586 lines
16 KiB
C
586 lines
16 KiB
C
/* rijndael-api.c - Rijndael encryption programming interface.
|
|
* Author: Kees J. Bot
|
|
* 3 Nov 2000
|
|
* Heavily based on the original API code by Antoon Bosselaers,
|
|
* Vincent Rijmen, and Paulo Barreto, but with a different interface.
|
|
*
|
|
* Read this code top to bottom, not all comments are repeated.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "rijndael-alg.h"
|
|
#include "rijndael-api.h"
|
|
|
|
/* Map a byte (?) address to a word address or vv. */
|
|
#define W(a) ((word32 *) (a))
|
|
#define B(a) ((word8 *) (a))
|
|
|
|
#if STRICT_ALIGN
|
|
/* This machine checks alignment religiously. (The code is not proper with
|
|
* respect to alignment. We need a compiler that doesn't muck about with byte
|
|
* arrays that follow words in structs, and that places automatic variables
|
|
* at word boundaries if not odd-sized. Most compilers are this nice.)
|
|
*/
|
|
|
|
#define aligned(a) (((unsigned) (a) & 3) == 0)
|
|
#define aligned2(a1, a2) aligned((unsigned) (a1) | (unsigned) (a2))
|
|
|
|
static void blockcpy(void *dst, const void *src)
|
|
{
|
|
int i= 0;
|
|
|
|
do {
|
|
B(dst)[i+0] = B(src)[i+0];
|
|
B(dst)[i+1] = B(src)[i+1];
|
|
B(dst)[i+2] = B(src)[i+2];
|
|
B(dst)[i+3] = B(src)[i+3];
|
|
} while ((i += 4) < 16);
|
|
}
|
|
|
|
#else /* !STRICT_ALIGN */
|
|
/* This machine doesn't mind misaligned accesses much. */
|
|
|
|
#define aligned(a) ((void) (a), 1)
|
|
#define aligned2(a1, a2) ((void) (a1), (void) (a2), 1)
|
|
|
|
#if __GNUC__
|
|
__inline
|
|
#endif
|
|
static void blockcpy(void *dst, const void *src)
|
|
{
|
|
W(dst)[0] = W(src)[0];
|
|
W(dst)[1] = W(src)[1];
|
|
W(dst)[2] = W(src)[2];
|
|
W(dst)[3] = W(src)[3];
|
|
}
|
|
|
|
#endif /* !STRICT_ALIGN */
|
|
|
|
#define between(a, c, z) ((unsigned) (c) - (a) <= (unsigned) (z) - (a))
|
|
|
|
int rijndael_makekey(rd_keyinstance *key,
|
|
size_t keylen, const void *keymaterial)
|
|
{
|
|
word8 k[MAXKC][4];
|
|
|
|
/* Initialize key schedule: */
|
|
if (keylen == RD_KEY_HEX) {
|
|
const word8 *kp;
|
|
int c, b;
|
|
|
|
kp= keymaterial;
|
|
keylen= 0;
|
|
|
|
for (;;) {
|
|
c= *kp++;
|
|
if (between('0', c, '9')) b= (c - '0' + 0x0) << 4;
|
|
else
|
|
if (between('a', c, 'f')) b= (c - 'a' + 0xa) << 4;
|
|
else
|
|
if (between('A', c, 'F')) b= (c - 'A' + 0xA) << 4;
|
|
else break;
|
|
|
|
c= *kp++;
|
|
if (between('0', c, '9')) b |= (c - '0' + 0x0);
|
|
else
|
|
if (between('a', c, 'f')) b |= (c - 'a' + 0xa);
|
|
else
|
|
if (between('A', c, 'F')) b |= (c - 'A' + 0xA);
|
|
else break;
|
|
|
|
if (keylen >= 256/8) return RD_BAD_KEY_MAT;
|
|
B(k)[keylen++] = b;
|
|
}
|
|
if (c != 0) return RD_BAD_KEY_MAT;
|
|
|
|
if (keylen != 128/8 && keylen != 192/8 && keylen != 256/8) {
|
|
return RD_BAD_KEY_MAT;
|
|
}
|
|
} else {
|
|
if (keylen != 128/8 && keylen != 192/8 && keylen != 256/8) {
|
|
return RD_BAD_KEY_MAT;
|
|
}
|
|
memcpy(k, keymaterial, keylen);
|
|
}
|
|
|
|
key->rounds= keylen * 8 / 32 + 6;
|
|
|
|
rijndael_KeySched(k, key->encsched, key->rounds);
|
|
memcpy(key->decsched, key->encsched, sizeof(key->decsched));
|
|
rijndael_KeyEncToDec(key->decsched, key->rounds);
|
|
|
|
return 0;
|
|
}
|
|
|
|
ssize_t rijndael_ecb_encrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *dummyIV)
|
|
{
|
|
/* Encrypt blocks of data in Electronic Codebook mode. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
size_t i, nr_blocks, extra;
|
|
word32 in[4], out[4];
|
|
word8 t;
|
|
|
|
/* Compute the number of whole blocks, and the extra bytes beyond the
|
|
* last block. Those extra bytes, if any, are encrypted by stealing
|
|
* enough bytes from the previous encrypted block to make a whole block.
