684 lines
20 KiB
C
684 lines
20 KiB
C
/* The file system maintains a buffer cache to reduce the number of disk
|
|
* accesses needed. Whenever a read or write to the disk is done, a check is
|
|
* first made to see if the block is in the cache. This file manages the
|
|
* cache.
|
|
*
|
|
* The entry points into this file are:
|
|
* get_block: request to fetch a block for reading or writing from cache
|
|
* put_block: return a block previously requested with get_block
|
|
* alloc_zone: allocate a new zone (to increase the length of a file)
|
|
* free_zone: release a zone (when a file is removed)
|
|
* invalidate: remove all the cache blocks on some device
|
|
*
|
|
* Private functions:
|
|
* rw_block: read or write a block from the disk itself
|
|
*/
|
|
|
|
#include "fs.h"
|
|
#include <minix/u64.h>
|
|
#include <sys/param.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include "buf.h"
|
|
#include "super.h"
|
|
#include "inode.h"
|
|
|
|
FORWARD _PROTOTYPE( void rm_lru, (struct buf *bp) );
|
|
FORWARD _PROTOTYPE( void rw_block, (struct buf *, int) );
|
|
|
|
PRIVATE int vmcache_avail = -1; /* 0 if not available, >0 if available. */
|
|
|
|
/*===========================================================================*
|
|
* get_block *
|
|
*===========================================================================*/
|
|
PUBLIC struct buf *get_block(
|
|
register dev_t dev, /* on which device is the block? */
|
|
register block_t block, /* which block is wanted? */
|
|
int only_search /* if NO_READ, don't read, else act normal */
|
|
)
|
|
{
|
|
/* Check to see if the requested block is in the block cache. If so, return
|
|
* a pointer to it. If not, evict some other block and fetch it (unless
|
|
* 'only_search' is 1). All the blocks in the cache that are not in use
|
|
* are linked together in a chain, with 'front' pointing to the least recently
|
|
* used block and 'rear' to the most recently used block. If 'only_search' is
|
|
* 1, the block being requested will be overwritten in its entirety, so it is
|
|
* only necessary to see if it is in the cache; if it is not, any free buffer
|
|
* will do. It is not necessary to actually read the block in from disk.
|
|
* If 'only_search' is PREFETCH, the block need not be read from the disk,
|
|
* and the device is not to be marked on the block, so callers can tell if
|
|
* the block returned is valid.
|
|
* In addition to the LRU chain, there is also a hash chain to link together
|
|
* blocks whose block numbers end with the same bit strings, for fast lookup.
|
|
*/
|
|
|
|
int b;
|
|
static struct buf *bp, *prev_ptr;
|
|
u64_t yieldid = VM_BLOCKID_NONE, getid = make64(dev, block);
|
|
int vmcache = 0;
|
|
|
|
assert(buf_hash);
|
|
assert(buf);
|
|
assert(nr_bufs > 0);
|
|
|
|
if(vmcache_avail < 0) {
|
|
/* Test once for the availability of the vm yield block feature. */
|
|
if(vm_forgetblock(VM_BLOCKID_NONE) == ENOSYS) {
|
|
vmcache_avail = 0;
|
|
} else {
|
|
vmcache_avail = 1;
|
|
}
|
|
}
|
|
|
|
/* use vmcache if it's available, and allowed, and we're not doing
|
|
* i/o on a ram disk device.
