minix/servers/vfs/misc.c
Tomas Hruby 8590ac260d Removed dependency of vfs on NR_TASKS macro
- all macros in consts.h that depend on NR_TASKS replaced by a FP_BLOCKED_ON_*

- fp_suspended removed and replaced by fp_blocked_on. Testing whether a process
  is supended is qeual to testing whether fp_blocked_on is FP_BLOCKED_ON_NONE or
  not

- fp_task is valid only if fp_blocked_on == FP_BLOCKED_ON_OTHER

- no need of special values that do not colide with valid and special endpoints
  since they are not used as endpoints anymore

- suspend only takes FP_BLOCKED_ON_* values not endpoints anymore

- suspend(task) replaced by wait_for(task) which sets fp_task so we remember who
  are we waiting for and suspend sets fp_blocked_on to FP_BLOCKED_ON_OTHER to
  signal that we are waiting for some other process

- some functions should take endpoint_t instead of int, fixed
2009-09-22 21:48:26 +00:00

645 lines
17 KiB
C

/* This file contains a collection of miscellaneous procedures. Some of them
* perform simple system calls. Some others do a little part of system calls
* that are mostly performed by the Memory Manager.
*
* The entry points into this file are
* do_dup: perform the DUP system call
* do_fcntl: perform the FCNTL system call
* do_sync: perform the SYNC system call
* do_fsync: perform the FSYNC system call
* do_reboot: sync disks and prepare for shutdown
* do_fork: adjust the tables after MM has performed a FORK system call
* do_exec: handle files with FD_CLOEXEC on after MM has done an EXEC
* do_exit: a process has exited; note that in the tables
* do_set: set uid or gid for some process
* do_revive: revive a process that was waiting for something (e.g. TTY)
* do_svrctl: file system control
* do_getsysinfo: request copy of FS data structure
* pm_dumpcore: create a core dump
*/
#include "fs.h"
#include <fcntl.h>
#include <assert.h>
#include <unistd.h> /* cc runs out of memory with unistd.h :-( */
#include <minix/callnr.h>
#include <minix/safecopies.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <minix/u64.h>
#include <sys/ptrace.h>
#include <sys/svrctl.h>
#include "file.h"
#include "fproc.h"
#include "param.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
#define CORE_NAME "core"
#define CORE_MODE 0777 /* mode to use on core image files */
#if ENABLE_SYSCALL_STATS
PUBLIC unsigned long calls_stats[NCALLS];
#endif
FORWARD _PROTOTYPE( void free_proc, (struct fproc *freed, int flags));
/*
FORWARD _PROTOTYPE( int dumpcore, (int proc_e, struct mem_map *seg_ptr));
FORWARD _PROTOTYPE( int write_bytes, (struct inode *rip, off_t off,
char *buf, size_t bytes));
FORWARD _PROTOTYPE( int write_seg, (struct inode *rip, off_t off, int proc_e,
int seg, off_t seg_off, phys_bytes seg_bytes));
*/
#define FP_EXITING 1
/*===========================================================================*
* do_getsysinfo *
*===========================================================================*/
PUBLIC int do_getsysinfo()
{
struct fproc *proc_addr;
vir_bytes src_addr, dst_addr;
size_t len;
int s;
if (!super_user)
{
printf("FS: unauthorized call of do_getsysinfo by proc %d\n", who_e);
return(EPERM); /* only su may call do_getsysinfo. This call may leak
* information (and is not stable enough to be part
* of the API/ABI).
