e54d075f6f
Remove the dependency from memory.c to omap_timer.h. Change-Id: I1f1a0e5436ac725e4b0db9d7d404194384794802
420 lines
12 KiB
C
420 lines
12 KiB
C
#define UNPAGED 1 /* for proper kmain() prototype */
|
|
|
|
#include "kernel/kernel.h"
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/const.h>
|
|
#include <minix/type.h>
|
|
#include <minix/board.h>
|
|
#include <minix/com.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/reboot.h>
|
|
#include "string.h"
|
|
#include "arch_proto.h"
|
|
#include "direct_utils.h"
|
|
#include "bsp_serial.h"
|
|
#include "glo.h"
|
|
#include <machine/multiboot.h>
|
|
|
|
#if USE_SYSDEBUG
|
|
#define MULTIBOOT_VERBOSE 1
|
|
#endif
|
|
|
|
/* to-be-built kinfo struct, diagnostics buffer */
|
|
kinfo_t kinfo;
|
|
struct kmessages kmessages;
|
|
|
|
/* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
|
|
phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
|
|
|
|
static void setup_mbi(multiboot_info_t *mbi, char *bootargs);
|
|
|
|
/* String length used for mb_itoa */
|
|
#define ITOA_BUFFER_SIZE 20
|
|
|
|
/* Kernel may use memory */
|
|
int kernel_may_alloc = 1;
|
|
|
|
extern u32_t _edata;
|
|
extern u32_t _end;
|
|
|
|
/**
|
|
*
|
|
* The following function combines a few things together
|
|
* that can well be done using standard libc like strlen/strstr
|
|
* and such but these are not available in pre_init stage.
|
|
*
|
|
* The function expects content to be in the form of space separated
|
|
* key value pairs.
|
|
* param content the contents to search in
|
|
* param key the key to find (this *should* include the key/value delimiter)
|
|
* param value a pointer to an initialized char * of at least value_max_len length
|
|
* param value_max_len the maximum length of the value to store in value including
|
|
* the end char
|
|
*
|
|
**/
|
|
int find_value(char * content,char * key,char *value,int value_max_len){
|
|
|
|
char *iter,*keyp;
|
|
int key_len,content_len,match_len,value_len;
|
|
|
|
/* return if the input is invalid */
|
|
if (key == NULL || content == NULL || value == NULL) {
|
|
return 1;
|
|
}
|
|
|
|
/* find the key and content length */
|
|
key_len = content_len =0;
|
|
for(iter = key ; *iter != '\0'; iter++, key_len++);
|
|
for(iter = content ; *iter != '\0'; iter++, content_len++);
|
|
|
|
/* return if key or content length invalid */
|
|
if (key_len == 0 || content_len == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* now find the key in the contents */
|
|
match_len =0;
|
|
for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++) {
|
|
if (*iter == *keyp) {
|
|
match_len++;
|
|
keyp++;
|
|
continue;
|
|
}
|
|
/* The current key does not match the value , reset */
|
|
match_len =0;
|
|
keyp=key;
|
|
}
|
|
|
|
if (match_len == key_len) {
|
|
printf("key found at %d %s\n", match_len, &content[match_len]);
|
|
value_len = 0;
|
|
/* copy the content to the value char iter already points to the first
|
|
char value */
|
|
while(*iter != '\0' && *iter != ' ' && value_len + 1< value_max_len) {
|
|
*value++ = *iter++;
|
|
value_len++;
|
|
}
|
|
*value='\0';
|
|
return 0;
|
|
}
|
|
return 1; /* not found */
|
|
}
|
|
|
|
static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
|
|
{
|
|
/* bigbuf contains a list of key=value pairs separated by \0 char.
