minix/kernel/proto.h
Ben Gras 50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00

228 lines
7.6 KiB
C

/* Function prototypes. */
/* FIXME this is a hack how to avoid inclusion conflicts */
#ifdef __kernel__
#ifndef PROTO_H
#define PROTO_H
#include <minix/safecopies.h>
#include <machine/archtypes.h>
#include <a.out.h>
/* Struct declarations. */
struct proc;
struct timer;
/* clock.c */
clock_t get_uptime(void);
void set_timer(struct timer *tp, clock_t t, tmr_func_t f);
void reset_timer(struct timer *tp);
void ser_dump_proc(void);
void cycles_accounting_init(void);
/*
* This functions start and stop accounting for process, kernel or idle cycles.
* It inherently have to account for some kernel cycles for process too,
* therefore it should be called asap after trapping to kernel and as late as
* possible before returning to userspace. These function is architecture
* dependent
*/
void context_stop(struct proc * p);
/* this is a wrapper to make calling it from assembly easier */
void context_stop_idle(void);
int restore_fpu(struct proc *);
void save_fpu(struct proc *);
void save_local_fpu(struct proc *, int retain);
void fpu_sigcontext(struct proc *, struct sigframe *fr, struct
sigcontext *sc);
/* main.c */
#ifndef UNPAGED
#define kmain __k_unpaged_kmain
#endif
void kmain(kinfo_t *cbi);
void prepare_shutdown(int how);
__dead void minix_shutdown(struct timer *tp);
void bsp_finish_booting(void);
/* proc.c */
int do_ipc(reg_t r1, reg_t r2, reg_t r3);
void proc_init(void);
int cancel_async(struct proc *src, struct proc *dst);
int has_pending_notify(struct proc * caller, int src_p);
int has_pending_asend(struct proc * caller, int src_p);
void unset_notify_pending(struct proc * caller, int src_p);
int mini_notify(const struct proc *src, endpoint_t dst);
void enqueue(struct proc *rp);
void dequeue(struct proc *rp);
void switch_to_user(void);
void arch_proc_reset(struct proc *rp);
struct proc * arch_finish_switch_to_user(void);
struct proc *endpoint_lookup(endpoint_t ep);
#if DEBUG_ENABLE_IPC_WARNINGS
int isokendpt_f(const char *file, int line, endpoint_t e, int *p, int
f);
#define isokendpt_d(e, p, f) isokendpt_f(__FILE__, __LINE__, (e), (p), (f))
#else
int isokendpt_f(endpoint_t e, int *p, int f);
#define isokendpt_d(e, p, f) isokendpt_f((e), (p), (f))
#endif
void proc_no_time(struct proc *p);
void reset_proc_accounting(struct proc *p);
void flag_account(struct proc *p, int flag);
int try_deliver_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
size);
/* start.c */
void cstart();
char *env_get(const char *key);
/* system.c */
int get_priv(register struct proc *rc, int proc_type);
void set_sendto_bit(const struct proc *rc, int id);
void unset_sendto_bit(const struct proc *rc, int id);
void fill_sendto_mask(const struct proc *rc, sys_map_t *map);
int send_sig(endpoint_t proc_nr, int sig_nr);
void cause_sig(proc_nr_t proc_nr, int sig_nr);
void sig_delay_done(struct proc *rp);
void kernel_call(message *m_user, struct proc * caller);
void system_init(void);
void clear_endpoint(struct proc *rc);
void clear_ipc_refs(struct proc *rc, int caller_ret);
void kernel_call_resume(struct proc *p);
int sched_proc(struct proc *rp, int priority, int quantum, int cpu);
/* system/do_vtimer.c */
void vtimer_check(struct proc *rp);
/* interrupt.c */
void put_irq_handler(irq_hook_t *hook, int irq, irq_handler_t handler);
void rm_irq_handler(const irq_hook_t *hook);
void enable_irq(const irq_hook_t *hook);
int disable_irq(const irq_hook_t *hook);
void interrupts_enable(void);
void interrupts_disable(void);
/* debug.c */
int runqueues_ok(void);
#ifndef CONFIG_SMP
#define runqueues_ok_local runqueues_ok
#else
#define runqueues_ok_local() runqueues_ok_cpu(cpuid)
int runqueues_ok_cpu(unsigned cpu);
#endif
char *rtsflagstr(u32_t flags);
char *miscflagstr(u32_t flags);
char *schedulerstr(struct proc *scheduler);
/* prints process information */
