minix/minix/usr.bin/mined/mined1.c
Thomas Cort 79444d163d mined: increase the size of the tgetent() buffer.
From the termcap section of the GNU termutils manual:

"There is no way you can tell how much space is needed, so the convention
is to allocate a buffer 2048 characters long and assume that is enough.
(Formerly the convention was to allocate 1024 characters and assume that
was enough. But one day, for one kind of terminal, that was not
enough.)"

Change-Id: Ia5937366ae89e886dbaef7d180bee40669d0c488
2015-03-28 08:39:19 +01:00

1772 lines
54 KiB
C

/*
* Part one of the mined editor.
*/
/*
* Author: Michiel Huisjes.
*
* 1. General remarks.
*
* Mined is a screen editor designed for the MINIX operating system.
* It is meant to be used on files not larger than 50K and to be fast.
* When mined starts up, it reads the file into its memory to minimize
* disk access. The only time that disk access is needed is when certain
* save, write or copy commands are given.
*
* Mined has the style of Emacs or Jove, that means that there are no modes.
* Each character has its own entry in an 256 pointer to function array,
* which is called when that character is typed. Only ASCII characters are
* connected with a function that inserts that character at the current
* location in the file. Two execptions are <linefeed> and <tab> which are
* inserted as well. Note that the mapping between commands and functions
* called is implicit in the table. Changing the mapping just implies
* changing the pointers in this table.
*
* The display consists of SCREENMAX + 1 lines and XMAX + 1 characters. When
* a line is larger (or gets larger during editing) than XBREAK characters,
* the line is either shifted SHIFT_SIZE characters to the left (which means
* that the first SHIFT_SIZE characters are not printed) or the end of the
* line is marked with the SHIFT_MARK character and the rest of the line is
* not printed. A line can never exceed MAX_CHARS characters. Mined will
* always try to keep the cursor on the same line and same (relative)
* x-coordinate if nothing changed. So if you scroll one line up, the cursor
* stays on the same line, or when you move one line down, the cursor will
* move to the same place on the line as it was on the previous.
* Every character on the line is available for editing including the
* linefeed at the the of the line. When the linefeed is deleted, the current
* line and the next line are joined. The last character of the file (which
* is always a linefeed) can never be deleted.
* The bottomline (as indicated by YMAX + 1) is used as a status line during
* editing. This line is usually blank or contains information mined needs
* during editing. This information (or rather questions) is displayed in
* reverse video.
*
* The terminal modes are changed completely. All signals like start/stop,
* interrupt etc. are unset. The only signal that remains is the quit signal.
* The quit signal (^\) is the general abort signal for mined. Typing a ^\
* during searching or when mined is asking for filenames, etc. will abort
* the function and mined will return to the main loop. Sending a quit
* signal during the main loop will abort the session (after confirmation)
* and the file is not (!) saved.
* The session will also be aborted when an unrecoverable error occurs. E.g
* when there is no more memory available. If the file has been modified,
* mined will ask if the file has to be saved or not.
* If there is no more space left on the disk, mined will just give an error
* message and continue.
*
* The number of system calls are minized. This is done to keep the editor
* as fast as possible. I/O is done in SCREEN_SIZE reads/writes. Accumulated
* output is also flushed at the end of each character typed.
*
* 2. Regular expressions
*
* Mined has a build in regular expression matcher, which is used for
* searching and replace routines. A regular expression consists of a
* sequence of:
*
* 1. A normal character matching that character.
* 2. A . matching any character.
* 3. A ^ matching the begin of a line.
* 4. A $ (as last character of the pattern) mathing the end of a line.
* 5. A \<character> matching <character>.
* 6. A number of characters enclosed in [] pairs matching any of these
* characters. A list of characters can be indicated by a '-'. So
* [a-z] matches any letter of the alphabet. If the first character
* after the '[' is a '^' then the set is negated (matching none of
* the characters).
* A ']', '^' or '-' can be escaped by putting a '\' in front of it.
* Of course this means that a \ must be represented by \\.
* 7. If one of the expressions as described in 1-6 is followed by a
* '*' than that expressions matches a sequence of 0 or more of
* that expression.
*
* Parsing of regular expression is done in two phases. In the first phase
* the expression is compiled into a more comprehensible form. In the second
* phase the actual matching is done. For more details see 3.6.
*
*
* 3. Implementation of mined.
*
* 3.1 Data structures.
*
* The main data structures are as follows. The whole file is kept in a
* double linked list of lines. The LINE structure looks like this:
*
* typedef struct Line {
* struct Line *next;
* struct Line *prev;
* char *text;
* unsigned char shift_count;
* } LINE;
*
* Each line entry contains a pointer to the next line, a pointer to the
* previous line and a pointer to the text of that line. A special field
* shift_count contains the number of shifts (in units of SHIFT_SIZE)
* that is performed on that line. The total size of the structure is 7
* bytes so a file consisting of 1000 empty lines will waste a lot of
* memory. A LINE structure is allocated for each line in the file. After
* that the number of characters of the line is counted and sufficient
* space is allocated to store them (including a linefeed and a '\0').
* The resulting address is assigned to the text field in the structure.
*
* A special structure is allocated and its address is assigned to the
* variable header as well as the variable tail. The text field of this
* structure is set to NULL. The tail->prev of this structure points
* to the last LINE of the file and the header->next to the first LINE.
* Other LINE *variables are top_line and bot_line which point to the
* first line resp. the last line on the screen.
* Two other variables are important as well. First the LINE *cur_line,
* which points to the LINE currently in use and the char *cur_text,
* which points to the character at which the cursor stands.
* Whenever an ASCII character is typed, a new line is build with this
* character inserted. Then the old data space (pointed to by
* cur_line->text) is freed, data space for the new line is allocated and
* assigned to cur_line->text.
*
* Two global variables called x and y represent the x and y coordinates
* from the cursor. The global variable nlines contains the number of
* lines in the file. Last_y indicates the maximum y coordinate of the
* screen (which is usually SCREENMAX).
*
* A few strings must be initialized by hand before compiling mined.
* These string are enter_string, which is printed upon entering mined,
* rev_video (turn on reverse video), normal_video, rev_scroll (perform a
* reverse scroll) and pos_string. The last string should hold the
* absolute position string to be printed for cursor motion. The #define
* X_PLUS and Y_PLUS should contain the characters to be added to the
* coordinates x and y (both starting at 0) to finish cursor positioning.
*
* 3.2 Starting up.
