minix/minix/kernel/clock.c
David van Moolenbroek d91f738bd8 Kernel: export clock information on kernel page
Please note that this information is for use by system services only!
The clock facility is not ready to be used directly by userland, and
thus, this kernel page extension is NOT part of the userland ABI.

For service programmers' convenience, change the prototype of the
getticks(3) to return the uptime clock value directly, since the call
can no longer fail.

Correct the sys_times(2) reply message to use the right field type
for the boot time.

Restructure the kernel internals a bit so as to have all the clock
stuff closer together.

Change-Id: Ifc050b7bd253aecbe46e3bd7d7cc75bd86e45555
2015-09-23 12:00:46 +00:00

312 lines
9.4 KiB
C

/* This file contains the architecture-independent clock functionality, which
* handles time related functions. Important events that are handled here
* include setting and monitoring alarm timers and deciding when to
* (re)schedule processes. System services can access its services through
* system calls, such as sys_setalarm().
*
* Changes:
* Aug 18, 2006 removed direct hardware access etc, MinixPPC (Ingmar Alting)
* Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
* Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
* Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
*/
#include "kernel/kernel.h"
#include <minix/endpoint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "clock.h"
#ifdef USE_WATCHDOG
#include "watchdog.h"
#endif
/* Function prototype for PRIVATE functions.
*/
static void load_update(void);
/* The CLOCK's timers queue. The functions in <minix/timers.h> operate on this.
* Each system process possesses a single synchronous alarm timer. If other
* kernel parts want to use additional timers, they must declare their own
* persistent (static) timer structure, which can be passed to the clock
* via (re)set_kernel_timer().
* When a timer expires its watchdog function is run by the CLOCK task.
*/
static minix_timer_t *clock_timers; /* queue of CLOCK timers */
static clock_t next_timeout; /* monotonic time that next timer expires */
/* Number of ticks to adjust realtime by. A negative value implies slowing
* down realtime, a positive value implies speeding it up.
*/
static int32_t adjtime_delta = 0;
/*
* Initialize the clock variables.
*/
void
init_clock(void)
{
char *value;
int i;
/* Initialize clock information structure. */
memset(&kclockinfo, 0, sizeof(kclockinfo));
/* Get clock tick frequency. */
value = env_get("hz");
if (value != NULL)
kclockinfo.hz = atoi(value);
if (value == NULL || kclockinfo.hz < 2 || kclockinfo.hz > 50000)
kclockinfo.hz = DEFAULT_HZ;
/* Load average data initialization. */
memset(&kloadinfo, 0, sizeof(kloadinfo));
}
/*
* The boot processor's timer interrupt handler. In addition to non-boot cpus
* it keeps real time and notifies the clock task if need be.
*/
int timer_int_handler(void)
{
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
struct proc * p, * billp;
/* FIXME watchdog for slave cpus! */
#ifdef USE_WATCHDOG
/*
* we need to know whether local timer ticks are happening or whether
* the kernel is locked up. We don't care about overflows as we only
* need to know that it's still ticking or not
*/
watchdog_local_timer_ticks++;
#endif
if (cpu_is_bsp(cpuid)) {
kclockinfo.uptime++;
/* if adjtime_delta has ticks remaining, apply one to realtime.
* limit changes to every other interrupt.
*/
if (adjtime_delta != 0 && kclockinfo.uptime & 0x1) {
/* go forward or stay behind */
kclockinfo.realtime += (adjtime_delta > 0) ? 2 : 0;
adjtime_delta += (adjtime_delta > 0) ? -1 : +1;
} else {
kclockinfo.realtime++;
}
}
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
p = get_cpulocal_var(proc_ptr);
billp = get_cpulocal_var(bill_ptr);
p->p_user_time++;
if (! (priv(p)->s_flags & BILLABLE)) {
billp->p_sys_time++;
}
/* Decrement virtual timers, if applicable. We decrement both the
* virtual and the profile timer of the current process, and if the
* current process is not billable, the timer of the billed process as
* well. If any of the timers expire, do_clocktick() will send out
* signals.
*/
if ((p->p_misc_flags & MF_VIRT_TIMER) && (p->p_virt_left > 0)) {
p->p_virt_left--;
}
if ((p->p_misc_flags & MF_PROF_TIMER) && (p->p_prof_left > 0)) {
p->p_prof_left--;
}
if (! (priv(p)->s_flags & BILLABLE) &&
(billp->p_misc_flags & MF_PROF_TIMER) &&
(billp->p_prof_left > 0)) {
billp->p_prof_left--;
}
/*
* Check if a process-virtual timer expired. Check current process, but
* also bill_ptr - one process's user time is another's system time, and
* the profile timer decreases for both!
