minix/kernel/main.c
Ben Gras 6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00

239 lines
9 KiB
C
Executable file

/* This file contains the main program of MINIX as well as its shutdown code.
* The routine main() initializes the system and starts the ball rolling by
* setting up the process table, interrupt vectors, and scheduling each task
* to run to initialize itself.
* The routine shutdown() does the opposite and brings down MINIX.
*
* The entries into this file are:
* main: MINIX main program
* prepare_shutdown: prepare to take MINIX down
*/
#include "kernel.h"
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <a.out.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/endpoint.h>
#include "proc.h"
/* Prototype declarations for PRIVATE functions. */
FORWARD _PROTOTYPE( void announce, (void));
FORWARD _PROTOTYPE( void shutdown, (timer_t *));
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
struct boot_image *ip; /* boot image pointer */
register struct proc *rp; /* process pointer */
register struct priv *sp; /* privilege structure pointer */
register int i, s;
int hdrindex; /* index to array of a.out headers */
phys_clicks text_base;
vir_clicks text_clicks, data_clicks, st_clicks;
reg_t ktsb; /* kernel task stack base */
struct exec e_hdr; /* for a copy of an a.out header */
/* Clear the process table. Anounce each slot as empty and set up mappings
* for proc_addr() and proc_nr() macros. Do the same for the table with
* privilege structures for the system processes.
*/
for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
rp->p_rts_flags = SLOT_FREE; /* initialize free slot */
rp->p_nr = i; /* proc number from ptr */
rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
(pproc_addr + NR_TASKS)[i] = rp; /* proc ptr from number */
}
for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
sp->s_proc_nr = NONE; /* initialize as free */
sp->s_id = i; /* priv structure index */
ppriv_addr[i] = sp; /* priv ptr from number */
}
/* Set up proc table entries for processes in boot image. The stacks of the
* kernel tasks are initialized to an array in data space. The stacks
* of the servers have been added to the data segment by the monitor, so
* the stack pointer is set to the end of the data segment. All the
* processes are in low memory on the 8086. On the 386 only the kernel
* is in low memory, the rest is loaded in extended memory.
*/
/* Task stacks. */
ktsb = (reg_t) t_stack;
for (i=0; i < NR_BOOT_PROCS; ++i) {
int ci;
bitchunk_t fv;
ip = &image[i]; /* process' attributes */
rp = proc_addr(ip->proc_nr); /* get process pointer */
ip->endpoint = rp->p_endpoint; /* ipc endpoint */
rp->p_max_priority = ip->priority; /* max scheduling priority */
rp->p_priority = ip->priority; /* current priority */
rp->p_quantum_size = ip->quantum; /* quantum size in ticks */
rp->p_ticks_left = ip->quantum; /* current credit */
strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
(void) get_priv(rp, (ip->flags & SYS_PROC)); /* assign structure */
priv(rp)->s_flags = ip->flags; /* process flags */
priv(rp)->s_trap_mask = ip->trap_mask; /* allowed traps */
/* Initialize call mask bitmap from unordered set.
* A single SYS_ALL_CALLS is a special case - it
* means all calls are allowed.
*/
if(ip->nr_k_calls == 1 && ip->k_calls[0] == SYS_ALL_CALLS)
fv = ~0; /* fill call mask */
else
fv = 0; /* clear call mask */
for(ci = 0; ci < CALL_MASK_SIZE; ci++) /* fill or clear call mask */
priv(rp)->s_k_call_mask[ci] = fv;
if(!fv) /* not all full? enter calls bit by bit */
for(ci = 0; ci < ip->nr_k_calls; ci++)
SET_BIT(priv(rp)->s_k_call_mask,
ip->k_calls[ci]-KERNEL_CALL);
priv(rp)->s_ipc_to.chunk[0] = ip->ipc_to; /* restrict targets */
if (iskerneln(proc_nr(rp))) { /* part of the kernel? */
if (ip->stksize > 0) { /* HARDWARE stack size is 0 */
rp->p_priv->s_stack_guard = (reg_t *) ktsb;
*rp->p_priv->s_stack_guard = STACK_GUARD;
}
ktsb += ip->stksize; /* point to high end of stack */
rp->p_reg.sp = ktsb; /* this task's initial stack ptr */
hdrindex = 0; /* all use the first a.out header */
} else {
hdrindex = 1 + i-NR_TASKS; /* servers, drivers, INIT */
}
/* The bootstrap loader created an array of the a.out headers at
* absolute address 'aout'. Get one element to e_hdr.