*
* Mined can be called with or without argument and the function
* load_file () is called with these arguments. load_file () checks
* if the file exists if it can be read and if it is writable and
* sets the writable flag accordingly. If the file can be read,
* load_file () reads a line from the file and stores this line into
* a structure by calling install_line () and line_insert () which
* installs the line into the double linked list, until the end of the
* file is reached.
* Lines are read by the function get_line (), which buffers the
* reading in blocks of SCREEN_SIZE. Load_file () also initializes the
* LINE *variables described above.
*
* 3.3 Moving around.
*
* Several commands are implemented for moving through the file.
* Moving up (UP1), down (DN1) left (LF1) and right (RT1) are done by the
* arrow keys. Moving one line below the screen scrolls the screen one
* line up. Moving one line above the screen scrolls the screen one line
* down. The functions forward_scroll () and reverse_scroll () take care
* of that.
* Several other move functions exist: move to begin of line (BL), end of
* line (EL) top of screen (HIGH), bottom of screen (LOW), top of file
* (HO), end of file (EF), scroll one page down (PD), scroll one page up
* (PU), scroll one line down (SD), scroll one line up (SU) and move to a
* certain line number (GOTO).
* Two functions called MN () and MP () each move one word further or
* backwards. A word is a number of non-blanks seperated by a space, a
* tab or a linefeed.
*
* 3.4 Modifying text.
*
* The modifying commands can be separated into two modes. The first
* being inserting text, and the other deleting text. Two functions are
* created for these purposes: insert () and delete (). Both are capable
* of deleting or inserting large amounts of text as well as one
* character. Insert () must be given the line and location at which
* the text must be inserted. Is doesn't make any difference whether this
* text contains linefeeds or not. Delete () must be given a pointer to
* the start line, a pointer from where deleting should start on that
* line and the same information about the end position. The last
* character of the file will never be deleted. Delete () will make the
* necessary changes to the screen after deleting, but insert () won't.
* The functions for modifying text are: insert one char (S), insert a
* file (file_insert (fd)), insert a linefeed and put cursor back to
* end of line (LIB), delete character under the cursor (DCC), delete
* before cursor (even linefeed) (DPC), delete next word (DNW), delete
* previous word (DPC) and delete to end of line (if the cursor is at
* a linefeed delete line) (DLN).
*
* 3.5 Yanking.
*
* A few utilities are provided for yanking pieces of text. The function
* MA () marks the current position in the file. This is done by setting
* LINE *mark_line and char *mark_text to the current position. Yanking
* of text can be done in two modes. The first mode just copies the text
* from the mark to the current position (or visa versa) into a buffer
* (YA) and the second also deletes the text (DT). Both functions call
* the function set_up () with the delete flag on or off. Set_up ()
* checks if the marked position is still a valid one (by using
* check_mark () and legal ()), and then calls the function yank () with
* a start and end position in the file. This function copies the text
* into a scratch_file as indicated by the variable yank_file. This
* scratch_file is made uniq by the function scratch_file (). At the end
* of copying yank will (if necessary) delete the text. A global flag
* called yank_status keeps track of the buffer (or file) status. It is
* initialized on NOT_VALID and set to EMPTY (by set_up ()) or VALID (by
* yank ()). Several things can be done with the buffer. It can be
* inserted somewhere else in the file (PT) or it can be copied into
* another file (WB), which will be prompted for.
*
* 3.6 Search and replace routines.
*
* Searching for strings and replacing strings are done by regular
* expressions. For any expression the function compile () is called
* with as argument the expression to compile. Compile () returns a
* pointer to a structure which looks like this:
*
* typedef struct regex {
* union {
* char *err_mess;
* int *expression;
* } result;
* char status;
* char *start_ptr;
* char *end_ptr;
* } REGEX;
*
* If something went wrong during compiling (e.g. an illegal expression
* was given), the function reg_error () is called, which sets the status
* field to REG_ERROR and the err_mess field to the error message. If the
* match must be anchored at the beginning of the line (end of line), the
* status field is set to BEGIN_LINE (END_LINE). If none of these special
* cases are true, the field is set to 0 and the function finished () is
* called. Finished () allocates space to hold the compiled expression
* and copies this expression into the expression field of the union
* (bcopy ()). Matching is done by the routines match() and line_check().
* Match () takes as argument the REGEX *program, a pointer to the
* startposition on the current line, and a flag indicating FORWARD or
* REVERSE search. Match () checks out the whole file until a match is
* found. If match is found it returns a pointer to the line in which the
* match was found else it returns a NULL. Line_check () takes the
* same arguments, but return either MATCH or NO_MATCH.
* During checking, the start_ptr and end_ptr fields of the REGEX
* structure are assigned to the start and end of the match.
* Both functions try to find a match by walking through the line
* character by character. For each possibility, the function
* check_string () is called with as arguments the REGEX *program and the
* string to search in. It starts walking through the expression until
* the end of the expression or the end of the string is reached.
* Whenever a * is encountered, this position of the string is marked,
* the maximum number of matches are performed and the function star ()
* is called in order to try to find the longest match possible. Star ()
* takes as arguments the REGEX program, the current position of the
* string, the marked position and the current position of the expression
* Star () walks from the current position of the string back to the
* marked position, and calls string_check () in order to find a match.
* It returns MATCH or NO_MATCH, just as string_check () does.
* Searching is now easy. Both search routines (forward (SF) and
* backwards search (SR)) call search () with an apropiate message and a
* flag indicating FORWARD or REVERSE search. Search () will get an
* expression from the user by calling get_expression(). Get_expression()
* returns a pointer to a REGEX structure or NULL upon errors and
* prompts for the expression. If no expression if given, the previous is
* used instead. After that search will call match (), and if a match is
* found, we can move to that place in the file by the functions find_x()
* and find_y () which will find display the match on the screen.
* Replacing can be done in two ways. A global replace (GR) or a line
* replace (LR). Both functions call change () with a message an a flag
* indicating global or line replacement. Change () will prompt for the
* expression and for the replacement. Every & in the replacement pattern
* means substitute the match instead. An & can be escaped by a \. When
* a match is found, the function substitute () will perform the
* substitution.
*
* 3.6 Miscellaneous commands.
*
* A few commands haven't be discussed yet. These are redraw the screen
* (RD) fork a shell (SH), print file status (FS), write file to disc
* (WT), insert a file at current position (IF), leave editor (XT) and
* visit another file (VI). The last two functions will check if the file
* has been modified. If it has, they will ask if you want to save the
* file by calling ask_save ().