|
|
*/
|
|
if(vmcache_avail && may_use_vmcache && major(dev) != MEMORY_MAJOR)
|
|
vmcache = 1;
|
|
|
|
ASSERT(fs_block_size > 0);
|
|
|
|
/* Search the hash chain for (dev, block). Do_read() can use
|
|
* get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
|
|
* someone wants to read from a hole in a file, in which case this search
|
|
* is skipped
|
|
*/
|
|
if (dev != NO_DEV) {
|
|
b = BUFHASH(block);
|
|
bp = buf_hash[b];
|
|
while (bp != NULL) {
|
|
if (bp->b_blocknr == block && bp->b_dev == dev) {
|
|
/* Block needed has been found. */
|
|
if (bp->b_count == 0) rm_lru(bp);
|
|
bp->b_count++; /* record that block is in use */
|
|
ASSERT(bp->b_bytes == fs_block_size);
|
|
ASSERT(bp->b_dev == dev);
|
|
ASSERT(bp->b_dev != NO_DEV);
|
|
ASSERT(bp->bp);
|
|
return(bp);
|
|
} else {
|
|
/* This block is not the one sought. */
|
|
bp = bp->b_hash; /* move to next block on hash chain */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Desired block is not on available chain. Take oldest block ('front'). */
|
|
if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
|
|
|
|
if(bp->b_bytes < fs_block_size) {
|
|
ASSERT(!bp->bp);
|
|
ASSERT(bp->b_bytes == 0);
|
|
if(!(bp->bp = alloc_contig( (size_t) fs_block_size, 0, NULL))) {
|
|
printf("MFS: couldn't allocate a new block.\n");
|
|
for(bp = front;
|
|
bp && bp->b_bytes < fs_block_size; bp = bp->b_next)
|
|
;
|
|
if(!bp) {
|
|
panic("no buffer available");
|
|
}
|
|
} else {
|
|
bp->b_bytes = fs_block_size;
|
|
}
|
|
}
|
|
|
|
ASSERT(bp);
|
|
ASSERT(bp->bp);
|
|
ASSERT(bp->b_bytes == fs_block_size);
|
|
ASSERT(bp->b_count == 0);
|
|
|
|
rm_lru(bp);
|
|
|
|
/* Remove the block that was just taken from its hash chain. */
|
|
b = BUFHASH(bp->b_blocknr);
|
|
prev_ptr = buf_hash[b];
|
|
if (prev_ptr == bp) {
|
|
buf_hash[b] = bp->b_hash;
|
|
} else {
|
|
/* The block just taken is not on the front of its hash chain. */
|
|
while (prev_ptr->b_hash != NULL)
|
|
if (prev_ptr->b_hash == bp) {
|
|
prev_ptr->b_hash = bp->b_hash; /* found it */
|
|
break;
|
|
} else {
|
|
prev_ptr = prev_ptr->b_hash; /* keep looking */
|
|
}
|
|
}
|
|
|
|
/* If the block taken is dirty, make it clean by writing it to the disk.
|
|
* Avoid hysteresis by flushing all other dirty blocks for the same device.
|
|
*/
|
|
if (bp->b_dev != NO_DEV) {
|
|
if (bp->b_dirt == DIRTY) flushall(bp->b_dev);
|
|
|
|
/* Are we throwing out a block that contained something?
|
|
* Give it to VM for the second-layer cache.
|
|
*/
|
|
yieldid = make64(bp->b_dev, bp->b_blocknr);
|
|
assert(bp->b_bytes == fs_block_size);
|
|
bp->b_dev = NO_DEV;
|
|
}
|
|
|
|
/* Fill in block's parameters and add it to the hash chain where it goes. */
|
|
bp->b_dev = dev; /* fill in device number */
|
|
bp->b_blocknr = block; /* fill in block number */
|
|
bp->b_count++; /* record that block is being used */
|
|
b = BUFHASH(bp->b_blocknr);
|
|
bp->b_hash = buf_hash[b];
|
|
|
|
buf_hash[b] = bp; /* add to hash list */
|
|
|
|
if(dev == NO_DEV) {
|
|
if(vmcache && cmp64(yieldid, VM_BLOCKID_NONE) != 0) {
|
|
vm_yield_block_get_block(yieldid, VM_BLOCKID_NONE,
|
|
bp->bp, fs_block_size);
|
|
}
|
|
return(bp); /* If the caller wanted a NO_DEV block, work is done. */
|
|
}
|
|
|
|
/* Go get the requested block unless searching or prefetching. */
|
|
if(only_search == PREFETCH || only_search == NORMAL) {
|
|
/* Block is not found in our cache, but we do want it
|
|
* if it's in the vm cache.
|
|
*/
|
|
if(vmcache) {
|
|
/* If we can satisfy the PREFETCH or NORMAL request
|
|
* from the vm cache, work is done.
|
|
*/
|
|
if(vm_yield_block_get_block(yieldid, getid,
|
|
bp->bp, fs_block_size) == OK) {
|
|
return bp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(only_search == PREFETCH) {
|
|
/* PREFETCH: don't do i/o. */
|
|
bp->b_dev = NO_DEV;
|
|
} else if (only_search == NORMAL) {
|
|
rw_block(bp, READING);
|
|
} else if(only_search == NO_READ) {
|
|
/* we want this block, but its contents
|
|
* will be overwritten. VM has to forget
|
|
* about it.