|
|
* The list itself is ended by a second \0 terminator*/
|
|
char *p = bigbuf;
|
|
char *bufend = bigbuf + MULTIBOOT_PARAM_BUF_SIZE;
|
|
char *q;
|
|
int namelen = strlen(name);
|
|
int valuelen = strlen(value);
|
|
|
|
/* Some variables we recognize */
|
|
if(!strcmp(name, SERVARNAME)) { cbi->do_serial_debug = 1; }
|
|
if(!strcmp(name, SERBAUDVARNAME)) { cbi->serial_debug_baud = atoi(value); }
|
|
|
|
/* Delete the item if already exists */
|
|
while (*p) {
|
|
if (strncmp(p, name, namelen) == 0 && p[namelen] == '=') {
|
|
q = p;
|
|
/* let q point to the end of the entry */
|
|
while (*q) q++;
|
|
/* now copy the remained of the buffer */
|
|
for (q++; q < bufend; q++, p++)
|
|
*p = *q;
|
|
break;
|
|
}
|
|
|
|
/* find the end of the buffer */
|
|
while (*p++);
|
|
p++;
|
|
}
|
|
|
|
|
|
/* find the first empty spot */
|
|
for (p = bigbuf; p < bufend && (*p || *(p + 1)); p++);
|
|
|
|
/* unless we are the first entry step over the delimiter */
|
|
if (p > bigbuf) p++;
|
|
|
|
/* Make sure there's enough space for the new parameter */
|
|
if (p + namelen + valuelen + 3 > bufend) {
|
|
return -1;
|
|
}
|
|
|
|
strcpy(p, name);
|
|
p[namelen] = '=';
|
|
strcpy(p + namelen + 1, value);
|
|
p[namelen + valuelen + 1] = 0;
|
|
p[namelen + valuelen + 2] = 0; /* end with a second delimiter */
|
|
return 0;
|
|
}
|
|
|
|
int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
|
|
{
|
|
multiboot_module_t *cmp = &mod[cmp_mod];
|
|
int m;
|
|
|
|
#define INRANGE(mod, v) ((v) >= mod->mod_start && (v) <= thismod->mod_end)
|
|
#define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
|
|
INRANGE(mod1, mod2->mod_end))
|
|
for(m = 0; m < n; m++) {
|
|
multiboot_module_t *thismod = &mod[m];
|
|
if(m == cmp_mod) continue;
|
|
if(OVERLAP(thismod, cmp)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: hard-coded stuff for modules */
|
|
#define MB_MODS_NR NR_BOOT_MODULES
|
|
#define MB_MODS_BASE 0x82000000
|
|
#define MB_MODS_ALIGN 0x00800000 /* 8 MB */
|
|
#define MB_MMAP_START 0x80000000
|
|
#define MB_MMAP_SIZE 0x10000000 /* 256 MB */
|
|
|
|
multiboot_module_t mb_modlist[MB_MODS_NR];
|
|
multiboot_memory_map_t mb_memmap;
|
|
|
|
void setup_mbi(multiboot_info_t *mbi, char *bootargs)
|
|
{
|
|
memset(mbi, 0, sizeof(*mbi));
|
|
mbi->flags = MULTIBOOT_INFO_MODS | MULTIBOOT_INFO_MEM_MAP |
|
|
MULTIBOOT_INFO_CMDLINE;
|
|
mbi->mi_mods_count = MB_MODS_NR;
|
|
mbi->mods_addr = (u32_t)&mb_modlist;
|
|
|
|
int i;
|
|
for (i = 0; i < MB_MODS_NR; ++i) {
|
|
mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
|
|
mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
|
|
- ARM_PAGE_SIZE;
|
|
mb_modlist[i].cmdline = 0;
|
|
}
|
|
|
|
/* morph the bootargs into multiboot */
|
|
mbi->cmdline = (u32_t) bootargs;
|
|
|
|
mbi->mmap_addr =(u32_t)&mb_memmap;
|
|
mbi->mmap_length = sizeof(mb_memmap);
|
|
|
|
mb_memmap.size = sizeof(multiboot_memory_map_t);
|
|
mb_memmap.mm_base_addr = MB_MMAP_START;
|
|
mb_memmap.mm_length = MB_MMAP_SIZE;
|
|
mb_memmap.type = MULTIBOOT_MEMORY_AVAILABLE;
|
|
}
|
|
|
|
void get_parameters(kinfo_t *cbi, char *bootargs)
|
|
{
|
|
multiboot_memory_map_t *mmap;
|
|
multiboot_info_t *mbi = &cbi->mbi;
|
|
int var_i,value_i, m, k;
|
|
char *p;
|
|
extern char _kern_phys_base, _kern_vir_base, _kern_size,
|
|
_kern_unpaged_start, _kern_unpaged_end;
|
|
phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
|
|