*/
vtimer_check(p);
if (p != billp)
vtimer_check(billp);
/* Update load average. */
load_update();
if (cpu_is_bsp(cpuid)) {
/* if a timer expired, notify the clock task */
if ((next_timeout <= kclockinfo.uptime)) {
tmrs_exptimers(&clock_timers, kclockinfo.uptime, NULL);
next_timeout = (clock_timers == NULL) ?
TMR_NEVER : clock_timers->tmr_exp_time;
}
#ifdef DEBUG_SERIAL
if (kinfo.do_serial_debug)
do_ser_debug();
#endif
}
arch_timer_int_handler();
return(1); /* reenable interrupts */
}
/*===========================================================================*
* get_realtime *
*===========================================================================*/
clock_t get_realtime(void)
{
/* Get and return the current wall time in ticks since boot. */
return(kclockinfo.realtime);
}
/*===========================================================================*
* set_realtime *
*===========================================================================*/
void set_realtime(clock_t newrealtime)
{
kclockinfo.realtime = newrealtime;
}
/*===========================================================================*
* set_adjtime_delta *
*===========================================================================*/
void set_adjtime_delta(int32_t ticks)
{
adjtime_delta = ticks;
}
/*===========================================================================*
* get_monotonic *
*===========================================================================*/
clock_t get_monotonic(void)
{
/* Get and return the number of ticks since boot. */
return(kclockinfo.uptime);
}
/*===========================================================================*
* set_boottime *
*===========================================================================*/
void set_boottime(time_t newboottime)
{
kclockinfo.boottime = newboottime;
}
/*===========================================================================*
* get_boottime *
*===========================================================================*/
time_t get_boottime(void)
{
/* Get and return the number of seconds since the UNIX epoch. */
return(kclockinfo.boottime);
}
/*===========================================================================*
* set_kernel_timer *
*===========================================================================*/
void set_kernel_timer(tp, exp_time, watchdog)
minix_timer_t *tp; /* pointer to timer structure */
clock_t exp_time; /* expiration monotonic time */
tmr_func_t watchdog; /* watchdog to be called */
{
/* Insert the new timer in the active timers list. Always update the
* next timeout time by setting it to the front of the active list.
*/
tmrs_settimer(&clock_timers, tp, exp_time, watchdog, NULL);
next_timeout = clock_timers->tmr_exp_time;
}
/*===========================================================================*
* reset_kernel_timer *
*===========================================================================*/
void reset_kernel_timer(tp)
minix_timer_t *tp; /* pointer to timer structure */
{
/* The timer pointed to by 'tp' is no longer needed. Remove it from both the
* active and expired lists. Always update the next timeout time by setting
* it to the front of the active list.
*/
tmrs_clrtimer(&clock_timers, tp, NULL);
next_timeout = (clock_timers == NULL) ?
TMR_NEVER : clock_timers->tmr_exp_time;
}
/*===========================================================================*
* load_update *
*===========================================================================*/
static void load_update(void)
{
u16_t slot;
int enqueued = 0, q;
struct proc *p;
struct proc **rdy_head;
/* Load average data is stored as a list of numbers in a circular
* buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of
* the number of runnable processes. Computations can then
* be made of the load average over variable periods, in the
* user library (see getloadavg(3)).
*/
slot = (kclockinfo.uptime / system_hz / _LOAD_UNIT_SECS) %
_LOAD_HISTORY;
if(slot != kloadinfo.proc_last_slot) {
kloadinfo.proc_load_history[slot] = 0;
kloadinfo.proc_last_slot = slot;
}
rdy_head = get_cpulocal_var(run_q_head);
/* Cumulation. How many processes are ready now? */
for(q = 0; q < NR_SCHED_QUEUES; q++) {
for(p = rdy_head[q]; p != NULL; p = p->p_nextready) {
enqueued++;
}
}
kloadinfo.proc_load_history[slot] += enqueued;
/* Up-to-dateness. */
kloadinfo.last_clock = kclockinfo.uptime;
}
int boot_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
if (register_local_timer_handler(
(irq_handler_t) timer_int_handler))
return -1;
return 0;
}
int app_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
return 0;
}