minix/kernel/debug.c
Ben Gras a64a836a3f kernel: fixes for DEBUG_DUMPIPC mode
. add dependency of headers on debug.d
	. put the generated headers in the right dir
	. also resilience against future ELAST duplicate errno

Change-Id: I9d10702c8e09699a40138193f14defe902399da6
2013-09-24 08:26:53 +00:00

564 lines
11 KiB
C

/* This file implements kernel debugging functionality that is not included
* in the standard kernel. Available functionality includes timing of lock
* functions and sanity checking of the scheduling queues.
*/
#include "kernel/kernel.h"
#include <minix/callnr.h>
#include <minix/sysutil.h>
#include <minix/u64.h>
#include <limits.h>
#include <string.h>
#include <assert.h>
#define MAX_LOOP (NR_PROCS + NR_TASKS)
int runqueues_ok_cpu(unsigned cpu)
{
int q, l = 0;
register struct proc *xp;
struct proc **rdy_head, **rdy_tail;
rdy_head = get_cpu_var(cpu, run_q_head);
rdy_tail = get_cpu_var(cpu, run_q_tail);
for (xp = BEG_PROC_ADDR; xp < END_PROC_ADDR; ++xp) {
xp->p_found = 0;
if (l++ > MAX_LOOP) panic("check error");
}
for (q=l=0; q < NR_SCHED_QUEUES; q++) {
if (rdy_head[q] && !rdy_tail[q]) {
printf("head but no tail in %d\n", q);
return 0;
}
if (!rdy_head[q] && rdy_tail[q]) {
printf("tail but no head in %d\n", q);
return 0;
}
if (rdy_tail[q] && rdy_tail[q]->p_nextready) {
printf("tail and tail->next not null in %d\n", q);
return 0;
}
for(xp = rdy_head[q]; xp; xp = xp->p_nextready) {
const vir_bytes vxp = (vir_bytes) xp;
vir_bytes dxp;
if(vxp < (vir_bytes) BEG_PROC_ADDR || vxp >= (vir_bytes) END_PROC_ADDR) {
printf("xp out of range\n");
return 0;
}
dxp = vxp - (vir_bytes) BEG_PROC_ADDR;
if(dxp % sizeof(struct proc)) {
printf("xp not a real pointer");
return 0;
}
if(!proc_ptr_ok(xp)) {
printf("xp bogus pointer");
return 0;
}
if (RTS_ISSET(xp, RTS_SLOT_FREE)) {
printf("scheduling error: dead proc q %d %d\n",
q, xp->p_endpoint);
return 0;
}
if (!proc_is_runnable(xp)) {
printf("scheduling error: unready on runq %d proc %d\n",
q, xp->p_nr);
return 0;
}
if (xp->p_priority != q) {
printf("scheduling error: wrong priority q %d proc %d ep %d name %s\n",
q, xp->p_nr, xp->p_endpoint, xp->p_name);
return 0;
}
if (xp->p_found) {
printf("scheduling error: double sched q %d proc %d\n",
q, xp->p_nr);
return 0;
}
xp->p_found = 1;
if (!xp->p_nextready && rdy_tail[q] != xp) {
printf("sched err: last element not tail q %d proc %d\n",
q, xp->p_nr);
return 0;
}
if (l++ > MAX_LOOP) {
printf("loop in schedule queue?");
return 0;
}
}
}
for (xp = BEG_PROC_ADDR; xp < END_PROC_ADDR; ++xp) {
if(!proc_ptr_ok(xp)) {
printf("xp bogus pointer in proc table\n");
return 0;
}
if (isemptyp(xp))
continue;
if(proc_is_runnable(xp) && !xp->p_found) {
printf("sched error: ready proc %d not on queue\n", xp->p_nr);
return 0;
}
}
/* All is ok. */
return 1;
}
#ifdef CONFIG_SMP
static int runqueues_ok_all(void)
{
unsigned c;
for (c = 0 ; c < ncpus; c++) {
if (!runqueues_ok_cpu(c))
return 0;
}
return 1;
}
int runqueues_ok(void)
{
return runqueues_ok_all();
}
#else
int runqueues_ok(void)
{
return runqueues_ok_cpu(0);
}
#endif
char *
rtsflagstr(const u32_t flags)
{