|
|
* This is done by encrypting the last block, exchanging the first few
|
|
* encrypted bytes with the extra bytes, and encrypting the last whole
|
|
* block again.
|
|
*/
|
|
nr_blocks= length / 16;
|
|
if ((extra= (length % 16)) > 0) {
|
|
if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
|
nr_blocks--;
|
|
}
|
|
|
|
/* Encrypt a number of blocks. */
|
|
if (aligned2(inp, outp)) {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
rijndael_Encrypt(inp, outp, key->encsched, key->rounds);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
} else {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
blockcpy(in, inp);
|
|
rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
}
|
|
|
|
/* Encrypt extra bytes by stealing from the last full block. */
|
|
if (extra > 0) {
|
|
blockcpy(in, inp);
|
|
rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
|
for (i= 0; i < extra; i++) {
|
|
t= B(out)[i];
|
|
B(out)[i] = inp[16 + i];
|
|
outp[16 + i] = t;
|
|
}
|
|
rijndael_Encrypt(out, out, key->encsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_ecb_decrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *dummyIV)
|
|
{
|
|
/* Decrypt blocks of data in Electronic Codebook mode. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
size_t i, nr_blocks, extra;
|
|
word32 in[4], out[4];
|
|
word8 t;
|
|
|
|
nr_blocks= length / 16;
|
|
if ((extra= (length % 16)) > 0) {
|
|
if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
|
nr_blocks--;
|
|
}
|
|
|
|
/* Decrypt a number of blocks. */
|
|
if (aligned2(inp, outp)) {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
rijndael_Decrypt(inp, outp, key->decsched, key->rounds);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
} else {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
blockcpy(in, inp);
|
|
rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
}
|
|
|
|
/* Decrypt extra bytes that stole from the last full block. */
|
|
if (extra > 0) {
|
|
blockcpy(in, inp);
|
|
rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
|
for (i= 0; i < extra; i++) {
|
|
t= B(out)[i];
|
|
B(out)[i] = inp[16 + i];
|
|
outp[16 + i] = t;
|
|
}
|
|
rijndael_Decrypt(out, out, key->decsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cbc_encrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Encrypt blocks of data in Cypher Block Chaining mode. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
size_t i, nr_blocks, extra;
|
|
word32 in[4], out[4], iv[4], *ivp;
|
|
word8 t;
|
|
|
|
nr_blocks= length / 16;
|
|
if ((extra= (length % 16)) > 0) {
|
|
if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
|
nr_blocks--;
|
|
}
|
|
|
|
/* Each input block is first XORed with the previous encryption result.
|
|
* The "Initialization Vector" is used to XOR the first block with.
|
|
* When done the last crypted block is stored back as the new IV to be
|
|
* used for another call to this function.