* The function ESC () will repeat a command n times. It will prompt for
* the number. Aborting the loop can be done by sending the ^\ signal.
*
* 3.7 Utility functions.
*
* Several functions exists for internal use. First allocation routines:
* alloc (bytes) and newline () will return a pointer to free data space
* if the given size. If there is no more memory available, the function
* panic () is called.
* Signal handling: The only signal that can be send to mined is the
* SIGQUIT signal. This signal, functions as a general abort command.
* Mined will abort if the signal is given during the main loop. The
* function abort_mined () takes care of that.
* Panic () is a function with as argument a error message. It will print
* the message and the error number set by the kernel (errno) and will
* ask if the file must be saved or not. It resets the terminal
* (raw_mode ()) and exits.
* String handling routines like copy_string(to, from), length_of(string)
* and build_string (buffer, format, arg1, arg2, ...). The latter takes
* a description of the string out out the format field and puts the
* result in the buffer. (It works like printf (3), but then into a
* string). The functions status_line (string1, string2), error (string1,
* string2), clear_status () and bottom_line () all print information on
* the status line.
* Get_string (message, buffer) reads a string and getch () reads one
* character from the terminal.
* Num_out ((long) number) prints the number into a 11 digit field
* without leading zero's. It returns a pointer to the resulting string.
* File_status () prints all file information on the status line.
* Set_cursor (x, y) prints the string to put the cursor at coordinates
* x and y.
* Output is done by four functions: writeline(fd,string), clear_buffer()
* write_char (fd, c) and flush_buffer (fd). Three defines are provided
* to write on filedescriptor STD_OUT (terminal) which is used normally:
* string_print (string), putch (c) and flush (). All these functions
* use the global I/O buffer screen and the global index for this array
* called out_count. In this way I/O can be buffered, so that reads or
* writes can be done in blocks of SCREEN_SIZE size.
* The following functions all handle internal line maintenance. The
* function proceed (start_line, count) returns the count'th line after
* start_line. If count is negative, the count'th line before the
* start_line is returned. If header or tail is encountered then that
* will be returned. Display (x, y, start_line, count) displays count
* lines starting at coordinates [x, y] and beginning at start_line. If
* the header or tail is encountered, empty lines are displayed instead.
* The function reset (head_line, ny) reset top_line, last_y, bot_line,
* cur_line and y-coordinate. This is not a neat way to do the
* maintenance, but it sure saves a lot of code. It is usually used in
* combination with display ().
* Put_line(line, offset, clear_line), prints a line (skipping characters
* according to the line->shift_size field) until XBREAK - offset
* characters are printed or a '\n' is encountered. If clear_line is
* TRUE, spaces are printed until XBREAK - offset characters.
* Line_print (line) is a #define from put_line (line, 0, TRUE).
* Moving is done by the functions move_to (x, y), move_addres (address)
* and move (x, adress, y). This function is the most important one in
* mined. New_y must be between 0 and last_y, new_x can be about
* anything, address must be a pointer to an character on the current
* line (or y). Move_to () first adjust the y coordinate together with
* cur_line. If an address is given, it finds the corresponding
* x-coordinate. If an new x-coordinate was given, it will try to locate
* the corresponding character. After that it sets the shift_count field
* of cur_line to an apropiate number according to new_x. The only thing
* left to do now is to assign the new values to cur_line, cur_text, x
* and y.
*
* 4. Summary of commands.
*
* CURSOR MOTION
* up-arrow Move cursor 1 line up. At top of screen, reverse scroll
* down-arrow Move cursor 1 line down. At bottom, scroll forward.
* left-arrow Move cursor 1 character left or to end of previous line
* right-arrow Move cursor 1 character right or to start of next line
* CTRL-A Move cursor to start of current line
* CTRL-Z Move cursor to end of current line
* CTRL-^ Move cursor to top of screen
* CTRL-_ Move cursor to bottom of screen
* CTRL-F Forward to start of next word (even to next line)
* CTRL-B Backward to first character of previous word
*
* SCREEN MOTION
* Home key Move cursor to first character of file
* End key Move cursor to last character of file
* PgUp Scroll backward 1 page. Bottom line becomes top line
* PgD Scroll backward 1 page. Top line becomes bottom line
* CTRL-D Scroll screen down one line (reverse scroll)
* CTRL-U Scroll screen up one line (forward scroll)
*
* MODIFYING TEXT
* ASCII char Self insert character at cursor
* tab Insert tab at cursor
* backspace Delete the previous char (left of cursor), even line feed
* Del Delete the character under the cursor
* CTRL-N Delete next word
* CTRL-P Delete previous word
* CTRL-O Insert line feed at cursor and back up 1 character
* CTRL-T Delete tail of line (cursor to end); if empty, delete line
* CTRL-@ Set the mark (remember the current location)
* CTRL-K Delete text from the mark to current position save on file
* CTRL-C Save the text from the mark to the current position
* CTRL-Y Insert the contents of the save file at current position
* CTRL-Q Insert the contents of the save file into a new file
* CTRL-G Insert a file at the current position
*
* MISCELLANEOUS
* CTRL-E Erase and redraw the screen
* CTRL-V Visit file (read a new file); complain if old one changed
* CTRL-W Write the current file back to the disk
* numeric + Search forward (prompt for regular expression)
* numeric - Search backward (prompt for regular expression)
* numeric 5 Print the current status of the file
* CTRL-R (Global) Replace str1 by str2 (prompts for each string)
* CTRL-L (Line) Replace string1 by string2
* CTRL-S Fork off a shell and wait for it to finish
* CTRL-X EXIT (prompt if file modified)
* CTRL-] Go to a line. Prompts for linenumber
* CTRL-\ Abort whatever editor was doing and start again
* escape key Repeat a command count times; (prompts for count)
*/
/* ======================================================================== *
* Utilities *
* ======================================================================== */
#include "mined.h"
#include <signal.h>
#include <termios.h>
#include <limits.h>
#include <errno.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <stdarg.h>
extern int errno;
int ymax = YMAX;
int screenmax = SCREENMAX;
/*
* Print file status.
*/
void FS(void)
{
fstatus(file_name[0] ? "" : "[buffer]", -1L);
}
/*
* Visit (edit) another file. If the file has been modified, ask the user if
* he wants to save it.
