d1fd04e72a
SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
124 lines
3.5 KiB
C
124 lines
3.5 KiB
C
|
|
|
|
/* This file contains the main directory for the server. It waits for a
|
|
* request and then send a response. */
|
|
|
|
#include "inc.h"
|
|
#include <minix/vfsif.h>
|
|
#include "const.h"
|
|
#include "glo.h"
|
|
|
|
/* Declare some local functions. */
|
|
FORWARD _PROTOTYPE(void get_work, (message *m_in) );
|
|
|
|
/* SEF functions and variables. */
|
|
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
|
|
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
|
|
|
|
/*===========================================================================*
|
|
* main *
|
|
*===========================================================================*/
|
|
PUBLIC int main(void) {
|
|
int who_e, ind, error;
|
|
message m;
|
|
|
|
/* SEF local startup. */
|
|
sef_local_startup();
|
|
|
|
for (;;) {
|
|
|
|
/* Wait for request message. */
|
|
get_work(&fs_m_in);
|
|
error = OK;
|
|
|
|
caller_uid = -1; /* To trap errors */
|
|
caller_gid = -1;
|
|
|
|
who_e = fs_m_in.m_source; /* source of the request */
|
|
|
|
if (who_e != FS_PROC_NR) { /* If the message is not for us just
|
|
* continue */
|
|
continue;
|
|
}
|
|
|
|
req_nr = fs_m_in.m_type;
|
|
|
|
if (req_nr < VFS_BASE) {
|
|
fs_m_in.m_type += VFS_BASE;
|
|
req_nr = fs_m_in.m_type;
|
|
}
|
|
|
|
ind = req_nr-VFS_BASE;
|
|
|
|
if (ind < 0 || ind >= NREQS) {
|
|
error = EINVAL;
|
|
} else
|
|
error = (*fs_call_vec[ind])(); /* Process the request calling
|
|
* the appropriate function. */
|
|
|
|
fs_m_out.m_type = error;
|
|
reply(who_e, &fs_m_out); /* returns the response to VFS */
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_local_startup *
|
|
*===========================================================================*/
|
|
PRIVATE void sef_local_startup()
|
|
{
|
|
/* Register init callbacks. */
|
|
sef_setcb_init_fresh(sef_cb_init_fresh);
|
|
sef_setcb_init_restart(sef_cb_init_restart_fail);
|
|
|
|
/* No live update support for now. */
|
|
|
|
/* Let SEF perform startup. */
|
|
sef_startup();
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_cb_init_fresh *
|
|
*===========================================================================*/
|
|
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
|
|
{
|
|
/* Initialize the iso9660fs server. */
|
|
int i, r;
|
|
|
|
/* Init driver mapping */
|
|
for (i = 0; i < NR_DEVICES; ++i)
|
|
driver_endpoints[i].driver_e = NONE;
|
|
/* SELF_E will contain the id of this process */
|
|
SELF_E = getprocnr();
|
|
/* hash_init(); */ /* Init the table with the ids */
|
|
setenv("TZ","",1); /* Used to calculate the time */
|
|
|
|
fs_m_in.m_type = FS_READY;
|
|
|
|
if ((r = send(FS_PROC_NR, &fs_m_in)) != OK) {
|
|
panic("ISOFS", "Error sending login to VFS", r);
|
|
}
|
|
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_work *
|
|
*===========================================================================*/
|
|
PRIVATE void get_work(m_in)
|
|
message *m_in; /* pointer to message */
|
|
{
|
|
int s; /* receive status */
|
|
if (OK != (s = sef_receive(ANY, m_in))) /* wait for message */
|
|
panic("ISOFS","sef_receive failed", s);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* reply *
|
|
*===========================================================================*/
|
|
PUBLIC void reply(who, m_out)
|
|
int who;
|
|
message *m_out; /* report result */
|
|
{
|
|
if (OK != send(who, m_out)) /* send the message */
|
|
printf("ISOFS(%d) was unable to send reply\n", SELF_E);
|
|
}
|