*/
}
switch(m_in.info_what) {
case SI_PROC_ADDR:
proc_addr = &fproc[0];
src_addr = (vir_bytes) &proc_addr;
len = sizeof(struct fproc *);
break;
case SI_PROC_TAB:
src_addr = (vir_bytes) fproc;
len = sizeof(struct fproc) * NR_PROCS;
break;
case SI_DMAP_TAB:
src_addr = (vir_bytes) dmap;
len = sizeof(struct dmap) * NR_DEVICES;
break;
#if ENABLE_SYSCALL_STATS
case SI_CALL_STATS:
src_addr = (vir_bytes) calls_stats;
len = sizeof(calls_stats);
break;
#endif
default:
return(EINVAL);
}
dst_addr = (vir_bytes) m_in.info_where;
if (OK != (s=sys_datacopy(SELF, src_addr, who_e, dst_addr, len)))
return(s);
return(OK);
}
/*===========================================================================*
* do_dup *
*===========================================================================*/
PUBLIC int do_dup()
{
/* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are
* obsolete. In fact, it is not even possible to invoke them using the
* current library because the library routines call fcntl(). They are
* provided to permit old binary programs to continue to run.
*/
register int rfd;
register struct filp *f;
struct filp *dummy;
int r;
/* Is the file descriptor valid? */
rfd = m_in.fd & ~DUP_MASK; /* kill off dup2 bit, if on */
if ((f = get_filp(rfd)) == NIL_FILP) return(err_code);
/* Distinguish between dup and dup2. */
if (m_in.fd == rfd) { /* bit not on */
/* dup(fd) */
if ( (r = get_fd(0, 0, &m_in.fd2, &dummy)) != OK) return(r);
} else {
/* dup2(fd, fd2) */
if (m_in.fd2 < 0 || m_in.fd2 >= OPEN_MAX) return(EBADF);
if (rfd == m_in.fd2) return(m_in.fd2); /* ignore the call: dup2(x, x) */
m_in.fd = m_in.fd2; /* prepare to close fd2 */
(void) do_close(); /* cannot fail */
}
/* Success. Set up new file descriptors. */
f->filp_count++;
fp->fp_filp[m_in.fd2] = f;
FD_SET(m_in.fd2, &fp->fp_filp_inuse);
return(m_in.fd2);
}
/*===========================================================================*
* do_fcntl *
*===========================================================================*/
PUBLIC int do_fcntl()
{
/* Perform the fcntl(fd, request, ...) system call. */
register struct filp *f;
int new_fd, r, fl;
long cloexec_mask; /* bit map for the FD_CLOEXEC flag */
long clo_value; /* FD_CLOEXEC flag in proper position */
struct filp *dummy;
/* Is the file descriptor valid? */
if ((f = get_filp(m_in.fd)) == NIL_FILP) {
/*printf("VFSfcntl: invalid filedesc %d\n", m_in.fd); */
return(err_code);
}
switch (m_in.request) {
case F_DUPFD:
/* This replaces the old dup() system call. */
if (m_in.addr < 0 || m_in.addr >= OPEN_MAX) return(EINVAL);
if ((r = get_fd(m_in.addr, 0, &new_fd, &dummy)) != OK) return(r);
f->filp_count++;
fp->fp_filp[new_fd] = f;
return(new_fd);
case F_GETFD:
/* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
return( FD_ISSET(m_in.fd, &fp->fp_cloexec_set) ? FD_CLOEXEC : 0);
case F_SETFD:
/* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
if(m_in.addr & FD_CLOEXEC)
FD_SET(m_in.fd, &fp->fp_cloexec_set);
else
FD_CLR(m_in.fd, &fp->fp_cloexec_set);
return(OK);
case F_GETFL:
/* Get file status flags (O_NONBLOCK and O_APPEND). */
fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE);
return(fl);
case F_SETFL:
/* Set file status flags (O_NONBLOCK and O_APPEND). */
fl = O_NONBLOCK | O_APPEND | O_REOPEN;
f->filp_flags = (f->filp_flags & ~fl) | (m_in.addr & fl);
return(OK);
case F_GETLK:
case F_SETLK:
case F_SETLKW:
/* Set or clear a file lock. */
r = lock_op(f, m_in.request);
return(r);
case F_FREESP:
{
/* Free a section of a file. Preparation is done here,
* actual freeing in freesp_inode().