|
|
*/
|
|
if(vmcache) {
|
|
vm_forgetblock(getid);
|
|
}
|
|
} else
|
|
panic("unexpected only_search value: %d", only_search);
|
|
|
|
assert(bp->bp);
|
|
|
|
return(bp); /* return the newly acquired block */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* put_block *
|
|
*===========================================================================*/
|
|
PUBLIC void put_block(bp, block_type)
|
|
register struct buf *bp; /* pointer to the buffer to be released */
|
|
int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
|
|
{
|
|
/* Return a block to the list of available blocks. Depending on 'block_type'
|
|
* it may be put on the front or rear of the LRU chain. Blocks that are
|
|
* expected to be needed again shortly (e.g., partially full data blocks)
|
|
* go on the rear; blocks that are unlikely to be needed again shortly
|
|
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
|
|
* the integrity of the file system (e.g., inode blocks) are written to
|
|
* disk immediately if they are dirty.
|
|
*/
|
|
if (bp == NULL) return; /* it is easier to check here than in caller */
|
|
|
|
bp->b_count--; /* there is one use fewer now */
|
|
if (bp->b_count != 0) return; /* block is still in use */
|
|
|
|
bufs_in_use--; /* one fewer block buffers in use */
|
|
|
|
/* Put this block back on the LRU chain. If the ONE_SHOT bit is set in
|
|
* 'block_type', the block is not likely to be needed again shortly, so put
|
|
* it on the front of the LRU chain where it will be the first one to be
|
|
* taken when a free buffer is needed later.
|
|
*/
|
|
if (bp->b_dev == DEV_RAM || (block_type & ONE_SHOT)) {
|
|
/* Block probably won't be needed quickly. Put it on front of chain.
|
|
* It will be the next block to be evicted from the cache.
|
|
*/
|
|
bp->b_prev = NULL;
|
|
bp->b_next = front;
|
|
if (front == NULL)
|
|
rear = bp; /* LRU chain was empty */
|
|
else
|
|
front->b_prev = bp;
|
|
front = bp;
|
|
}
|
|
else {
|
|
/* Block probably will be needed quickly. Put it on rear of chain.
|
|
* It will not be evicted from the cache for a long time.
|
|
*/
|
|
bp->b_prev = rear;
|
|
bp->b_next = NULL;
|
|
if (rear == NULL)
|
|
front = bp;
|
|
else
|
|
rear->b_next = bp;
|
|
rear = bp;
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* alloc_zone *
|
|
*===========================================================================*/
|
|
PUBLIC zone_t alloc_zone(
|
|
dev_t dev, /* device where zone wanted */
|
|
zone_t z /* try to allocate new zone near this one */
|
|
)
|
|
{
|
|
/* Allocate a new zone on the indicated device and return its number. */
|
|
|
|
int major, minor;
|
|
bit_t b, bit;
|
|
struct super_block *sp;
|
|
|
|
/* Note that the routine alloc_bit() returns 1 for the lowest possible
|
|
* zone, which corresponds to sp->s_firstdatazone. To convert a value
|
|
* between the bit number, 'b', used by alloc_bit() and the zone number, 'z',
|
|
* stored in the inode, use the formula:
|
|
* z = b + sp->s_firstdatazone - 1
|
|
* Alloc_bit() never returns 0, since this is used for NO_BIT (failure).