*/
phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr),
(phys_bytes) A_MINHDR);
/* Convert addresses to clicks and build process memory map */
text_base = e_hdr.a_syms >> CLICK_SHIFT;
text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
data_clicks = (e_hdr.a_data+e_hdr.a_bss + CLICK_SIZE-1) >> CLICK_SHIFT;
st_clicks= (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
if (!(e_hdr.a_flags & A_SEP))
{
data_clicks= (e_hdr.a_text+e_hdr.a_data+e_hdr.a_bss +
CLICK_SIZE-1) >> CLICK_SHIFT;
text_clicks = 0; /* common I&D */
}
rp->p_memmap[T].mem_phys = text_base;
rp->p_memmap[T].mem_len = text_clicks;
rp->p_memmap[D].mem_phys = text_base + text_clicks;
rp->p_memmap[D].mem_len = data_clicks;
rp->p_memmap[S].mem_phys = text_base + text_clicks + st_clicks;
rp->p_memmap[S].mem_vir = st_clicks;
rp->p_memmap[S].mem_len = 0;
/* Set initial register values. The processor status word for tasks
* is different from that of other processes because tasks can
* access I/O; this is not allowed to less-privileged processes
*/
rp->p_reg.pc = (reg_t) ip->initial_pc;
rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;
/* Initialize the server stack pointer. Take it down one word
* to give crtso.s something to use as "argc".
*/
if (isusern(proc_nr(rp))) { /* user-space process? */
rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
rp->p_memmap[S].mem_len) << CLICK_SHIFT;
rp->p_reg.sp -= sizeof(reg_t);
}
/* Set ready. The HARDWARE task is never ready. */
if (rp->p_nr != HARDWARE) {
rp->p_rts_flags = 0; /* runnable if no flags */
lock_enqueue(rp); /* add to scheduling queues */
} else {
rp->p_rts_flags = NO_PRIORITY; /* prevent from running */
}
/* Code and data segments must be allocated in protected mode. */
alloc_segments(rp);
}
#if SPROFILE
sprofiling = 0; /* we're not profiling until instructed to */
#endif /* SPROFILE */
#if CPROFILE
cprof_procs_no = 0; /* init nr of hash table slots used */
#endif /* CPROFILE */
/* MINIX is now ready. All boot image processes are on the ready queue.
* Return to the assembly code to start running the current process.
*/
bill_ptr = proc_addr(IDLE); /* it has to point somewhere */
announce(); /* print MINIX startup banner */
restart();
}
/*===========================================================================*
* announce *
*===========================================================================*/
PRIVATE void announce(void)
{
/* Display the MINIX startup banner. */
kprintf("\nMINIX %s.%s. "
"Copyright 2006, Vrije Universiteit, Amsterdam, The Netherlands\n",
OS_RELEASE, OS_VERSION);
}
/*===========================================================================*
* prepare_shutdown *
*===========================================================================*/
PUBLIC void prepare_shutdown(how)
int how;
{
/* This function prepares to shutdown MINIX. */
static timer_t shutdown_timer;
register struct proc *rp;
message m;
/* Send a signal to all system processes that are still alive to inform
* them that the MINIX kernel is shutting down. A proper shutdown sequence
* should be implemented by a user-space server. This mechanism is useful
* as a backup in case of system panics, so that system processes can still
* run their shutdown code, e.g, to synchronize the FS or to let the TTY
* switch to the first console.
*/
#if DEAD_CODE
kprintf("Sending SIGKSTOP to system processes ...\n");
for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
if (!isemptyp(rp) && (priv(rp)->s_flags & SYS_PROC) && !iskernelp(rp))
send_sig(proc_nr(rp), SIGKSTOP);
}
#endif
/* Continue after 1 second, to give processes a chance to get scheduled to
* do shutdown work. Set a watchog timer to call shutdown(). The timer
* argument passes the shutdown status.
*/
kprintf("MINIX will now be shut down ...\n");
tmr_arg(&shutdown_timer)->ta_int = how;
set_timer(&shutdown_timer, get_uptime() + HZ, shutdown);
}
/*===========================================================================*
* shutdown *
*===========================================================================*/
PRIVATE void shutdown(tp)
timer_t *tp;
{
/* This function is called from prepare_shutdown or stop_sequence to bring
* down MINIX. How to shutdown is in the argument: RBT_HALT (return to the
* monitor), RBT_MONITOR (execute given code), RBT_RESET (hard reset).
*/
intr_init(INTS_ORIG);
clock_stop();
arch_shutdown(tmr_arg(tp)->ta_int);
}