*/
void VI(void)
{
char new_file[LINE_LEN]; /* Buffer to hold new file name */
if (modified == TRUE && ask_save() == ERRORS)
return;
/* Get new file name */
if (get_file("Visit file:", new_file) == ERRORS)
return;
/* Free old linked list, initialize global variables and load new file */
initialize();
tputs(CL, 0, _putch);
load_file(new_file[0] == '\0' ? NULL : new_file);
}
/*
* Write file in core to disc.
*/
int WT(void)
{
register LINE *line;
register long count = 0L; /* Nr of chars written */
char file[LINE_LEN]; /* Buffer for new file name */
int fd; /* Filedescriptor of file */
if (modified == FALSE) {
error ("Write not necessary.", NULL);
return FINE;
}
/* Check if file_name is valid and if file can be written */
if (file_name[0] == '\0' || writable == FALSE) {
if (get_file("Enter file name:", file) != FINE)
return ERRORS;
copy_string(file_name, file); /* Save file name */
}
if ((fd = creat(file_name, 0644)) < 0) { /* Empty file */
error("Cannot create ", file_name);
writable = FALSE;
return ERRORS;
}
else
writable = TRUE;
clear_buffer();
status_line("Writing ", file_name);
for (line = header->next; line != tail; line = line->next) {
if (line->shift_count & DUMMY) {
if (line->next == tail && line->text[0] == '\n')
continue;
}
if (writeline(fd, line->text) == ERRORS) {
count = -1L;
break;
}
count += (long) length_of(line->text);
}
if (count > 0L && flush_buffer(fd) == ERRORS)
count = -1L;
(void) close(fd);
if (count == -1L)
return ERRORS;
modified = FALSE;
rpipe = FALSE; /* File name is now assigned */
/* Display how many chars (and lines) were written */
fstatus("Wrote", count);
return FINE;
}
/* Call WT and discard value returned. */
void XWT(void)
{
(void) WT();
}
/*
* Call an interactive shell.
*/
void SH(void)
{
register int w;
int pid, status;
char *shell;
if ((shell = getenv("SHELL")) == NULL) shell = "/bin/sh";
switch (pid = fork()) {
case -1: /* Error */
error("Cannot fork.", NULL);
return;
case 0: /* This is the child */
set_cursor(0, ymax);
putch('\n');
flush();
raw_mode(OFF);
if (rpipe) { /* Fix stdin */
close (0);
if (open("/dev/tty", 0) < 0)
exit (126);
}
execl(shell, shell, (char *) 0);
exit(127); /* Exit with 127 */
default : /* This is the parent */
signal(SIGINT, SIG_IGN);
signal(SIGQUIT, SIG_IGN);
do {
w = wait(&status);
} while (w != -1 && w != pid);
}
raw_mode(ON);
RD();
if ((status >> 8) == 127) /* Child died with 127 */
error("Cannot exec ", shell);
else if ((status >> 8) == 126)
error("Cannot open /dev/tty as fd #0", NULL);
}
/*
* Proceed returns the count'th line after `line'. When count is negative
* it returns the count'th line before `line'. When the next (previous)
* line is the tail (header) indicating EOF (tof) it stops.
*/
LINE *proceed(register LINE *line, register int count)
{
if (count < 0)
while (count++ < 0 && line != header)
line = line->prev;
else
while (count-- > 0 && line != tail)
line = line->next;
return line;
}
/*
* Show concatenation of s1 and s2 on the status line (bottom of screen)
* If revfl is TRUE, turn on reverse video on both strings. Set stat_visible
* only if bottom_line is visible.
*/
int bottom_line(FLAG revfl, char *s1, char *s2, char *inbuf, FLAG statfl)
{
int ret = FINE;
char buf[LINE_LEN];
register char *p = buf;
*p++ = ' ';
if (s1 != NULL)
while ((*p = *s1++))
p++;
if (s2 != NULL)
while ((*p = *s2++))
p++;
*p++ = ' ';
*p++ = 0;
if (revfl == ON && stat_visible == TRUE)
clear_status ();
set_cursor(0, ymax);
if (revfl == ON) { /* Print rev. start sequence */
tputs(SO, 0, _putch);
stat_visible = TRUE;
}
else /* Used as clear_status() */
stat_visible = FALSE;
string_print(buf);
if (inbuf != NULL)
ret = input(inbuf, statfl);
/* Print normal video */
tputs(SE, 0, _putch);
tputs(CE, 0, _putch); /* Clear the rest of the line */
if (inbuf != NULL)
set_cursor(0, ymax);
else
set_cursor(x, y); /* Set cursor back to old position */
flush(); /* Perform the actual write */
if (ret != FINE)
clear_status();
return ret;
}
/*
* Count_chars() count the number of chars that the line would occupy on the
* screen. Counting starts at the real x-coordinate of the line.
*/
int count_chars(LINE *line)
{
register int cnt = get_shift(line->shift_count) * -SHIFT_SIZE;
register char *textp = line->text;
/* Find begin of line on screen */
while (cnt < 0) {
if (is_tab(*textp++))
cnt = tab(cnt);
else
cnt++;
}
/* Count number of chars left */
cnt = 0;
while (*textp != '\n') {
if (is_tab(*textp++))
cnt = tab(cnt);
else
cnt++;
}
return cnt;
}
/*
* Move to coordinates nx, ny at screen. The caller must check that scrolling
* is not needed.
* If new_x is lower than 0 or higher than XBREAK, move_to() will check if
* the line can be shifted. If it can it sets(or resets) the shift_count field
* of the current line accordingly.
* Move also sets cur_text to the right char.
* If we're moving to the same x coordinate, try to move the the x-coordinate
* used on the other previous call.
*/
void move(register int new_x, char *new_address, int new_y)
{
register LINE *line = cur_line; /* For building new cur_line */
int shift = 0; /* How many shifts to make */
static int rel_x = 0; /* Remember relative x position */
int tx = x;
/* Check for illegal values */
if (new_y < 0 || new_y > last_y)
return;
/* Adjust y-coordinate and cur_line */
if (new_y < y)
while (y != new_y) {
y--;
line = line->prev;
}
else
while (y != new_y) {
y++;
line = line->next;
}
/* Set or unset relative x-coordinate */
if (new_address == NULL) {
new_address = find_address(line, (new_x == x) ? rel_x : new_x , &tx);
if (new_x != x)
rel_x = tx;
new_x = tx;
}
else
rel_x = new_x = find_x(line, new_address);
/* Adjust shift_count if new_x lower than 0 or higher than XBREAK */
if (new_x < 0 || new_x >= XBREAK) {
if (new_x > XBREAK || (new_x == XBREAK && *new_address != '\n'))
shift = (new_x - XBREAK) / SHIFT_SIZE + 1;
else {
shift = new_x / SHIFT_SIZE;
if (new_x % SHIFT_SIZE)
shift--;
}
if (shift != 0) {
line->shift_count += shift;
new_x = find_x(line, new_address);
set_cursor(0, y);
line_print(line);
rel_x = new_x;
}
}
/* Assign and position cursor */
x = new_x;
cur_text = new_address;
cur_line = line;
set_cursor(x, y);
}
/*
* Find_x() returns the x coordinate belonging to address.