|
|
*/
|
|
sp = get_super(dev);
|
|
|
|
/* If z is 0, skip initial part of the map known to be fully in use. */
|
|
if (z == sp->s_firstdatazone) {
|
|
bit = sp->s_zsearch;
|
|
} else {
|
|
bit = (bit_t) (z - (sp->s_firstdatazone - 1));
|
|
}
|
|
b = alloc_bit(sp, ZMAP, bit);
|
|
if (b == NO_BIT) {
|
|
err_code = ENOSPC;
|
|
major = (int) (sp->s_dev >> MAJOR) & BYTE;
|
|
minor = (int) (sp->s_dev >> MINOR) & BYTE;
|
|
printf("No space on device %d/%d\n", major, minor);
|
|
return(NO_ZONE);
|
|
}
|
|
if (z == sp->s_firstdatazone) sp->s_zsearch = b; /* for next time */
|
|
return( (zone_t) (sp->s_firstdatazone - 1) + (zone_t) b);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* free_zone *
|
|
*===========================================================================*/
|
|
PUBLIC void free_zone(
|
|
dev_t dev, /* device where zone located */
|
|
zone_t numb /* zone to be returned */
|
|
)
|
|
{
|
|
/* Return a zone. */
|
|
|
|
register struct super_block *sp;
|
|
bit_t bit;
|
|
|
|
/* Locate the appropriate super_block and return bit. */
|
|
sp = get_super(dev);
|
|
if (numb < sp->s_firstdatazone || numb >= sp->s_zones) return;
|
|
bit = (bit_t) (numb - (zone_t) (sp->s_firstdatazone - 1));
|
|
free_bit(sp, ZMAP, bit);
|
|
if (bit < sp->s_zsearch) sp->s_zsearch = bit;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* rw_block *
|
|
*===========================================================================*/
|
|
PRIVATE void rw_block(bp, rw_flag)
|
|
register struct buf *bp; /* buffer pointer */
|
|
int rw_flag; /* READING or WRITING */
|
|
{
|
|
/* Read or write a disk block. This is the only routine in which actual disk
|
|
* I/O is invoked. If an error occurs, a message is printed here, but the error
|
|
* is not reported to the caller. If the error occurred while purging a block
|
|
* from the cache, it is not clear what the caller could do about it anyway.
|
|
*/
|
|
int r, op, op_failed;
|
|
u64_t pos;
|
|
dev_t dev;
|
|
|
|
op_failed = 0;
|
|
|
|
if ( (dev = bp->b_dev) != NO_DEV) {
|
|
pos = mul64u(bp->b_blocknr, fs_block_size);
|
|
op = (rw_flag == READING ? MFS_DEV_READ : MFS_DEV_WRITE);
|
|
r = block_dev_io(op, dev, SELF_E, bp->b_data, pos, fs_block_size);
|
|
if (r < 0) {
|
|
printf("MFS(%d) I/O error on device %d/%d, block %lu\n",
|
|
SELF_E, major(dev), minor(dev), bp->b_blocknr);
|
|
op_failed = 1;
|
|
} else if( (unsigned) r != fs_block_size) {
|
|
r = END_OF_FILE;
|
|
op_failed = 1;
|
|
}
|
|
|
|
if (op_failed) {
|
|
bp->b_dev = NO_DEV; /* invalidate block */
|
|
|
|
/* Report read errors to interested parties. */
|
|
if (rw_flag == READING) rdwt_err = r;
|
|
}
|
|
}
|
|
|
|
bp->b_dirt = CLEAN;
|
|
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* invalidate *
|
|
*===========================================================================*/
|
|
PUBLIC void invalidate(
|
|
dev_t device /* device whose blocks are to be purged */
|
|
)
|
|
{
|
|
/* Remove all the blocks belonging to some device from the cache. */
|
|
|
|
register struct buf *bp;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if (bp->b_dev == device) bp->b_dev = NO_DEV;
|
|
|
|
vm_forgetblocks();
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* flushall *
|
|
*===========================================================================*/
|
|
PUBLIC void flushall(
|
|
dev_t dev /* device to flush */
|
|
)
|
|
{
|
|
/* Flush all dirty blocks for one device. */
|
|
|
|