*/
off_t start, end;
struct flock flock_arg;
signed long offset;
/* Check if it's a regular file. */
if((f->filp_vno->v_mode & I_TYPE) != I_REGULAR) {
return EINVAL;
}
if (!(f->filp_mode & W_BIT))
return EBADF;
/* Copy flock data from userspace. */
if((r = sys_datacopy(who_e, (vir_bytes) m_in.name1,
SELF, (vir_bytes) &flock_arg,
(phys_bytes) sizeof(flock_arg))) != OK)
return r;
/* Convert starting offset to signed. */
offset = (signed long) flock_arg.l_start;
/* Figure out starting position base. */
switch(flock_arg.l_whence) {
case SEEK_SET: start = 0; if(offset < 0) return EINVAL; break;
case SEEK_CUR:
if (ex64hi(f->filp_pos) != 0)
{
panic(__FILE__,
"do_fcntl: position in file too high",
NO_NUM);
}
start = ex64lo(f->filp_pos); break;
case SEEK_END: start = f->filp_vno->v_size; break;
default: return EINVAL;
}
/* Check for overflow or underflow. */
if(offset > 0 && start + offset < start) { return EINVAL; }
if(offset < 0 && start + offset > start) { return EINVAL; }
start += offset;
if(flock_arg.l_len > 0) {
end = start + flock_arg.l_len;
if(end <= start) {
return EINVAL;
}
}
else {
end = 0;
}
/* Issue request */
return req_ftrunc(f->filp_vno->v_fs_e, f->filp_vno->v_inode_nr,
start, end);
}
default:
return(EINVAL);
}
}
/*===========================================================================*
* do_sync *
*===========================================================================*/
PUBLIC int do_sync()
{
struct vmnt *vmp;
for (vmp = &vmnt[1]; vmp < &vmnt[NR_MNTS]; ++vmp) {
if (vmp->m_dev != NO_DEV) {
/* Send sync request */
req_sync(vmp->m_fs_e);
}
}
return OK;
}
/*===========================================================================*
* do_fsync *
*===========================================================================*/
PUBLIC int do_fsync()
{
/* Perform the fsync() system call. For now, don't be unnecessarily smart. */
do_sync();
return(OK);
}
void unmount_all(void)
{
int i;
int found = 0, worked = 0, remain = 0;
/* Unmount all filesystems. File systems are mounted on other file systems,
* so you have to pull off the loose bits repeatedly to get it all undone.
*/
for (i= 0; i < NR_MNTS; i++) {
struct vmnt *vmp;
/* Unmount at least one. */
worked = remain = 0;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; vmp++) {
if (vmp->m_dev != NO_DEV) {
found++;
SANITYCHECK;
if(unmount(vmp->m_dev) == OK)
worked++;
else
remain++;
SANITYCHECK;
}
}
}
}
/*===========================================================================*
* pm_reboot *
*===========================================================================*/
PUBLIC void pm_reboot()
{
/* Perform the FS side of the reboot call. */
int i;
do_sync();
SANITYCHECK;
/* Do exit processing for all leftover processes and servers,
* but don't actually exit them (if they were really gone, PM
* will tell us about it).
*/
for (i = 0; i < NR_PROCS; i++)
if((m_in.endpt1 = fproc[i].fp_endpoint) != NONE) {
/* No FP_EXITING, just free the resources, otherwise
* consistency check for fp_endpoint (set to NONE) will
* fail if process wants to do something in the (short)
* future.
*/
free_proc(&fproc[i], 0);
}
SANITYCHECK;
unmount_all();
SANITYCHECK;
}
/*===========================================================================*
* pm_fork *
*===========================================================================*/
PUBLIC void pm_fork(pproc, cproc, cpid)
int pproc; /* Parent process */
int cproc; /* Child process */
int cpid; /* Child process id */
{
/* Perform those aspects of the fork() system call that relate to files.
* In particular, let the child inherit its parent's file descriptors.
