
|
|
|
|
vmassert(!((u32_t) pagetable % I386_PAGE_SIZE));
|
|
|
|
for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
|
|
u32_t pte_v, pfa;
|
|
pte_v = phys_get32((u32_t) (pagetable + pte));
|
|
if(!(pte_v & I386_VM_PRESENT))
|
|
continue;
|
|
pfa = I386_VM_PFA(pte_v);
|
|
kprintf("%4d:%08lx:%08lx ",
|
|
pte, v + I386_PAGE_SIZE*pte, pfa);
|
|
col++;
|
|
if(col == 3) { kprintf("\n"); col = 0; }
|
|
}
|
|
if(col > 0) kprintf("\n");
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_print *
|
|
*===========================================================================*/
|
|
void vm_print(u32_t *root)
|
|
{
|
|
int pde;
|
|
|
|
vmassert(!((u32_t) root % I386_PAGE_SIZE));
|
|
|
|
for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {
|
|
u32_t pde_v;
|
|
u32_t *pte_a;
|
|
pde_v = phys_get32((u32_t) (root + pde));
|
|
if(!(pde_v & I386_VM_PRESENT))
|
|
continue;
|
|
pte_a = (u32_t *) I386_VM_PFA(pde_v);
|
|
kprintf("%4d: pt %08lx %s\n",
|
|
pde, pte_a, flagstr(pde_v, 1));
|
|
vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
|
|
}
|
|
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* virtual_copy_f *
|
|
*===========================================================================*/
|
|
PUBLIC int virtual_copy_f(src_addr, dst_addr, bytes, vmcheck)
|
|
struct vir_addr *src_addr; /* source virtual address */
|
|
struct vir_addr *dst_addr; /* destination virtual address */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
int vmcheck; /* if nonzero, can return VMSUSPEND */
|
|
{
|
|
/* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
|
* Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
|
*/
|
|
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
|
phys_bytes phys_addr[2]; /* absolute source and destination */
|
|
int seg_index;
|
|
int i, r;
|
|
struct proc *procs[2];
|
|
|
|
/* Check copy count. */
|
|
if (bytes <= 0) return(EDOM);
|
|
|
|
/* Do some more checks and map virtual addresses to physical addresses. */
|
|
vir_addr[_SRC_] = src_addr;
|
|
vir_addr[_DST_] = dst_addr;
|
|
|
|
for (i=_SRC_; i<=_DST_; i++) {
|
|
int proc_nr, type;
|
|
struct proc *p;
|
|
|
|
type = vir_addr[i]->segment & SEGMENT_TYPE;
|
|
if((type != PHYS_SEG && type != BIOS_SEG) &&
|
|
isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
|
|
p = proc_addr(proc_nr);
|
|
else
|
|
p = NULL;
|
|
|
|
procs[i] = p;
|
|
|
|
/* Get physical address. */
|
|
switch(type) {
|
|
case LOCAL_SEG:
|
|
case LOCAL_VM_SEG:
|
|
if(!p) return EDEADSRCDST;
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
if(type == LOCAL_SEG)
|
|
phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset,
|
|
bytes);
|
|
else
|
|
phys_addr[i] = umap_virtual(p, seg_index, vir_addr[i]->offset,
|
|
bytes);
|
|
if(phys_addr[i] == 0) {
|
|
kprintf("virtual_copy: map 0x%x failed for %s seg %d, "
|
|
"offset %lx, len %d, i %d\n",
|
|
type, p->p_name, seg_index, vir_addr[i]->offset,
|
|
bytes, i);
|
|
}
|
|
break;
|
|
case REMOTE_SEG:
|
|
if(!p) return EDEADSRCDST;
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
|
|
break;
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
case BIOS_SEG:
|
|
phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes );
|
|
break;
|
|
#endif
|
|
case PHYS_SEG:
|
|
phys_addr[i] = vir_addr[i]->offset;
|
|
break;
|
|
case GRANT_SEG:
|
|
phys_addr[i] = umap_grant(p, vir_addr[i]->offset, bytes);
|
|
break;
|
|
default:
|
|
kprintf("virtual_copy: strange type 0x%x\n", type);
|
|
return(EINVAL);
|
|
}
|
|
|
|
/* Check if mapping succeeded. */
|
|
if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) {
|
|
kprintf("virtual_copy EFAULT\n");
|
|
return(EFAULT);
|
|
}
|
|
}
|
|
|
|
if(vmcheck && procs[_SRC_])
|
|
CHECKRANGE_OR_SUSPEND(procs[_SRC_], phys_addr[_SRC_], bytes, 0);
|
|
if(vmcheck && procs[_DST_])
|
|
CHECKRANGE_OR_SUSPEND(procs[_DST_], phys_addr[_DST_], bytes, 1);
|
|
|
|
/* Now copy bytes between physical addresseses. */
|
|
if(!vm_running || (procs[_SRC_] == NULL && procs[_DST_] == NULL)) {
|
|
/* Without vm, address ranges actually are physical. */
|
|
phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
|
r = OK;
|
|
} else {
|
|
/* With vm, addresses need further interpretation. */
|
|
r = vm_copy(phys_addr[_SRC_], procs[_SRC_],
|
|
phys_addr[_DST_], procs[_DST_], (phys_bytes) bytes);
|
|
if(r != OK) {
|
|
kprintf("vm_copy: %lx to %lx failed\n",
|
|
phys_addr[_SRC_],phys_addr[_DST_]);
|
|
}
|
|
}
|
|
|
|
return(r);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* data_copy *
|
|
*===========================================================================*/
|
|
PUBLIC int data_copy(
|
|
endpoint_t from_proc, vir_bytes from_addr,
|
|
endpoint_t to_proc, vir_bytes to_addr,
|
|
size_t bytes)
|
|
{
|
|
struct vir_addr src, dst;
|
|
|
|
src.segment = dst.segment = D;
|
|
src.offset = from_addr;
|
|
dst.offset = to_addr;
|
|
src.proc_nr_e = from_proc;
|
|
dst.proc_nr_e = to_proc;
|
|
|
|
return virtual_copy(&src, &dst, bytes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* arch_pre_exec *
|
|
*===========================================================================*/
|
|
PUBLIC int arch_pre_exec(struct proc *pr, u32_t ip, u32_t sp)
|
|
{
|
|
/* wipe extra LDT entries, set program counter, and stack pointer. */
|
|
memset(pr->p_seg.p_ldt + EXTRA_LDT_INDEX, 0,
|
|
sizeof(pr->p_seg.p_ldt[0]) * (LDT_SIZE - EXTRA_LDT_INDEX));
|
|
pr->p_reg.pc = ip;
|
|
pr->p_reg.sp = sp;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* arch_umap *
|
|
*===========================================================================*/
|
|
PUBLIC int arch_umap(struct proc *pr, vir_bytes offset, vir_bytes count,
|
|
int seg, phys_bytes *addr)
|
|
{
|
|
switch(seg) {
|
|
case BIOS_SEG:
|
|
*addr = umap_bios(offset, count);
|
|
return OK;
|
|
}
|
|
|
|
/* This must be EINVAL; the umap fallback function in
|
|
* lib/syslib/alloc_util.c depends on it to detect an
|
|
* older kernel (as opposed to mapping error).
|
|
*/
|
|
return EINVAL;
|
|
}
|
|
|
|
|