register struct buf *bp;
|
|
static struct buf **dirty; /* static so it isn't on stack */
|
|
static unsigned int dirtylistsize = 0;
|
|
int ndirty;
|
|
|
|
if(dirtylistsize != nr_bufs) {
|
|
if(dirtylistsize > 0) {
|
|
assert(dirty != NULL);
|
|
free(dirty);
|
|
}
|
|
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
|
|
panic("couldn't allocate dirty buf list");
|
|
dirtylistsize = nr_bufs;
|
|
}
|
|
|
|
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++)
|
|
if (bp->b_dirt == DIRTY && bp->b_dev == dev) dirty[ndirty++] = bp;
|
|
rw_scattered(dev, dirty, ndirty, WRITING);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* rw_scattered *
|
|
*===========================================================================*/
|
|
PUBLIC void rw_scattered(
|
|
dev_t dev, /* major-minor device number */
|
|
struct buf **bufq, /* pointer to array of buffers */
|
|
int bufqsize, /* number of buffers */
|
|
int rw_flag /* READING or WRITING */
|
|
)
|
|
{
|
|
/* Read or write scattered data from a device. */
|
|
|
|
register struct buf *bp;
|
|
int gap;
|
|
register int i;
|
|
register iovec_t *iop;
|
|
static iovec_t *iovec = NULL;
|
|
int j, r;
|
|
|
|
STATICINIT(iovec, NR_IOREQS);
|
|
|
|
/* (Shell) sort buffers on b_blocknr. */
|
|
gap = 1;
|
|
do
|
|
gap = 3 * gap + 1;
|
|
while (gap <= bufqsize);
|
|
while (gap != 1) {
|
|
gap /= 3;
|
|
for (j = gap; j < bufqsize; j++) {
|
|
for (i = j - gap;
|
|
i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr;
|
|
i -= gap) {
|
|
bp = bufq[i];
|
|
bufq[i] = bufq[i + gap];
|
|
bufq[i + gap] = bp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set up I/O vector and do I/O. The result of dev_io is OK if everything
|
|
* went fine, otherwise the error code for the first failed transfer.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
|
|
bp = bufq[j];
|
|
if (bp->b_blocknr != (block_t) bufq[0]->b_blocknr + j) break;
|
|
iop->iov_addr = (vir_bytes) bp->b_data;
|
|
iop->iov_size = (vir_bytes) fs_block_size;
|
|
}
|
|
r = block_dev_io(rw_flag == WRITING ? MFS_DEV_SCATTER : MFS_DEV_GATHER,
|
|
dev, SELF_E, iovec,
|
|
mul64u(bufq[0]->b_blocknr, fs_block_size), j);
|
|
|
|
/* Harvest the results. Dev_io reports the first error it may have
|
|
* encountered, but we only care if it's the first block that failed.
|
|
*/
|
|
for (i = 0, iop = iovec; i < j; i++, iop++) {
|
|
bp = bufq[i];
|
|
if (iop->iov_size != 0) {
|
|
/* Transfer failed. An error? Do we care? */
|
|
if (r != OK && i == 0) {
|
|
printf(
|
|
"MFS: I/O error on device %d/%d, block %lu\n",
|
|
major(dev), minor(dev), bp->b_blocknr);
|
|
bp->b_dev = NO_DEV; /* invalidate block */
|
|
vm_forgetblocks();
|
|
}
|
|
break;
|
|
}
|
|
if (rw_flag == READING) {
|
|
bp->b_dev = dev; /* validate block */
|
|
put_block(bp, PARTIAL_DATA_BLOCK);
|
|
} else {
|
|
bp->b_dirt = CLEAN;
|
|
}
|
|
}
|
|
bufq += i;
|
|
bufqsize -= i;
|
|
if (rw_flag == READING) {
|
|
/* Don't bother reading more than the device is willing to
|
|
* give at this time. Don't forget to release those extras.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
put_block(*bufq++, PARTIAL_DATA_BLOCK);
|
|
bufqsize--;
|
|
}
|
|
}
|
|
if (rw_flag == WRITING && i == 0) {
|
|
/* We're not making progress, this means we might keep
|
|
* looping. Buffers remain dirty if un-written. Buffers are
|
|
* lost if invalidate()d or LRU-removed while dirty. This
|
|
* is better than keeping unwritable blocks around forever..