* The parent and child parameters tell who forked off whom. The file
* system uses the same slot numbers as the kernel. Only MM makes this call.
*/
register struct fproc *cp;
int i, parentno, childno;
/* Check up-to-dateness of fproc. */
okendpt(pproc, &parentno);
/* PM gives child endpoint, which implies process slot information.
* Don't call isokendpt, because that will verify if the endpoint
* number is correct in fproc, which it won't be.
*/
childno = _ENDPOINT_P(cproc);
if(childno < 0 || childno >= NR_PROCS)
panic(__FILE__, "FS: bogus child for forking", m_in.child_endpt);
if(fproc[childno].fp_pid != PID_FREE)
panic(__FILE__, "FS: forking on top of in-use child", childno);
/* Copy the parent's fproc struct to the child. */
fproc[childno] = fproc[parentno];
/* Increase the counters in the 'filp' table. */
cp = &fproc[childno];
fp = &fproc[parentno];
for (i = 0; i < OPEN_MAX; i++)
if (cp->fp_filp[i] != NIL_FILP) cp->fp_filp[i]->filp_count++;
/* Fill in new process and endpoint id. */
cp->fp_pid = cpid;
cp->fp_endpoint = cproc;
/* A forking process never has an outstanding grant,
* as it isn't blocking on i/o.
*/
if(GRANT_VALID(fp->fp_grant)) {
printf("vfs: fork: fp (endpoint %d) has grant %d\n", fp->fp_endpoint, fp->fp_grant);
panic(__FILE__, "fp contains valid grant", NO_NUM);
}
if(GRANT_VALID(cp->fp_grant)) {
printf("vfs: fork: cp (endpoint %d) has grant %d\n", cp->fp_endpoint, cp->fp_grant);
panic(__FILE__, "cp contains valid grant", NO_NUM);
}
/* A child is not a process leader. */
cp->fp_sesldr = 0;
/* This child has not exec()ced yet. */
cp->fp_execced = 0;
/* Record the fact that both root and working dir have another user. */
if(cp->fp_rd) dup_vnode(cp->fp_rd);
if(cp->fp_wd) dup_vnode(cp->fp_wd);
}
/*===========================================================================*
* free_proc *
*===========================================================================*/
PRIVATE void free_proc(struct fproc *exiter, int flags)
{
int i;
register struct fproc *rfp;
register struct filp *rfilp;
register struct vnode *vp;
dev_t dev;
SANITYCHECK;
fp = exiter; /* get_filp() needs 'fp' */
if(fp->fp_endpoint == NONE) {
panic(__FILE__, "free_proc: already free", NO_NUM);
}
if (fp_is_blocked(fp)) {
SANITYCHECK;
unpause(fp->fp_endpoint);
SANITYCHECK;
}
SANITYCHECK;
/* Loop on file descriptors, closing any that are open. */
for (i = 0; i < OPEN_MAX; i++) {
(void) close_fd(fp, i);
}
/* Check if any process is SUSPENDed on this driver.
* If a driver exits, unmap its entries in the dmap table.
* (unmapping has to be done after the first step, because the
* dmap table is used in the first step.)
*/
unsuspend_by_endpt(fp->fp_endpoint);
/* Release root and working directories. */
if(fp->fp_rd) { put_vnode(fp->fp_rd); fp->fp_rd = NIL_VNODE; }
if(fp->fp_wd) { put_vnode(fp->fp_wd); fp->fp_wd = NIL_VNODE; }
/* The rest of these actions is only done when processes actually
* exit.
*/
if(!(flags & FP_EXITING)) {
SANITYCHECK;
return;
}
/* Invalidate endpoint number for error and sanity checks. */
fp->fp_endpoint = NONE;
/* If a session leader exits and it has a controlling tty, then revoke
* access to its controlling tty from all other processes using it.