kernsize = (phys_bytes) &_kern_size;
|
|
#define BUF 1024
|
|
static char cmdline[BUF];
|
|
|
|
/* get our own copy of the multiboot info struct and module list */
|
|
setup_mbi(mbi, bootargs);
|
|
|
|
/* Set various bits of info for the higher-level kernel. */
|
|
cbi->mem_high_phys = 0;
|
|
cbi->user_sp = (vir_bytes) &_kern_vir_base;
|
|
cbi->vir_kern_start = (vir_bytes) &_kern_vir_base;
|
|
cbi->bootstrap_start = (vir_bytes) &_kern_unpaged_start;
|
|
cbi->bootstrap_len = (vir_bytes) &_kern_unpaged_end -
|
|
cbi->bootstrap_start;
|
|
cbi->kmess = &kmess;
|
|
|
|
/* set some configurable defaults */
|
|
cbi->do_serial_debug = 1;
|
|
cbi->serial_debug_baud = 115200;
|
|
|
|
/* parse boot command line */
|
|
if (mbi->flags&MULTIBOOT_INFO_CMDLINE) {
|
|
static char var[BUF];
|
|
static char value[BUF];
|
|
|
|
/* Override values with cmdline argument */
|
|
memcpy(cmdline, (void *) mbi->cmdline, BUF);
|
|
p = cmdline;
|
|
while (*p) {
|
|
var_i = 0;
|
|
value_i = 0;
|
|
while (*p == ' ') p++; /* skip spaces */
|
|
if (!*p) break; /* is this the end? */
|
|
while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
|
|
var[var_i++] = *p++ ;
|
|
var[var_i] = 0;
|
|
if (*p++ != '=') continue; /* skip if not name=value */
|
|
while (*p && *p != ' ' && value_i < BUF - 1) {
|
|
value[value_i++] = *p++ ;
|
|
}
|
|
value[value_i] = 0;
|
|
|
|
mb_set_param(cbi->param_buf, var, value, cbi);
|
|
}
|
|
}
|
|
|
|
/* let higher levels know what we are booting on */
|
|
mb_set_param(cbi->param_buf, ARCHVARNAME, (char *)get_board_arch_name(machine.board_id), cbi);
|
|
mb_set_param(cbi->param_buf, BOARDVARNAME,(char *)get_board_name(machine.board_id) , cbi);
|
|
|
|
|
|
/* round user stack down to leave a gap to catch kernel
|
|
* stack overflow; and to distinguish kernel and user addresses
|
|
* at a glance (0xf.. vs 0xe..)
|
|
*/
|
|
cbi->user_sp &= 0xF0000000;
|
|
cbi->user_end = cbi->user_sp;
|
|
|
|
/* kernel bytes without bootstrap code/data that is currently
|
|
* still needed but will be freed after bootstrapping.
|
|
*/
|
|
kinfo.kernel_allocated_bytes = (phys_bytes) &_kern_size;
|
|
kinfo.kernel_allocated_bytes -= cbi->bootstrap_len;
|
|
|
|
assert(!(cbi->bootstrap_start % ARM_PAGE_SIZE));
|
|
cbi->bootstrap_len = rounddown(cbi->bootstrap_len, ARM_PAGE_SIZE);
|
|
assert(mbi->flags & MULTIBOOT_INFO_MODS);
|
|
assert(mbi->mi_mods_count < MULTIBOOT_MAX_MODS);
|
|
assert(mbi->mi_mods_count > 0);
|
|
memcpy(&cbi->module_list, (void *) mbi->mods_addr,
|
|
mbi->mi_mods_count * sizeof(multiboot_module_t));
|
|
|
|
memset(cbi->memmap, 0, sizeof(cbi->memmap));
|
|
/* mem_map has a variable layout */
|
|
if(mbi->flags & MULTIBOOT_INFO_MEM_MAP) {
|
|
cbi->mmap_size = 0;
|
|
for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;
|
|
(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
|
|
mmap = (multiboot_memory_map_t *)
|
|
((unsigned long) mmap + mmap->size + sizeof(mmap->size))) {
|
|
if(mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue;
|
|
add_memmap(cbi, mmap->mm_base_addr, mmap->mm_length);
|
|
}
|
|
} else {
|
|
assert(mbi->flags & MULTIBOOT_INFO_MEMORY);
|
|
add_memmap(cbi, 0, mbi->mem_lower_unused*1024);
|
|
add_memmap(cbi, 0x100000, mbi->mem_upper_unused*1024);
|
|
}
|
|
|
|
/* Sanity check: the kernel nor any of the modules may overlap
|
|
* with each other. Pretend the kernel is an extra module for a
|
|
* second.
