minix/tests/lib/libm/t_tan.c
Lionel Sambuc 11be35a165 Importing NetBSD "Kyua" test framework
To do so, a few dependencies have been imported:

 * external/bsd/lutok
 * external/mit/lua
 * external/public-domain/sqlite
 * external/public-domain/xz

The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:

 * external/bsd/atf
 * external/bsd/kyua-atf-compat
 * external/bsd/kyua-cli
 * external/bsd/kyua-tester
 * tests

Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.

To install Kyua do the following:

 * In a cross-build enviromnent, add the following to the build.sh
   commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes

WARNING:
  At this point the import is still experimental, and not supported
  on native builds (a.k.a make build).

Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
2013-07-23 20:43:41 +02:00

283 lines
5.9 KiB
C

/* $NetBSD: t_tan.c,v 1.4 2011/09/15 11:05:50 he Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <atf-c.h>
#include <math.h>
static const struct {
int angle;
double x;
double y;
} angles[] = {
{ -180, -3.141592653589793, 0.0000000000000000 },
{ -135, -2.356194490192345, 1.0000000000000000 },
{ -45, -0.785398163397448, -1.0000000000000000 },
{ 0, 0.000000000000000, 0.0000000000000000 },
{ 30, 0.523598775598299, 0.5773502691896258 },
{ 45, 0.785398163397448, 1.0000000000000000 },
{ 60, 1.047197551196598, 1.7320508075688773 },
{ 120, 2.094395102393195, -1.7320508075688773 },
{ 135, 2.356194490192345, -1.0000000000000000 },
{ 150, 2.617993877991494, -0.5773502691896258 },
{ 180, 3.141592653589793, 0.0000000000000000 },
{ 360, 6.283185307179586, 0.0000000000000000 }
};
/*
* tan(3)
*/
ATF_TC(tan_angles);
ATF_TC_HEAD(tan_angles, tc)
{
atf_tc_set_md_var(tc, "descr", "Test some selected angles");
}
ATF_TC_BODY(tan_angles, tc)
{
const double eps = 1.0e-14;
size_t i;
for (i = 0; i < __arraycount(angles); i++) {
if (fabs(tan(angles[i].x) - angles[i].y) > eps)
atf_tc_fail_nonfatal("tan(%d deg) != %0.01f",
angles[i].angle, angles[i].y);
}
}
ATF_TC(tan_nan);
ATF_TC_HEAD(tan_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tan(NaN) == NaN");
}
ATF_TC_BODY(tan_nan, tc)
{
#ifndef __vax__
const double x = 0.0L / 0.0L;
ATF_CHECK(isnan(x) != 0);
ATF_CHECK(isnan(tan(x)) != 0);
#endif
}
ATF_TC(tan_inf_neg);
ATF_TC_HEAD(tan_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tan(-Inf) == NaN");
}
ATF_TC_BODY(tan_inf_neg, tc)
{
#ifndef __vax__
const double x = -1.0L / 0.0L;
ATF_CHECK(isnan(tan(x)) != 0);
#endif
}
ATF_TC(tan_inf_pos);
ATF_TC_HEAD(tan_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tan(+Inf) == NaN");
}
ATF_TC_BODY(tan_inf_pos, tc)
{
#ifndef __vax__
const double x = 1.0L / 0.0L;
ATF_CHECK(isnan(tan(x)) != 0);
#endif
}
ATF_TC(tan_zero_neg);
ATF_TC_HEAD(tan_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tan(-0.0) == -0.0");
}
ATF_TC_BODY(tan_zero_neg, tc)
{
#ifndef __vax__
const double x = -0.0L;
ATF_CHECK(tan(x) == x);
#endif
}
ATF_TC(tan_zero_pos);
ATF_TC_HEAD(tan_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tan(+0.0) == +0.0");
}
ATF_TC_BODY(tan_zero_pos, tc)
{
#ifndef __vax__
const double x = 0.0L;
ATF_CHECK(tan(x) == x);
#endif
}
/*
* tanf(3)
*/
ATF_TC(tanf_angles);
ATF_TC_HEAD(tanf_angles, tc)
{
atf_tc_set_md_var(tc, "descr", "Test some selected angles");
}
ATF_TC_BODY(tanf_angles, tc)
{
#ifndef __vax__
const float eps = 1.0e-6;
float x, y;
size_t i;
for (i = 0; i < __arraycount(angles); i++) {
x = angles[i].x;
y = angles[i].y;
if (fabsf(tanf(x) - y) > eps)
atf_tc_fail_nonfatal("tanf(%d deg) != %0.01f",
angles[i].angle, angles[i].y);
}
#endif
}
ATF_TC(tanf_nan);
ATF_TC_HEAD(tanf_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tanf(NaN) == NaN");
}
ATF_TC_BODY(tanf_nan, tc)
{
#ifndef __vax__
const float x = 0.0L / 0.0L;
ATF_CHECK(isnan(x) != 0);
ATF_CHECK(isnan(tanf(x)) != 0);
#endif
}
ATF_TC(tanf_inf_neg);
ATF_TC_HEAD(tanf_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tanf(-Inf) == NaN");
}
ATF_TC_BODY(tanf_inf_neg, tc)
{
#ifndef __vax__
const float x = -1.0L / 0.0L;
if (isnan(tanf(x)) == 0) {
atf_tc_expect_fail("PR lib/45362");
atf_tc_fail("tanf(-Inf) != NaN");
}
#endif
}
ATF_TC(tanf_inf_pos);
ATF_TC_HEAD(tanf_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tanf(+Inf) == NaN");
}
ATF_TC_BODY(tanf_inf_pos, tc)
{
#ifndef __vax__
const float x = 1.0L / 0.0L;
if (isnan(tanf(x)) == 0) {
atf_tc_expect_fail("PR lib/45362");
atf_tc_fail("tanf(+Inf) != NaN");
}
#endif
}
ATF_TC(tanf_zero_neg);
ATF_TC_HEAD(tanf_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tanf(-0.0) == -0.0");
}
ATF_TC_BODY(tanf_zero_neg, tc)
{
#ifndef __vax__
const float x = -0.0L;
ATF_CHECK(tanf(x) == x);
#endif
}
ATF_TC(tanf_zero_pos);
ATF_TC_HEAD(tanf_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test tanf(+0.0) == +0.0");
}
ATF_TC_BODY(tanf_zero_pos, tc)
{
#ifndef __vax__
const float x = 0.0L;
ATF_CHECK(tanf(x) == x);
#endif
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, tan_angles);
ATF_TP_ADD_TC(tp, tan_nan);
ATF_TP_ADD_TC(tp, tan_inf_neg);
ATF_TP_ADD_TC(tp, tan_inf_pos);
ATF_TP_ADD_TC(tp, tan_zero_neg);
ATF_TP_ADD_TC(tp, tan_zero_pos);
ATF_TP_ADD_TC(tp, tanf_angles);
ATF_TP_ADD_TC(tp, tanf_nan);
ATF_TP_ADD_TC(tp, tanf_inf_neg);
ATF_TP_ADD_TC(tp, tanf_inf_pos);
ATF_TP_ADD_TC(tp, tanf_zero_neg);
ATF_TP_ADD_TC(tp, tanf_zero_pos);
return atf_no_error();
}