*/
if (fp->fp_sesldr && fp->fp_tty != 0) {
dev = fp->fp_tty;
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if(rfp->fp_pid == PID_FREE) continue;
if (rfp->fp_tty == dev) rfp->fp_tty = 0;
for (i = 0; i < OPEN_MAX; i++) {
if ((rfilp = rfp->fp_filp[i]) == NIL_FILP) continue;
if (rfilp->filp_mode == FILP_CLOSED) continue;
vp = rfilp->filp_vno;
if ((vp->v_mode & I_TYPE) != I_CHAR_SPECIAL) continue;
if ((dev_t) vp->v_sdev != dev) continue;
(void) dev_close(dev, rfilp-filp);
/* Ignore any errors, even SUSPEND. */
rfilp->filp_mode = FILP_CLOSED;
}
}
}
/* Exit done. Mark slot as free. */
fp->fp_pid = PID_FREE;
SANITYCHECK;
}
/*===========================================================================*
* pm_exit *
*===========================================================================*/
PUBLIC void pm_exit(proc)
int proc;
{
int exitee_p;
/* Perform the file system portion of the exit(status) system call. */
/* Nevertheless, pretend that the call came from the user. */
okendpt(proc, &exitee_p);
free_proc(&fproc[exitee_p], FP_EXITING);
}
/*===========================================================================*
* pm_setgid *
*===========================================================================*/
PUBLIC void pm_setgid(proc_e, egid, rgid)
int proc_e;
int egid;
int rgid;
{
register struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effgid = egid;
tfp->fp_realgid = rgid;
}
/*===========================================================================*
* pm_setuid *
*===========================================================================*/
PUBLIC void pm_setuid(proc_e, euid, ruid)
int proc_e;
int euid;
int ruid;
{
register struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effuid = euid;
tfp->fp_realuid = ruid;
}
/*===========================================================================*
* do_svrctl *
*===========================================================================*/
PUBLIC int do_svrctl()
{
switch (m_in.svrctl_req) {
case FSSIGNON: {
/* A server in user space calls in to manage a device. */
struct fssignon device;
int r, major, proc_nr_n;
if (fp->fp_effuid != SU_UID && fp->fp_effuid != SERVERS_UID)
return(EPERM);
/* Try to copy request structure to FS. */
if ((r = sys_datacopy(who_e, (vir_bytes) m_in.svrctl_argp,
FS_PROC_NR, (vir_bytes) &device,
(phys_bytes) sizeof(device))) != OK)
return(r);
if (isokendpt(who_e, &proc_nr_n) != OK)
return(EINVAL);
/* Try to update device mapping. */
major = (device.dev >> MAJOR) & BYTE;
r=map_driver(major, who_e, device.style, 0 /* !force */);
if (r == OK)
{
/* If a driver has completed its exec(), it can be announced
* to be up.
*/
if(fproc[proc_nr_n].fp_execced) {
/* Reply before calling dev_up */
#if 0
printf("do_svrctl: replying before dev_up\n");
#endif
reply(who_e, r);
dev_up(major);
r= SUSPEND;
} else {
dmap[major].dmap_flags |= DMAP_BABY;
}
}
return(r);
}
case FSDEVUNMAP: {
struct fsdevunmap fdu;
int r, major;
/* Try to copy request structure to FS. */
if ((r = sys_datacopy(who_e, (vir_bytes) m_in.svrctl_argp,
FS_PROC_NR, (vir_bytes) &fdu,
(phys_bytes) sizeof(fdu))) != OK)
return(r);
major = (fdu.dev >> MAJOR) & BYTE;
r=map_driver(major, NONE, 0, 0);
return(r);
}
default:
return(EINVAL);
}
}
/*===========================================================================*
* pm_dumpcore *
*===========================================================================*/
PUBLIC int pm_dumpcore(proc_e, seg_ptr)
int proc_e;
struct mem_map *seg_ptr;
{
int r, proc_s;
/* Terminate the process */
okendpt(proc_e, &proc_s);
free_proc(&fproc[proc_s], FP_EXITING);
return OK;
}