|
|
*/
|
|
ivp= aligned(IV) ? IV : (blockcpy(iv, IV), iv);
|
|
|
|
if (aligned2(inp, outp)) {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
in[0] = W(inp)[0] ^ ivp[0];
|
|
in[1] = W(inp)[1] ^ ivp[1];
|
|
in[2] = W(inp)[2] ^ ivp[2];
|
|
in[3] = W(inp)[3] ^ ivp[3];
|
|
rijndael_Encrypt(in, outp, key->encsched, key->rounds);
|
|
ivp= W(outp);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
} else {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
blockcpy(in, inp);
|
|
in[0] ^= ivp[0];
|
|
in[1] ^= ivp[1];
|
|
in[2] ^= ivp[2];
|
|
in[3] ^= ivp[3];
|
|
rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
ivp= out;
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
}
|
|
if (extra > 0) {
|
|
blockcpy(in, inp);
|
|
in[0] ^= ivp[0];
|
|
in[1] ^= ivp[1];
|
|
in[2] ^= ivp[2];
|
|
in[3] ^= ivp[3];
|
|
rijndael_Encrypt(in, out, key->encsched, key->rounds);
|
|
for (i= 0; i < extra; i++) {
|
|
t= B(out)[i];
|
|
B(out)[i] ^= inp[16 + i];
|
|
outp[16 + i] = t;
|
|
}
|
|
rijndael_Encrypt(out, out, key->encsched, key->rounds);
|
|
blockcpy(outp, out);
|
|
ivp= out;
|
|
}
|
|
blockcpy(IV, ivp); /* Store last IV back. */
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cbc_decrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Decrypt blocks of data in Cypher Block Chaining mode. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
size_t i, nr_blocks, extra;
|
|
word32 in[4], out[4], iv[4];
|
|
word8 t;
|
|
|
|
nr_blocks= length / 16;
|
|
if ((extra= (length % 16)) > 0) {
|
|
if (nr_blocks == 0) return RD_BAD_BLOCK_LENGTH;
|
|
nr_blocks--;
|
|
}
|
|
|
|
blockcpy(iv, IV);
|
|
|
|
if (aligned2(inp, outp)) {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
rijndael_Decrypt(inp, out, key->decsched, key->rounds);
|
|
out[0] ^= iv[0];
|
|
out[1] ^= iv[1];
|
|
out[2] ^= iv[2];
|
|
out[3] ^= iv[3];
|
|
iv[0] = W(inp)[0];
|
|
iv[1] = W(inp)[1];
|
|
iv[2] = W(inp)[2];
|
|
iv[3] = W(inp)[3];
|
|
W(outp)[0] = out[0];
|
|
W(outp)[1] = out[1];
|
|
W(outp)[2] = out[2];
|
|
W(outp)[3] = out[3];
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
} else {
|
|
for (i= 0; i < nr_blocks; i++) {
|
|
blockcpy(in, inp);
|
|
rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
|
out[0] ^= iv[0];
|
|
out[1] ^= iv[1];
|
|
out[2] ^= iv[2];
|
|
out[3] ^= iv[3];
|
|
iv[0] = in[0];
|
|
iv[1] = in[1];
|
|
iv[2] = in[2];
|
|
iv[3] = in[3];
|
|
blockcpy(outp, out);
|
|
inp += 16;
|
|
outp += 16;
|
|
}
|
|
}
|
|
if (extra > 0) {
|
|
blockcpy(in, inp);
|
|
blockcpy(IV, in);
|
|
rijndael_Decrypt(in, out, key->decsched, key->rounds);
|
|
for (i= 0; i < extra; i++) {
|
|
t= B(out)[i] ^ inp[16 + i];
|
|
B(out)[i] = inp[16 + i];
|
|
outp[16 + i] = t;
|
|
}
|
|
rijndael_Decrypt(out, out, key->decsched, key->rounds);
|
|
out[0] ^= iv[0];
|
|
out[1] ^= iv[1];
|
|
out[2] ^= iv[2];
|
|
out[3] ^= iv[3];
|
|
blockcpy(outp, out);
|
|
} else {
|
|
blockcpy(IV, iv);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cfb1_encrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Encrypt blocks of data in Cypher Feedback mode, 1 bit at a time. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
word8 t;
|
|
size_t i;
|
|
int b;
|
|
word32 iv[4], civ[4];
|
|
|
|
blockcpy(iv, IV);
|
|
|
|