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* rm_lru *
|
|
*===========================================================================*/
|
|
PRIVATE void rm_lru(bp)
|
|
struct buf *bp;
|
|
{
|
|
/* Remove a block from its LRU chain. */
|
|
struct buf *next_ptr, *prev_ptr;
|
|
|
|
bufs_in_use++;
|
|
next_ptr = bp->b_next; /* successor on LRU chain */
|
|
prev_ptr = bp->b_prev; /* predecessor on LRU chain */
|
|
if (prev_ptr != NULL)
|
|
prev_ptr->b_next = next_ptr;
|
|
else
|
|
front = next_ptr; /* this block was at front of chain */
|
|
|
|
if (next_ptr != NULL)
|
|
next_ptr->b_prev = prev_ptr;
|
|
else
|
|
rear = prev_ptr; /* this block was at rear of chain */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* cache_resize *
|
|
*===========================================================================*/
|
|
PRIVATE void cache_resize(unsigned int blocksize, unsigned int bufs)
|
|
{
|
|
struct buf *bp;
|
|
struct inode *rip;
|
|
|
|
#define MINBUFS 10
|
|
assert(blocksize > 0);
|
|
assert(bufs >= MINBUFS);
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if(bp->b_count != 0) panic("change blocksize with buffer in use");
|
|
|
|
for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++)
|
|
if (rip->i_count > 0) panic("change blocksize with inode in use");
|
|
|
|
buf_pool(bufs);
|
|
|
|
fs_block_size = blocksize;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* bufs_heuristic *
|
|
*===========================================================================*/
|
|
PRIVATE int bufs_heuristic(struct super_block *sp)
|
|
{
|
|
struct vm_stats_info vsi;
|
|
int bufs;
|
|
u32_t btotal, bfree, bused, kbytes_used_fs,
|
|
kbytes_total_fs, kbcache, kb_fsmax;
|
|
u32_t kbytes_remain_mem;
|
|
|
|
/* but we simply need MINBUFS no matter what, and we don't
|
|
* want more than that if we're a memory device
|
|
*/
|
|
if(major(sp->s_dev) == MEMORY_MAJOR) {
|
|
bufs = MINBUFS;
|
|
return bufs;
|
|
}
|
|
|
|
/* set a reasonable cache size; cache at most a certain
|
|
* portion of the used FS, and at most a certain %age of remaining
|
|
* memory
|
|
*/
|
|
if((vm_info_stats(&vsi) != OK)) {
|
|
bufs = 1024;
|
|
printf("mfs: heuristic info fail: default to %d bufs\n", bufs);
|
|
return bufs;
|
|
}
|
|
|
|
kbytes_remain_mem = div64u(mul64u(vsi.vsi_free, vsi.vsi_pagesize), 1024);
|
|
|
|
/* check fs usage. */
|
|
blockstats(&btotal, &bfree, &bused);
|
|
kbytes_used_fs = div64u(mul64u(bused, sp->s_block_size), 1024);
|
|
kbytes_total_fs = div64u(mul64u(btotal, sp->s_block_size), 1024);
|
|
|
|
/* heuristic for a desired cache size based on FS usage;
|
|
* but never bigger than half of the total filesystem
|
|
*/
|
|
kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
|
|
kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
|
|
|
|
/* heuristic for a maximum usage - 10% of remaining memory */
|
|
kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
|
|
bufs = kbcache * 1024 / sp->s_block_size;
|
|
|
|
/* but we simply need MINBUFS no matter what */
|
|
if(bufs < MINBUFS)
|
|
bufs = MINBUFS;
|
|
|
|
return bufs;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_blocksize *
|
|
*===========================================================================*/
|
|
PUBLIC void set_blocksize(struct super_block *sp)
|
|
{
|
|
int bufs;
|
|
|
|
cache_resize(sp->s_block_size, MINBUFS);
|
|
bufs = bufs_heuristic(sp);
|
|
cache_resize(sp->s_block_size, bufs);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* buf_pool *
|
|
*===========================================================================*/
|
|
PUBLIC void buf_pool(int new_nr_bufs)
|
|
{
|
|
/* Initialize the buffer pool. */
|
|
register struct buf *bp;
|
|
|
|
assert(new_nr_bufs >= MINBUFS);
|
|
|
|
if(nr_bufs > 0) {
|
|
assert(buf);
|
|
(void) fs_sync();
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
if(bp->bp) {
|
|
assert(bp->b_bytes > 0);
|
|
free_contig(bp->bp, bp->b_bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(buf)
|
|
free(buf);
|
|
|
|
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf list (%d)", new_nr_bufs);
|
|
|
|
if(buf_hash)
|
|
free(buf_hash);
|
|
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
|
|
|
|
nr_bufs = new_nr_bufs;
|
|
|
|
bufs_in_use = 0;
|
|
front = &buf[0];
|
|
rear = &buf[nr_bufs - 1];
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
bp->b_blocknr = NO_BLOCK;
|
|
bp->b_dev = NO_DEV;
|
|
bp->b_next = bp + 1;
|
|
bp->b_prev = bp - 1;
|
|
bp->bp = NULL;
|
|
bp->b_bytes = 0;
|
|
}
|
|
front->b_prev = NULL;
|
|
rear->b_next = NULL;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->b_hash = bp->b_next;
|
|
buf_hash[0] = front;
|
|
|
|
vm_forgetblocks();
|
|
}
|
|
|