static char str[100];
str[0] = '\0';
#define FLAG(n) if(flags & n) { strlcat(str, #n " ", sizeof(str)); }
FLAG(RTS_SLOT_FREE);
FLAG(RTS_PROC_STOP);
FLAG(RTS_SENDING);
FLAG(RTS_RECEIVING);
FLAG(RTS_SIGNALED);
FLAG(RTS_SIG_PENDING);
FLAG(RTS_P_STOP);
FLAG(RTS_NO_PRIV);
FLAG(RTS_NO_ENDPOINT);
FLAG(RTS_VMINHIBIT);
FLAG(RTS_PAGEFAULT);
FLAG(RTS_VMREQUEST);
FLAG(RTS_VMREQTARGET);
FLAG(RTS_PREEMPTED);
FLAG(RTS_NO_QUANTUM);
return str;
}
char *
miscflagstr(const u32_t flags)
{
static char str[100];
str[0] = '\0';
FLAG(MF_REPLY_PEND);
FLAG(MF_DELIVERMSG);
FLAG(MF_KCALL_RESUME);
return str;
}
char *
schedulerstr(struct proc *scheduler)
{
if (scheduler != NULL)
{
return scheduler->p_name;
}
return "KERNEL";
}
static void
print_proc_name(struct proc *pp)
{
char *name = pp->p_name;
endpoint_t ep = pp->p_endpoint;
if(name) {
printf("%s(%d)", name, ep);
}
else {
printf("%d", ep);
}
}
static void
print_endpoint(endpoint_t ep)
{
int proc_nr;
struct proc *pp = NULL;
switch(ep) {
case ANY:
printf("ANY");
break;
case SELF:
printf("SELF");
break;
case NONE:
printf("NONE");
break;
default:
if(!isokendpt(ep, &proc_nr)) {
printf("??? %d\n", ep);
}
else {
pp = proc_addr(proc_nr);
if(isemptyp(pp)) {
printf("??? empty slot %d\n", proc_nr);
}
else {
print_proc_name(pp);
}
}
break;
}
}
static void
print_sigmgr(struct proc *pp)
{
endpoint_t sig_mgr, bak_sig_mgr;
sig_mgr = priv(pp) ? priv(pp)->s_sig_mgr : NONE;
bak_sig_mgr = priv(pp) ? priv(pp)->s_bak_sig_mgr : NONE;
if(sig_mgr == NONE) { printf("no sigmgr"); return; }
printf("sigmgr ");
print_endpoint(sig_mgr);
if(bak_sig_mgr != NONE) {
printf(" / ");
print_endpoint(bak_sig_mgr);
}
}
void print_proc(struct proc *pp)
{
endpoint_t dep;
printf("%d: %s %d prio %d time %d/%d cycles 0x%x%08x cpu %2d "
"pdbr 0x%lx rts %s misc %s sched %s ",
proc_nr(pp), pp->p_name, pp->p_endpoint,
pp->p_priority, pp->p_user_time,
pp->p_sys_time, ex64hi(pp->p_cycles),
ex64lo(pp->p_cycles), pp->p_cpu,
#if defined(__i386__)
pp->p_seg.p_cr3,
#elif defined(__arm__)
pp->p_seg.p_ttbr,
#endif
rtsflagstr(pp->p_rts_flags), miscflagstr(pp->p_misc_flags),
schedulerstr(pp->p_scheduler));
print_sigmgr(pp);
dep = P_BLOCKEDON(pp);
if(dep != NONE) {
printf(" blocked on: ");
print_endpoint(dep);
}
printf("\n");
}
static void print_proc_depends(struct proc *pp, const int level)
{
struct proc *depproc = NULL;
endpoint_t dep;
#define COL { int i; for(i = 0; i < level; i++) printf("> "); }
if(level >= NR_PROCS) {
printf("loop??\n");
return;
}
COL
print_proc(pp);
COL
proc_stacktrace(pp);
dep = P_BLOCKEDON(pp);
if(dep != NONE && dep != ANY) {
int procno;
if(isokendpt(dep, &procno)) {
depproc = proc_addr(procno);
if(isemptyp(depproc))
depproc = NULL;
}
if (depproc)
print_proc_depends(depproc, level+1);
}
}
void print_proc_recursive(struct proc *pp)
{
print_proc_depends(pp, 0);
}
#if DEBUG_DUMPIPC
static const char *mtypename(int mtype, int *possible_callname)
{
char *callname = NULL, *errname = NULL;
/* use generated file to recognize message types
*
* we try to match both error numbers and call numbers, as the
* reader can probably decide from context what's going on.