for (i= 0; i < length; i++) {
|
|
t= *inp++;
|
|
for (b= 0; b < 8; b++) {
|
|
rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
|
t ^= (B(civ)[0] & 0x80) >> b;
|
|
B(iv)[ 0] = (B(iv)[ 0] << 1) | (B(iv)[ 1] >> 7);
|
|
B(iv)[ 1] = (B(iv)[ 1] << 1) | (B(iv)[ 2] >> 7);
|
|
B(iv)[ 2] = (B(iv)[ 2] << 1) | (B(iv)[ 3] >> 7);
|
|
B(iv)[ 3] = (B(iv)[ 3] << 1) | (B(iv)[ 4] >> 7);
|
|
B(iv)[ 4] = (B(iv)[ 4] << 1) | (B(iv)[ 5] >> 7);
|
|
B(iv)[ 5] = (B(iv)[ 5] << 1) | (B(iv)[ 6] >> 7);
|
|
B(iv)[ 6] = (B(iv)[ 6] << 1) | (B(iv)[ 7] >> 7);
|
|
B(iv)[ 7] = (B(iv)[ 7] << 1) | (B(iv)[ 8] >> 7);
|
|
B(iv)[ 8] = (B(iv)[ 8] << 1) | (B(iv)[ 9] >> 7);
|
|
B(iv)[ 9] = (B(iv)[ 9] << 1) | (B(iv)[10] >> 7);
|
|
B(iv)[10] = (B(iv)[10] << 1) | (B(iv)[11] >> 7);
|
|
B(iv)[11] = (B(iv)[11] << 1) | (B(iv)[12] >> 7);
|
|
B(iv)[12] = (B(iv)[12] << 1) | (B(iv)[13] >> 7);
|
|
B(iv)[13] = (B(iv)[13] << 1) | (B(iv)[14] >> 7);
|
|
B(iv)[14] = (B(iv)[14] << 1) | (B(iv)[15] >> 7);
|
|
B(iv)[15] = (B(iv)[15] << 1) | ((t >> (7-b)) & 1);
|
|
}
|
|
*outp++ = t;
|
|
}
|
|
blockcpy(IV, iv);
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cfb1_decrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Decrypt blocks of data in Cypher Feedback mode, 1 bit at a time. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
word8 t;
|
|
size_t i;
|
|
int b;
|
|
word32 iv[4], civ[4];
|
|
|
|
blockcpy(iv, IV);
|
|
|
|
for (i= 0; i < length; i++) {
|
|
t= *inp++;
|
|
for (b= 0; b < 8; b++) {
|
|
rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
|
B(iv)[ 0] = (B(iv)[ 0] << 1) | (B(iv)[ 1] >> 7);
|
|
B(iv)[ 1] = (B(iv)[ 1] << 1) | (B(iv)[ 2] >> 7);
|
|
B(iv)[ 2] = (B(iv)[ 2] << 1) | (B(iv)[ 3] >> 7);
|
|
B(iv)[ 3] = (B(iv)[ 3] << 1) | (B(iv)[ 4] >> 7);
|
|
B(iv)[ 4] = (B(iv)[ 4] << 1) | (B(iv)[ 5] >> 7);
|
|
B(iv)[ 5] = (B(iv)[ 5] << 1) | (B(iv)[ 6] >> 7);
|
|
B(iv)[ 6] = (B(iv)[ 6] << 1) | (B(iv)[ 7] >> 7);
|
|
B(iv)[ 7] = (B(iv)[ 7] << 1) | (B(iv)[ 8] >> 7);
|
|
B(iv)[ 8] = (B(iv)[ 8] << 1) | (B(iv)[ 9] >> 7);
|
|
B(iv)[ 9] = (B(iv)[ 9] << 1) | (B(iv)[10] >> 7);
|
|
B(iv)[10] = (B(iv)[10] << 1) | (B(iv)[11] >> 7);
|
|
B(iv)[11] = (B(iv)[11] << 1) | (B(iv)[12] >> 7);
|
|
B(iv)[12] = (B(iv)[12] << 1) | (B(iv)[13] >> 7);
|
|
B(iv)[13] = (B(iv)[13] << 1) | (B(iv)[14] >> 7);
|
|
B(iv)[14] = (B(iv)[14] << 1) | (B(iv)[15] >> 7);
|
|
B(iv)[15] = (B(iv)[15] << 1) | ((t >> (7-b)) & 1);
|
|
t ^= (B(civ)[0] & 0x80) >> b;
|
|
}
|
|
*outp++ = t;
|
|
}
|
|
blockcpy(IV, iv);
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cfb8_encrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Encrypt blocks of data in Cypher Feedback mode, 8 bits at a time. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
word8 t;
|
|
size_t i;
|
|
word32 iv[4], civ[4];
|
|
|
|
blockcpy(iv, IV);
|
|
|
|
for (i= 0; i < length; i++) {
|
|
t= *inp++;
|
|
rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
|
t ^= B(civ)[0];
|
|
B(iv)[ 0] = B(iv)[ 1];
|
|
B(iv)[ 1] = B(iv)[ 2];
|
|
B(iv)[ 2] = B(iv)[ 3];
|
|
B(iv)[ 3] = B(iv)[ 4];
|
|
B(iv)[ 4] = B(iv)[ 5];
|
|
B(iv)[ 5] = B(iv)[ 6];
|
|
B(iv)[ 6] = B(iv)[ 7];
|
|
B(iv)[ 7] = B(iv)[ 8];
|
|
B(iv)[ 8] = B(iv)[ 9];
|
|
B(iv)[ 9] = B(iv)[10];
|
|
B(iv)[10] = B(iv)[11];
|
|
B(iv)[11] = B(iv)[12];