* (Tabs are expanded).
*/
int find_x(LINE *line, char *address)
{
register char *textp = line->text;
register int nx = get_shift(line->shift_count) * -SHIFT_SIZE;
while (textp != address && *textp != '\0') {
if (is_tab(*textp++)) /* Expand tabs */
nx = tab(nx);
else
nx++;
}
return nx;
}
/*
* Find_address() returns the pointer in the line with offset x_coord.
* (Tabs are expanded).
*/
char *find_address(LINE *line, int x_coord, int *old_x)
{
register char *textp = line->text;
register int tx = get_shift(line->shift_count) * -SHIFT_SIZE;
while (tx < x_coord && *textp != '\n') {
if (is_tab(*textp)) {
if (*old_x - x_coord == 1 && tab(tx) > x_coord)
break; /* Moving left over tab */
else
tx = tab(tx);
}
else
tx++;
textp++;
}
*old_x = tx;
return textp;
}
/*
* Length_of() returns the number of characters int the string `string'
* excluding the '\0'.
*/
int length_of(register char *string)
{
register int count = 0;
if (string != NULL) {
while (*string++ != '\0')
count++;
}
return count;
}
/*
* Copy_string() copies the string `from' into the string `to'. `To' must be
* long enough to hold `from'.
*/
void copy_string(register char *to, register char *from)
{
while ((*to++ = *from++))
;
}
/*
* Reset assigns bot_line, top_line and cur_line according to `head_line'
* which must be the first line of the screen, and an y-coordinate,
* which will be the current y-coordinate (if it isn't larger than last_y)
*/
void reset(LINE *head_line, int screen_y)
{
register LINE *line;
top_line = line = head_line;
/* Search for bot_line (might be last line in file) */
for (last_y = 0; last_y < nlines - 1 && last_y < screenmax
&& line->next != tail; last_y++)
line = line->next;
bot_line = line;
y = (screen_y > last_y) ? last_y : screen_y;
/* Set cur_line according to the new y value */
cur_line = proceed(top_line, y);
}
/*
* Set cursor at coordinates x, y.
*/
void set_cursor(int nx, int ny)
{
tputs(tgoto(CM, nx, ny), 0, _putch);
}
/*
* Routine to open terminal when mined is used in a pipeline.
*/
void open_device(void)
{
if ((input_fd = open("/dev/tty", 0)) < 0)
panic("Cannot open /dev/tty for read");
}
/*
* Getchar() reads one character from the terminal. The character must be
* masked with 0377 to avoid sign extension.
*/
int getch(void)
{
return (_getch() & 0377);
}
/*
* Display() shows count lines on the terminal starting at the given
* coordinates. When the tail of the list is encountered it will fill the
* rest of the screen with blank_line's.
* When count is negative, a backwards print from `line' will be done.
*/
void display(int x_coord, int y_coord, register LINE *line, register int count)
{
set_cursor(x_coord, y_coord);
/* Find new startline if count is negative */
if (count < 0) {
line = proceed(line, count);
count = -count;
}
/* Print the lines */
while (line != tail && count-- >= 0) {
line_print(line);
line = line->next;
}
/* Print the blank lines (if any) */
if (loading == FALSE) {
while (count-- >= 0) {
tputs(CE, 0, _putch);
putch('\n');
}
}
}
/*
* Write_char does a buffered output.
*/
int write_char(int fd, int c)
{
screen [out_count++] = c;
if (out_count == SCREEN_SIZE) /* Flush on SCREEN_SIZE chars */
return flush_buffer(fd);
return FINE;
}
/*
* Writeline writes the given string on the given filedescriptor.
*/
int writeline(register int fd, register char *text)
{
while(*text)
if (write_char(fd, *text++) == ERRORS)
return ERRORS;
return FINE;
}
/*
* Put_line print the given line on the standard output. If offset is not zero
* printing will start at that x-coordinate. If the FLAG clear_line is TRUE,
* then (screen) line will be cleared when the end of the line has been
* reached.
*/
void put_line(LINE *line, int offset, FLAG clear_line)
{
register char *textp = line->text;
register int count = get_shift(line->shift_count) * -SHIFT_SIZE;
int tab_count; /* Used in tab expansion */
/* Skip all chars as indicated by the offset and the shift_count field */
while (count < offset) {
if (is_tab(*textp++))
count = tab(count);
else
count++;
}
while (*textp != '\n' && count < XBREAK) {
if (is_tab(*textp)) { /* Expand tabs to spaces */
tab_count = tab(count);
while (count < XBREAK && count < tab_count) {
count++;
putch(' ');
}
textp++;
}
else {
if (*textp >= '\01' && *textp <= '\037') {
tputs(SO, 0, _putch);
putch(*textp++ + '\100');
tputs(SE, 0, _putch);
}
else
putch(*textp++);
count++;
}
}
/* If line is longer than XBREAK chars, print the shift_mark */
if (count == XBREAK && *textp != '\n')
putch(textp[1]=='\n' ? *textp : SHIFT_MARK);
/* Clear the rest of the line is clear_line is TRUE */
if (clear_line == TRUE) {
tputs(CE, 0, _putch);
putch('\n');
}
}
/*
* Flush the I/O buffer on filedescriptor fd.
*/
int flush_buffer(int fd)
{
if (out_count <= 0) /* There is nothing to flush */
return FINE;
if (fd == STD_OUT) {
printf("%.*s", out_count, screen);
_flush();
}
else if (write(fd, screen, out_count) != out_count) {
bad_write(fd);
return ERRORS;
}
clear_buffer(); /* Empty buffer */
return FINE;
}
/*
* Bad_write() is called when a write failed. Notify the user.
*/
void bad_write(int fd)
{
if (fd == STD_OUT) /* Cannot write to terminal? */
exit(1);
clear_buffer();
build_string(text_buffer, "Command aborted: %s (File incomplete)",
(errno == ENOSPC || errno == -ENOSPC) ?