|
|
*/
|
|
k = mbi->mi_mods_count;
|
|
assert(k < MULTIBOOT_MAX_MODS);
|
|
cbi->module_list[k].mod_start = kernbase;
|
|
cbi->module_list[k].mod_end = kernbase + kernsize;
|
|
cbi->mods_with_kernel = mbi->mi_mods_count+1;
|
|
cbi->kern_mod = k;
|
|
|
|
for(m = 0; m < cbi->mods_with_kernel; m++) {
|
|
#if 0
|
|
printf("checking overlap of module %08lx-%08lx\n",
|
|
cbi->module_list[m].mod_start, cbi->module_list[m].mod_end);
|
|
#endif
|
|
if(overlaps(cbi->module_list, cbi->mods_with_kernel, m))
|
|
panic("overlapping boot modules/kernel");
|
|
/* We cut out the bits of memory that we know are
|
|
* occupied by the kernel and boot modules.
|
|
*/
|
|
cut_memmap(cbi,
|
|
cbi->module_list[m].mod_start,
|
|
cbi->module_list[m].mod_end);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* During low level init many things are not supposed to work
|
|
* serial being one of them. We therefore can't rely on the
|
|
* serial to debug. POORMANS_FAILURE_NOTIFICATION can be used
|
|
* before we setup our own vector table and will result in calling
|
|
* the bootloader's debugging methods that will hopefully show some
|
|
* information like the currnet PC at on the serial.
|
|
*/
|
|
#define POORMANS_FAILURE_NOTIFICATION asm volatile("svc #00\n")
|
|
|
|
/* use the passed cmdline argument to determine the machine id */
|
|
void set_machine_id(char *cmdline)
|
|
{
|
|
|
|
char boardname[20];
|
|
memset(boardname,'\0',20);
|
|
if (find_value(cmdline,"board_name=",boardname,20)){
|
|
/* we expect the bootloader to pass a board_name as argument
|
|
* this however did not happen and given we still are in early
|
|
* boot we can't use the serial. We therefore generate an interrupt
|
|
* and hope the bootloader will do something nice with it */
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
machine.board_id = get_board_id_by_short_name(boardname);
|
|
|
|
if (machine.board_id ==0){
|
|
/* same thing as above there is no safe escape */
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
}
|
|
|
|
kinfo_t *pre_init(int argc, char **argv)
|
|
{
|
|
char *bootargs;
|
|
/* This is the main "c" entry point into the kernel. It gets called
|
|
from head.S */
|
|
|
|
/* Clear BSS */
|
|
memset(&_edata, 0, (u32_t)&_end - (u32_t)&_edata);
|
|
|
|
/* we get called in a c like fashion where the first arg
|
|
* is the program name (load address) and the rest are
|
|
* arguments. by convention the second argument is the
|
|
* command line */
|
|
if (argc != 2) {
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
|
|
bootargs = argv[1];
|
|
set_machine_id(bootargs);
|
|
bsp_ser_init();
|
|
/* Get our own copy boot params pointed to by ebx.
|
|
* Here we find out whether we should do serial output.
|
|
*/
|
|
get_parameters(&kinfo, bootargs);
|
|
|
|
/* Make and load a pagetable that will map the kernel
|
|
* to where it should be; but first a 1:1 mapping so
|
|
* this code stays where it should be.
|
|
*/
|
|
dcache_clean(); /* clean the caches */
|
|
pg_clear();
|
|
pg_identity(&kinfo);
|
|
kinfo.freepde_start = pg_mapkernel();
|
|
pg_load();
|
|
vm_enable_paging();
|
|
|
|
/* Done, return boot info so it can be passed to kmain(). */
|
|
return &kinfo;
|
|
}
|
|
|
|
/* pre_init gets executed at the memory location where the kernel was loaded by the boot loader.
|
|
* at that stage we only have a minimum set of functionality present (all symbols gets renamed to
|
|
* ensure this). The following methods are used in that context. Once we jump to kmain they are no
|
|
* longer used and the "real" implementations are visible
|
|
*/
|
|
void send_diag_sig(void) { }
|
|
void minix_shutdown(minix_timer_t *t) { arch_shutdown(0); }
|
|
void busy_delay_ms(int x) { }
|
|
int raise(int n) { panic("raise(%d)\n", n); }
|
|
int kern_phys_map_ptr( phys_bytes base_address, vir_bytes io_size, int vm_flags,
|
|
struct kern_phys_map * priv, vir_bytes ptr) {};
|
|
struct machine machine; /* pre init stage machine */
|