void print_proc(struct proc *pp);
/* prints the given process and recursively all processes it depends on */
void print_proc_recursive(struct proc *pp);
#if DEBUG_IPC_HOOK
void hook_ipc_msgrecv(message *msg, struct proc *src, struct proc *dst);
void hook_ipc_msgsend(message *msg, struct proc *src, struct proc *dst);
void hook_ipc_msgkcall(message *msg, struct proc *proc);
void hook_ipc_msgkresult(message *msg, struct proc *proc);
void hook_ipc_clear(struct proc *proc);
#endif
/* system/do_safemap.c */
int map_invoke_vm(struct proc * caller, int req_type, endpoint_t end_d,
vir_bytes off_d, endpoint_t end_s, vir_bytes
off_s, size_t size, int flag);
/* system/do_safecopy.c */
int verify_grant(endpoint_t, endpoint_t, cp_grant_id_t, vir_bytes, int,
vir_bytes, vir_bytes *, endpoint_t *);
/* system/do_sysctl.c */
int do_sysctl(struct proc * caller, message *m);
#if SPROFILE
/* profile.c */
void init_profile_clock(u32_t);
void stop_profile_clock(void);
#endif
/* functions defined in architecture-dependent files. */
void prot_init();
void arch_post_init();
phys_bytes phys_copy(phys_bytes source, phys_bytes dest, phys_bytes
count);
void phys_copy_fault(void);
void phys_copy_fault_in_kernel(void);
void memset_fault(void);
void memset_fault_in_kernel(void);
#define virtual_copy(src, dst, bytes) \
virtual_copy_f(NULL, src, dst, bytes, 0)
#define virtual_copy_vmcheck(caller, src, dst, bytes) \
virtual_copy_f(caller, src, dst, bytes, 1)
int virtual_copy_f(struct proc * caller, struct vir_addr *src, struct
vir_addr *dst, vir_bytes bytes, int vmcheck);
int data_copy(endpoint_t from, vir_bytes from_addr, endpoint_t to,
vir_bytes to_addr, size_t bytes);
int data_copy_vmcheck(struct proc *, endpoint_t from, vir_bytes
from_addr, endpoint_t to, vir_bytes to_addr, size_t bytes);
phys_bytes umap_virtual(struct proc* rp, int seg, vir_bytes vir_addr,
vir_bytes bytes);
phys_bytes seg2phys(u16_t);
int vm_memset(endpoint_t who,
phys_bytes source, u8_t pattern, phys_bytes count);
int intr_init(int);
void halt_cpu(void);
void arch_init(void);
void arch_boot_proc(struct boot_image *b, struct proc *p);
void cpu_identify(void);
/* arch dependent FPU initialization per CPU */
void fpu_init(void);
/* returns true if pfu is present and initialized */
int is_fpu(void);
void ser_putc(char);
__dead void arch_shutdown(int);
void restore_user_context(struct proc * p);
void read_tsc(u32_t *high, u32_t *low);
int arch_init_profile_clock(u32_t freq);
void arch_stop_profile_clock(void);
void arch_ack_profile_clock(void);
void do_ser_debug(void);
int arch_get_params(char *parm, int max);
void memory_init(void);
void mem_clear_mapcache(void);
void arch_proc_init(struct proc *pr, u32_t, u32_t, char *);
int arch_do_vmctl(message *m_ptr, struct proc *p);
int vm_contiguous(const struct proc *targetproc, vir_bytes vir_buf,
size_t count);
void proc_stacktrace(struct proc *proc);
int vm_lookup(const struct proc *proc, vir_bytes virtual, phys_bytes
*result, u32_t *ptent);
size_t vm_lookup_range(const struct proc *proc,
vir_bytes vir_addr, phys_bytes *phys_addr, size_t bytes);
void delivermsg(struct proc *target);
void arch_do_syscall(struct proc *proc);
int arch_phys_map(int index, phys_bytes *addr, phys_bytes *len, int
*flags);
int arch_phys_map_reply(int index, vir_bytes addr);
int arch_enable_paging(struct proc * caller);
int vm_check_range(struct proc *caller,
struct proc *target, vir_bytes vir_addr, size_t bytes);
int copy_msg_from_user(message * user_mbuf, message * dst);
int copy_msg_to_user(message * src, message * user_mbuf);
void switch_address_space(struct proc * p);
void release_address_space(struct proc *pr);
void enable_fpu_exception(void);
void disable_fpu_exception(void);
void release_fpu(struct proc * p);
void arch_pause(void);
short cpu_load(void);
void busy_delay_ms(int ms);
/* utility.c */
void cpu_print_freq(unsigned cpu);
#endif /* __kernel__ */
#endif /* PROTO_H */