"No space on device" : "Write error");
error(text_buffer, NULL);
}
/*
* Catch the SIGQUIT signal (^\) send to mined. It turns on the quitflag.
*/
void catch(int sig)
{
/* Reset the signal */
signal(SIGQUIT, catch);
quit = TRUE;
}
/*
* Abort_mined() will leave mined. Confirmation is asked first.
*/
void abort_mined(void)
{
quit = FALSE;
/* Ask for confirmation */
status_line("Really abort? ", NULL);
if (getch() != 'y') {
clear_status();
return;
}
/* Reset terminal */
raw_mode(OFF);
set_cursor(0, ymax);
putch('\n');
flush();
abort();
}
#define UNDEF _POSIX_VDISABLE
/*
* Set and reset tty into CBREAK or old mode according to argument `state'. It
* also sets all signal characters (except for ^\) to UNDEF. ^\ is caught.
*/
void raw_mode(FLAG state)
{
static struct termios old_tty;
static struct termios new_tty;
if (state == OFF) {
tcsetattr(input_fd, TCSANOW, &old_tty);
return;
}
/* Save old tty settings */
tcgetattr(input_fd, &old_tty);
/* Set tty to CBREAK mode */
tcgetattr(input_fd, &new_tty);
new_tty.c_lflag &= ~(ICANON|ECHO|ECHONL);
new_tty.c_iflag &= ~(IXON|IXOFF);
/* Unset signal chars, leave only SIGQUIT set to ^\ */
new_tty.c_cc[VINTR] = new_tty.c_cc[VSUSP] = UNDEF;
new_tty.c_cc[VQUIT] = '\\' & 037;
signal(SIGQUIT, catch); /* Which is caught */
tcsetattr(input_fd, TCSANOW, &new_tty);
}
/*
* Panic() is called with an error number and a message. It is called when
* something unrecoverable has happened.
* It writes the message to the terminal, resets the tty and exits.
* Ask the user if he wants to save his file.
*/
void panic(register char *message)
{
extern char yank_file[];
tputs(CL, 0, _putch);
build_string(text_buffer, "%s\nError code %d\n", message, errno);
(void) write(STD_OUT, text_buffer, length_of(text_buffer));
if (loading == FALSE)
XT(); /* Check if file can be saved */
else
(void) unlink(yank_file);
raw_mode(OFF);
abort();
}
char *alloc(int bytes)
{
char *p;
p = malloc((unsigned) bytes);
if (p == NULL) {
if (loading == TRUE)
panic("File too big.");
panic("Out of memory.");
}
return(p);
}
void free_space(char *p)
{
free(p);
}
/* ======================================================================== *
* Main loops *
* ======================================================================== */
/* The mapping between input codes and functions. */
void (*key_map[256])() = { /* map ASCII characters to functions */
/* 000-017 */ MA, BL, MP, YA, SD, RD, MN, IF, DPC, S, S, DT, LR, S, DNW,LIB,
/* 020-037 */ DPW, WB, GR, SH, DLN, SU, VI, XWT, XT, PT, EL, ESC, I, GOTO,
HIGH, LOW,
/* 040-057 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 060-077 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 100-117 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 120-137 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 140-157 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 160-177 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, DCC,
/* 200-217 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 220-237 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 240-257 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 260-277 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 300-317 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 320-337 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 340-357 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
/* 360-377 */ S, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,
};
int nlines; /* Number of lines in file */
LINE *header; /* Head of line list */
LINE *tail; /* Last line in line list */
LINE *cur_line; /* Current line in use */
LINE *top_line; /* First line of screen */
LINE *bot_line; /* Last line of screen */
char *cur_text; /* Current char on current line in use */
int last_y; /* Last y of screen. Usually SCREENMAX */
char screen[SCREEN_SIZE]; /* Output buffer for "writes" and "reads" */
int x, y; /* x, y coordinates on screen */
FLAG modified = FALSE; /* Set when file is modified */
FLAG stat_visible; /* Set if status_line is visible */
FLAG writable; /* Set if file cannot be written */
FLAG loading; /* Set if we are loading a file. */
FLAG quit = FALSE; /* Set when quit character is typed */
FLAG rpipe = FALSE; /* Set if file should be read from stdin */
int input_fd = 0; /* Fd for command input */
int out_count; /* Index in output buffer */
char file_name[LINE_LEN]; /* Name of file in use */
char text_buffer[MAX_CHARS]; /* Buffer for modifying text */
/* Escape sequences. */
char *CE, *VS, *SO, *SE, *CL, *AL, *CM;
/*
* Yank variables.
*/
FLAG yank_status = NOT_VALID; /* Status of yank_file */
char yank_file[] = "/tmp/mined.XXXXXX";
long chars_saved; /* Nr of chars in buffer */
/*
* Initialize is called when a another file is edited. It free's the allocated
* space and sets modified back to FALSE and fixes the header/tail pointer.
*/
void initialize(void)
{
register LINE *line, *next_line;
/* Delete the whole list */
for (line = header->next; line != tail; line = next_line) {
next_line = line->next;
free_space(line->text);
free_space((char*)line);
}
/* header and tail should point to itself */
line->next = line->prev = line;
x = y = 0;
rpipe = modified = FALSE;
}
/*
* Basename() finds the absolute name of the file out of a given path_name.
*/
char *basename(char *path)
{
register char *ptr = path;
register char *last = NULL;
while (*ptr != '\0') {
if (*ptr == '/')
last = ptr;
ptr++;
}
if (last == NULL)
return path;
if (*(last + 1) == '\0') { /* E.g. /usr/tmp/pipo/ */
*last = '\0';
return basename(path);/* Try again */
}
return last + 1;
}
/*
* Load_file loads the file `file' into core. If file is a NULL or the file
* couldn't be opened, just some initializations are done, and a line consisting
* of a `\n' is installed.