*
* whenever it might be a call number we tell the caller so the
* call message fields can be decoded if known.
*/
switch(mtype) {
#define IDENT(x) case x: callname = #x; *possible_callname = 1; break;
#include "kernel/extracted-mtype.h"
#undef IDENT
}
switch(mtype) {
#define IDENT(x) case x: errname = #x; break;
#include "kernel/extracted-errno.h"
#undef IDENT
}
/* no match */
if(!errname && !callname)
return NULL;
/* 2 matches */
if(errname && callname) {
static char typename[100];
strcpy(typename, errname);
strcat(typename, " / ");
strcat(typename, callname);
return typename;
}
if(errname) return errname;
assert(callname);
return callname;
}
static void printproc(struct proc *rp)
{
if (rp)
printf(" %s(%d)", rp->p_name, rp - proc);
else
printf(" kernel");
}
static void printparam(const char *name, const void *data, size_t size)
{
printf(" %s=", name);
switch (size) {
case sizeof(char): printf("%d", *(char *) data); break;
case sizeof(short): printf("%d", *(short *) data); break;
case sizeof(int): printf("%d", *(int *) data); break;
default: printf("(%u bytes)", size); break;
}
}
#ifdef DEBUG_DUMPIPC_NAMES
static int namematch(char **names, int nnames, char *name)
{
int i;
for(i = 0; i < nnames; i++)
if(!strcmp(names[i], name))
return 1;
return 0;
}
#endif
static void printmsg(message *msg, struct proc *src, struct proc *dst,
char operation, int printparams)
{
const char *name;
int mtype = msg->m_type, mightbecall = 0;
#ifdef DEBUG_DUMPIPC_NAMES
{
char *names[] = DEBUG_DUMPIPC_NAMES;
int nnames = sizeof(names)/sizeof(names[0]);
/* skip printing messages for messages neither to
* or from DEBUG_DUMPIPC_EP if it is defined; either
* can be NULL to indicate kernel
*/
if(!(src && namematch(names, nnames, src->p_name)) &&
!(dst && namematch(names, nnames, dst->p_name))) {
return;
}
}
#endif
/* source, destination and message type */
printf("%c", operation);
printproc(src);
printproc(dst);
name = mtypename(mtype, &mightbecall);
if (name) {
printf(" %s(%d/0x%x)", name, mtype, mtype);
} else {
printf(" %d/0x%x", mtype, mtype);
}
if (mightbecall && printparams) {
#define IDENT(x, y) if (mtype == x) printparam(#y, &msg->y, sizeof(msg->y));
#include "kernel/extracted-mfield.h"
#undef IDENT
}
printf("\n");
}
#endif
#if DEBUG_IPCSTATS
#define IPCPROCS (NR_PROCS+1) /* number of slots we need */
#define KERNELIPC NR_PROCS /* slot number to use for kernel calls */
static int messages[IPCPROCS][IPCPROCS];
#define PRINTSLOTS 20
static struct {
int src, dst, messages;
} winners[PRINTSLOTS];
static int total, goodslots;