|
|
B(iv)[12] = B(iv)[13];
|
|
B(iv)[13] = B(iv)[14];
|
|
B(iv)[14] = B(iv)[15];
|
|
B(iv)[15] = t;
|
|
*outp++ = t;
|
|
}
|
|
blockcpy(IV, iv);
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_cfb8_decrypt(rd_keyinstance *key,
|
|
const void *input, void *output, size_t length, void *IV)
|
|
{
|
|
/* Decrypt blocks of data in Cypher Feedback mode, 1 byte at a time. */
|
|
const word8 *inp= input;
|
|
word8 *outp= output;
|
|
word8 t;
|
|
size_t i;
|
|
word32 iv[4], civ[4];
|
|
|
|
blockcpy(iv, IV);
|
|
|
|
for (i= 0; i < length; i++) {
|
|
t= *inp++;
|
|
rijndael_Encrypt(iv, civ, key->encsched, key->rounds);
|
|
B(iv)[ 0] = B(iv)[ 1];
|
|
B(iv)[ 1] = B(iv)[ 2];
|
|
B(iv)[ 2] = B(iv)[ 3];
|
|
B(iv)[ 3] = B(iv)[ 4];
|
|
B(iv)[ 4] = B(iv)[ 5];
|
|
B(iv)[ 5] = B(iv)[ 6];
|
|
B(iv)[ 6] = B(iv)[ 7];
|
|
B(iv)[ 7] = B(iv)[ 8];
|
|
B(iv)[ 8] = B(iv)[ 9];
|
|
B(iv)[ 9] = B(iv)[10];
|
|
B(iv)[10] = B(iv)[11];
|
|
B(iv)[11] = B(iv)[12];
|
|
B(iv)[12] = B(iv)[13];
|
|
B(iv)[13] = B(iv)[14];
|
|
B(iv)[14] = B(iv)[15];
|
|
B(iv)[15] = t;
|
|
t ^= B(civ)[0];
|
|
*outp++ = t;
|
|
}
|
|
blockcpy(IV, iv);
|
|
return length;
|
|
}
|
|
|
|
ssize_t rijndael_pad(void *input, size_t length)
|
|
{
|
|
/* Adds at most one block of RFC-2040 style padding to the input to make
|
|
* it a whole number of blocks for easier encryption. To be used if the
|
|
* input may be less then one block in size, otherwise let the encryption
|
|
* routines use cypher stealing. The input buffer should allow enough
|
|
* space for the padding. The new length of the input is returned.
|
|
*/
|
|
word8 *inp= input;
|
|
size_t padlen;
|
|
|
|
/* Add padding up until the next block boundary. */
|
|
padlen= 16 - (length % 16);
|
|
memset(inp + length, padlen, padlen);
|
|
return length + padlen;
|
|
}
|
|
|
|
ssize_t rijndael_unpad(const void *input, size_t length)
|
|
{
|
|
/* Remove RFC-2040 style padding after decryption. The true length of
|
|
* the input is returned, or the usual errors if the padding is incorrect.
|
|
*/
|
|
const word8 *inp= input;
|
|
size_t i, padlen;
|
|
|
|
if (length == 0 || (length % 16) != 0) return RD_BAD_BLOCK_LENGTH;
|
|
padlen = inp[length-1];
|
|
if (padlen <= 0 || padlen > 16) return RD_BAD_DATA;
|
|
for (i= 2; i <= padlen; i++) {
|
|
if (inp[length-i] != padlen) return RD_BAD_DATA;
|
|
}
|
|
return length - padlen;
|
|
}
|
|
|
|
#ifdef INTERMEDIATE_VALUE_KAT
|
|
|
|
void cipherEncryptUpdateRounds(rd_keyinstance *key,
|
|
const void *input, void *output, int rounds)
|
|
{
|
|
/* Encrypt a block only a specified number of rounds. */
|
|
word8 block[4][4];
|
|
|
|
blockcpy(block, input);
|
|
|
|
rijndaelEncryptRound(block, key->encsched, key->rounds, rounds);
|
|
|
|
blockcpy(output, block);
|
|
}
|
|
|
|
void cipherDecryptUpdateRounds(rd_keyinstance *key,
|
|
const void *input, void *output, int rounds)
|
|
{
|
|
/* Decrypt a block only a specified number of rounds. */
|
|
word8 block[4][4];
|
|
|
|
blockcpy(block, input);
|
|
|
|
rijndaelDecryptRound(block, key->decsched, key->rounds, rounds);
|
|
|
|
blockcpy(output, block);
|
|
}
|
|
#endif /* INTERMEDIATE_VALUE_KAT */
|
|
|
|
/*
|
|
* $PchId: rijndael_api.c,v 1.2 2001/01/10 22:01:20 philip Exp $
|
|
*/
|