*/
void load_file(char *file)
{
register LINE *line = header;
register int len;
long nr_of_chars = 0L;
int fd = -1; /* Filedescriptor for file */
nlines = 0; /* Zero lines to start with */
/* Open file */
writable = TRUE; /* Benefit of the doubt */
if (file == NULL) {
if (rpipe == FALSE)
status_line("No file.", NULL);
else {
fd = 0;
file = "standard input";
}
file_name[0] = '\0';
}
else {
copy_string(file_name, file); /* Save file name */
if (access(file, 0) < 0) /* Cannot access file. */
status_line("New file ", file);
else if ((fd = open(file, 0)) < 0)
status_line("Cannot open ", file);
else if (access(file, 2) != 0) /* Set write flag */
writable = FALSE;
}
/* Read file */
loading = TRUE; /* Loading file, so set flag */
if (fd >= 0) {
status_line("Reading ", file);
while ((len = get_line(fd, text_buffer)) != ERRORS) {
line = line_insert(line, text_buffer, len);
nr_of_chars += (long) len;
}
if (nlines == 0) /* The file was empty! */
line = line_insert(line, "\n", 1);
clear_buffer(); /* Clear output buffer */
cur_line = header->next;
fstatus("Read", nr_of_chars);
(void) close(fd); /* Close file */
}
else /* Just install a "\n" */
(void) line_insert(line, "\n", 1);
reset(header->next, 0); /* Initialize pointers */
/* Print screen */
display (0, 0, header->next, last_y);
move_to (0, 0);
flush(); /* Flush buffer */
loading = FALSE; /* Stop loading, reset flag */
}
/*
* Get_line reads one line from filedescriptor fd. If EOF is reached on fd,
* get_line() returns ERRORS, else it returns the length of the string.
*/
int get_line(int fd, register char *buffer)
{
static char *last = NULL;
static char *current = NULL;
static int read_chars;
register char *cur_pos = current;
char *begin = buffer;
do {
if (cur_pos == last) {
if ((read_chars = read(fd, screen, SCREEN_SIZE)) <= 0)
break;
last = &screen[read_chars];
cur_pos = screen;
}
if (*cur_pos == '\0')
*cur_pos = ' ';
} while ((*buffer++ = *cur_pos++) != '\n');
current = cur_pos;
if (read_chars <= 0) {
if (buffer == begin)
return ERRORS;
if (*(buffer - 1) != '\n') {
if (loading == TRUE) { /* Add '\n' to last line of file */
*buffer++ = '\n';
} else {
*buffer = '\0';
return NO_LINE;
}
}
}
*buffer = '\0';
return buffer - begin;
}
/*
* Install_line installs the buffer into a LINE structure It returns a pointer
* to the allocated structure.
*/
LINE *install_line(char *buffer, int length)
{
register LINE *new_line = (LINE *) alloc(sizeof(LINE));
new_line->text = alloc(length + 1);
new_line->shift_count = 0;
copy_string(new_line->text, buffer);
return new_line;
}
int main(int argc, char *argv[])
{
/* mined is the Minix editor. */
register int index; /* Index in key table */
struct winsize winsize;
get_term();
tputs(VS, 0, _putch);
tputs(CL, 0, _putch);
if (ioctl(STD_OUT, TIOCGWINSZ, &winsize) == 0 && winsize.ws_row != 0) {
ymax = winsize.ws_row - 1;
screenmax = ymax - 1;
}
if (!isatty(0)) { /* Reading from pipe */
if (argc != 1) {
write(2, "Cannot find terminal.\n", 22);
exit (1);
}
rpipe = TRUE;
modified = TRUE; /* Set modified so he can write */
open_device();
}
raw_mode(ON); /* Set tty to appropriate mode */
header = tail = (LINE *) alloc(sizeof(LINE)); /* Make header of list*/
header->text = NULL;
header->next = tail->prev = header;
/* Load the file (if any) */
if (argc < 2)
load_file(NULL);
else {
(void) get_file(NULL, argv[1]); /* Truncate filename */
load_file(argv[1]);
}
/* Main loop of the editor. */
for (;;) {
index = getch();
if (stat_visible == TRUE)
clear_status();
if (quit == TRUE)
abort_mined();
else { /* Call the function for this key */
(*key_map[index])(index);
flush(); /* Flush output (if any) */
if (quit == TRUE)
quit = FALSE;
}
}
/* NOTREACHED */
}
/* ======================================================================== *
* Miscellaneous *
* ======================================================================== */
/*
* Redraw the screen
*/
void RD(void)
{
/* Clear screen */
tputs(VS, 0, _putch);
tputs(CL, 0, _putch);
/* Print first page */
display(0, 0, top_line, last_y);
/* Clear last line */
set_cursor(0, ymax);
tputs(CE, 0, _putch);
move_to(x, y);
}
/*
* Ignore this keystroke.
*/
void I(void)
{
}
/*
* Leave editor. If the file has changed, ask if the user wants to save it.
*/
void XT(void)
{
if (modified == TRUE && ask_save() == ERRORS)
return;
raw_mode(OFF);
set_cursor(0, ymax);
putch('\n');
flush();
(void) unlink(yank_file); /* Might not be necessary */
exit(0);
}
void (*escfunc(int c))(void)
{
if (c == '[') {
/* Start of ASCII escape sequence. */
c = getch();
switch (c) {
case 'H': return(HO);
case 'A': return(UP1);
case 'B': return(DN1);
case 'C': return(RT1);
case 'D': return(LF1);
case '@': return(MA);
case 'G': return(FS);
case 'S': return(SR);
case 'T': return(SF);
case 'U': return(PD);
case 'V': return(PU);
case 'Y': return(EF);
}
return(I);
}
return(I);
}
/*
* ESC() wants a count and a command after that. It repeats the
* command count times. If a ^\ is given during repeating, stop looping and
* return to main loop.
*/
void ESC(void)
{
register int count = 0;
register void (*func)();
int index;
index = getch();
while (index >= '0' && index <= '9' && quit == FALSE) {
count *= 10;
count += index - '0';
index = getch();
}
if (count == 0) {
count = 1;
func = escfunc(index);
} else {
func = key_map[index];
if (func == ESC)
func = escfunc(getch());
}
if (func == I) { /* Function assigned? */
clear_status();
return;
}
while (count-- > 0 && quit == FALSE) {
if (stat_visible == TRUE)
clear_status();
(*func)(index);
flush();
}
if (quit == TRUE) /* Abort has been given */
error("Aborted", NULL);
}
/*
* Ask the user if he wants to save his file or not.
*/
int ask_save(void)
{
register int c;
status_line(file_name[0] ? basename(file_name) : "[buffer]" ,
" has been modified. Save? (y/n)");
while((c = getch()) != 'y' && c != 'n' && quit == FALSE) {
ring_bell();
flush();
}
clear_status();
if (c == 'y')
return WT();
if (c == 'n')
return FINE;
quit = FALSE; /* Abort character has been given */
return ERRORS;
}
/*
* Line_number() finds the line number we're on.