static void printstats(int ticks)
{
int i;
for(i = 0; i < goodslots; i++) {
#define name(s) (s == KERNELIPC ? "kernel" : proc_addr(s)->p_name)
#define persec(n) (system_hz*(n)/ticks)
char *n1 = name(winners[i].src),
*n2 = name(winners[i].dst);
printf("%2d. %8s -> %8s %9d/s\n",
i, n1, n2, persec(winners[i].messages));
}
printf("total %d/s\n", persec(total));
}
static void sortstats(void)
{
/* Print top message senders/receivers. */
int src_slot, dst_slot;
total = goodslots = 0;
for(src_slot = 0; src_slot < IPCPROCS; src_slot++) {
for(dst_slot = 0; dst_slot < IPCPROCS; dst_slot++) {
int w = PRINTSLOTS, rem,
n = messages[src_slot][dst_slot];
total += n;
while(w > 0 && n > winners[w-1].messages)
w--;
if(w >= PRINTSLOTS) continue;
/* This combination has beaten the current winners
* and should be inserted at position 'w.'
*/
rem = PRINTSLOTS-w-1;
assert(rem >= 0);
assert(rem < PRINTSLOTS);
if(rem > 0) {
assert(w+1 <= PRINTSLOTS-1);
assert(w >= 0);
memmove(&winners[w+1], &winners[w],
rem*sizeof(winners[0]));
}
winners[w].src = src_slot;
winners[w].dst = dst_slot;
winners[w].messages = n;
if(goodslots < PRINTSLOTS) goodslots++;
}
}
}
#define proc2slot(p, s) { \
if(p) { s = p->p_nr; } \
else { s = KERNELIPC; } \
assert(s >= 0 && s < IPCPROCS); \
}
static void statmsg(message *msg, struct proc *srcp, struct proc *dstp)
{
int src, dst, now, secs, dt;
static int lastprint;
/* Stat message. */
assert(src);
proc2slot(srcp, src);
proc2slot(dstp, dst);
messages[src][dst]++;
/* Print something? */
now = get_monotonic();
dt = now - lastprint;
secs = dt/system_hz;
if(secs >= 30) {
memset(winners, 0, sizeof(winners));
sortstats();
printstats(dt);
memset(messages, 0, sizeof(messages));
lastprint = now;
}
}
#endif
#if DEBUG_IPC_HOOK
void hook_ipc_msgkcall(message *msg, struct proc *proc)
{
#if DEBUG_DUMPIPC
printmsg(msg, proc, NULL, 'k', 1);
#endif
}
void hook_ipc_msgkresult(message *msg, struct proc *proc)
{
#if DEBUG_DUMPIPC
printmsg(msg, NULL, proc, 'k', 0);
#endif
#if DEBUG_IPCSTATS
statmsg(msg, proc, NULL);
#endif
}
void hook_ipc_msgrecv(message *msg, struct proc *src, struct proc *dst)
{
#if DEBUG_DUMPIPC
printmsg(msg, src, dst, 'r', 0);
#endif
#if DEBUG_IPCSTATS
statmsg(msg, src, dst);
#endif
}
void hook_ipc_msgsend(message *msg, struct proc *src, struct proc *dst)
{
#if DEBUG_DUMPIPC
printmsg(msg, src, dst, 's', 1);
#endif
}
void hook_ipc_clear(struct proc *p)
{
#if DEBUG_IPCSTATS
int slot, i;
assert(p);
proc2slot(p, slot);
for(i = 0; i < IPCPROCS; i++)
messages[slot][i] = messages[i][slot] = 0;
#endif
}
#endif