*/
int line_number(void)
{
register LINE *line = header->next;
register int count = 1;
while (line != cur_line) {
count++;
line = line->next;
}
return count;
}
/*
* Display a line telling how many chars and lines the file contains. Also tell
* whether the file is readonly and/or modified.
*/
void file_status(char *message, register long count, char *file, int lines,
FLAG writefl, FLAG changed)
{
register LINE *line;
char msg[LINE_LEN + 40];/* Buffer to hold line */
char yank_msg[LINE_LEN];/* Buffer for msg of yank_file */
if (count < 0) /* Not valid. Count chars in file */
for (line = header->next; line != tail; line = line->next)
count += length_of(line->text);
if (yank_status != NOT_VALID) /* Append buffer info */
build_string(yank_msg, " Buffer: %D char%s.", chars_saved,
(chars_saved == 1L) ? "" : "s");
else
yank_msg[0] = '\0';
build_string(msg, "%s %s%s%s %d line%s %D char%s.%s Line %d", message,
(rpipe == TRUE && *message != '[') ? "standard input" : basename(file),
(changed == TRUE) ? "*" : "",
(writefl == FALSE) ? " (Readonly)" : "",
lines, (lines == 1) ? "" : "s",
count, (count == 1L) ? "" : "s",
yank_msg, line_number());
if (length_of(msg) + 1 > LINE_LEN - 4) {
msg[LINE_LEN - 4] = SHIFT_MARK; /* Overflow on status line */
msg[LINE_LEN - 3] = '\0';
}
status_line(msg, NULL); /* Print the information */
}
/*
* Build_string() prints the arguments as described in fmt, into the buffer.
* %s indicates an argument string, %d indicated an argument number.
*/
void build_string(char *buf, char *fmt, ...)
{
va_list argptr;
char *scanp;
va_start(argptr, fmt);
while (*fmt) {
if (*fmt == '%') {
fmt++;
switch (*fmt++) {
case 's' :
scanp = va_arg(argptr, char *);
break;
case 'd' :
scanp = num_out((long) va_arg(argptr, int));
break;
case 'D' :
scanp = num_out((long) va_arg(argptr, long));
break;
default :
scanp = "";
}
while ((*buf++ = *scanp++))
;
buf--;
}
else
*buf++ = *fmt++;
}
va_end(argptr);
*buf = '\0';
}
/*
* Output an (unsigned) long in a 10 digit field without leading zeros.
* It returns a pointer to the first digit in the buffer.
*/
char *num_out(long number)
{
static char num_buf[11]; /* Buffer to build number */
register long digit; /* Next digit of number */
register long pow = 1000000000L; /* Highest ten power of long */
FLAG digit_seen = FALSE;
int i;
for (i = 0; i < 10; i++) {
digit = number / pow; /* Get next digit */
if (digit == 0L && digit_seen == FALSE && i != 9)
num_buf[i] = ' ';
else {
num_buf[i] = '0' + (char) digit;
number -= digit * pow; /* Erase digit */
digit_seen = TRUE;
}
pow /= 10L; /* Get next digit */
}
for (i = 0; num_buf[i] == ' '; i++) /* Skip leading spaces */
;
return (&num_buf[i]);
}
/*
* Get_number() read a number from the terminal. The last character typed in is
* returned. ERRORS is returned on a bad number. The resulting number is put
* into the integer the arguments points to.
*/
int get_number(char *message, int *result)
{
register int index;
register int count = 0;
status_line(message, NULL);
index = getch();
if (quit == FALSE && (index < '0' || index > '9')) {
error("Bad count", NULL);
return ERRORS;
}
/* Convert input to a decimal number */
while (index >= '0' && index <= '9' && quit == FALSE) {
count *= 10;
count += index - '0';
index = getch();
}
if (quit == TRUE) {
clear_status();
return ERRORS;
}
*result = count;
return index;
}
/*
* Input() reads a string from the terminal. When the KILL character is typed,
* it returns ERRORS.
*/
int input(char *inbuf, FLAG clearfl)
{
register char *ptr;
register char c; /* Character read */
ptr = inbuf;
*ptr = '\0';
while (quit == FALSE) {
flush();
switch (c = getch()) {
case '\b' : /* Erase previous char */
if (ptr > inbuf) {
ptr--;
tputs(SE, 0, _putch);
if (is_tab(*ptr))
string_print(" \b\b\b \b\b");
else
string_print(" \b\b \b");
tputs(SO, 0, _putch);
string_print(" \b");
*ptr = '\0';
}
else
ring_bell();
break;
case '\n' : /* End of input */
/* If inbuf is empty clear status_line */
return (ptr == inbuf && clearfl == TRUE) ? NO_INPUT :FINE;
default : /* Only read ASCII chars */
if ((c >= ' ' && c <= '~') || c == '\t') {
*ptr++ = c;
*ptr = '\0';
if (c == '\t')
string_print("^I");
else
putch(c);
string_print(" \b");
}
else
ring_bell();
}
}
quit = FALSE;
return ERRORS;
}
/*
* Get_file() reads a filename from the terminal. Filenames longer than
* FILE_LENGHT chars are truncated.
*/
int get_file(char *message, char *file)
{
char *ptr;
int ret;
if (message == NULL || (ret = get_string(message, file, TRUE)) == FINE) {
if (length_of((ptr = basename(file))) > NAME_MAX)
ptr[NAME_MAX] = '\0';
}
return ret;
}
/* ======================================================================== *
* UNIX I/O Routines *
* ======================================================================== */
int _getch(void)
{
char c;
if (read(input_fd, &c, 1) != 1 && quit == FALSE)
panic ("Cannot read 1 byte from input");
return c & 0377;
}
void _flush(void)
{
(void) fflush(stdout);
}
int _putch(int c)
{
if (write_char(STD_OUT, c) == FINE)
return c;
else
return EOF;
}
void get_term(void)
{
static char termbuf[50];
extern char *tgetstr(), *getenv();
char *loc = termbuf;
char entry[2048];
if (tgetent(entry, getenv("TERM")) <= 0) {
printf("Unknown terminal.\n");
exit(1);
}
AL = tgetstr("al", &loc);
CE = tgetstr("ce", &loc);
VS = tgetstr("vs", &loc);
CL = tgetstr("cl", &loc);
SO = tgetstr("so", &loc);
SE = tgetstr("se", &loc);
CM = tgetstr("cm", &loc);
ymax = tgetnum("li") - 1;
screenmax = ymax - 1;
if (!CE || !SO || !SE || !CL || !AL || !CM) {
printf("Sorry, no mined on this type of terminal\n");
exit(1);
}
}