minix/drivers/filter/sum.c
Gerard 78da142dab Replaced common u64.h functions with operators.
Change-Id: I71b7b4879209eeff89ce5748d67102afebf871dc
2014-03-02 12:28:32 +01:00

621 lines
17 KiB
C

/* Filter driver - middle layer - checksumming */
#include "inc.h"
#include "crc.h"
#include "md5.h"
#define GROUP_SIZE (SECTOR_SIZE * NR_SUM_SEC)
#define SEC2SUM_NR(nr) ((nr)/NR_SUM_SEC*(NR_SUM_SEC+1) + NR_SUM_SEC)
#define LOG2PHYS(nr) ((nr)/NR_SUM_SEC*(NR_SUM_SEC+1) + (nr)%NR_SUM_SEC)
#define POS2SEC(nr) (unsigned long)((nr) / SECTOR_SIZE)
#define SEC2POS(nr) ((u64_t)(nr) * SECTOR_SIZE)
/* Data buffers. */
static char *ext_array, *ext_buffer; /* interspersed buffer */
static char *rb0_array; /* write readback buffer for disk 0 */
static char *rb1_array; /* write readback buffer for disk 1 */
/*===========================================================================*
* sum_init *
*===========================================================================*/
void sum_init(void)
{
/* Initialize buffers. */
ext_array = flt_malloc(SBUF_SIZE, NULL, 0);
rb0_array = flt_malloc(SBUF_SIZE, NULL, 0);
rb1_array = flt_malloc(SBUF_SIZE, NULL, 0);
if (ext_array == NULL || rb0_array == NULL || rb1_array == NULL)
panic("no memory available");
}
/*===========================================================================*
* calc_sum *
*===========================================================================*/
static void calc_sum(unsigned sector, char *data, char *sum)
{
/* Compute the checksum for a sector. The sector number must be part
* of the checksum in some way.
*/
unsigned long crc, *p, *q;
int i, j;
struct MD5Context ctx;
switch(SUM_TYPE) {
case ST_NIL:
/* No checksum at all */
q = (unsigned long *) sum;
*q = sector;
break;
case ST_XOR:
/* Basic XOR checksum */
p = (unsigned long *) data;
memset(sum, 0, SUM_SIZE);
for(i = 0; i < SECTOR_SIZE / SUM_SIZE; i++) {
q = (unsigned long *) sum;
for(j = 0; (size_t) j < SUM_SIZE / sizeof(*p); j++) {
*q ^= *p;
q++;
p++;
}
}
q = (unsigned long *) sum;
*q ^= sector;
break;
case ST_CRC:
/* CRC32 checksum */
crc = compute_crc((unsigned char *) data, SECTOR_SIZE);
q = (unsigned long *) sum;
*q = crc ^ sector;
break;
case ST_MD5:
/* MD5 checksum */
MD5Init(&ctx);
MD5Update(&ctx, (unsigned char *) data, SECTOR_SIZE);
MD5Update(&ctx, (unsigned char *) &sector, sizeof(sector));
MD5Final((unsigned char *) sum, &ctx);
break;
default:
panic("invalid checksum type: %d", SUM_TYPE);
}
}
/*===========================================================================*
* read_sectors *
*===========================================================================*/
static int read_sectors(char *buf, sector_t phys_sector, int count)
{
/* Read 'count' sectors starting at 'phys_sector' into 'buf'. If an
* EOF occurs, zero-fill the remaining part of the buffer.
*/
size_t size, wsize;
int r;
size = wsize = count * SECTOR_SIZE;
r = read_write(SEC2POS(phys_sector), buf, buf, &size, FLT_READ);
if (r != OK)
return r;
if (size != wsize) {
#if DEBUG
printf("Filter: EOF reading sector %lu\n", phys_sector);
#endif
memset(buf + size, 0, wsize - size);
}
return OK;
}
/*===========================================================================*
* make_group_sum *
*===========================================================================*/
static void make_group_sum(char *bufp, char *sump, sector_t sector, int index,
int count)
{
/* Compute checksums for 'count' sectors within a group, starting at
* sector 'index' into the group, which has logical sector number
* 'sector'. The 'bufp' pointer points to the same first sector to
* start checksumming; 'sump' is a pointer to the checksum sector.
*/
sump += index * SUM_SIZE;
while (count--) {
calc_sum(sector, bufp, sump);
bufp += SECTOR_SIZE;
sump += SUM_SIZE;
sector++;
}
}
/*===========================================================================*
* check_group_sum *
*===========================================================================*/
static int check_group_sum(char *bufp, const char *sump, sector_t sector,
int index, int count)
{
/* Check checksums in a group. Parameters are the same as in
* make_group_sum(). Return OK if all checksums check out, or RET_REDO
* upon failure.
*/
char sum_buffer[SECTOR_SIZE];
sump += index * SUM_SIZE;
while (count--) {
calc_sum(sector, bufp, sum_buffer);
if (memcmp(sum_buffer, sump, SUM_SIZE)) {
printf("Filter: BAD CHECKSUM at sector %lu\n", sector);
if (BAD_SUM_ERROR)
return bad_driver(DRIVER_MAIN, BD_DATA, EIO);
}
bufp += SECTOR_SIZE;
sump += SUM_SIZE;
sector++;
}
return OK;
}
/*===========================================================================*
* make_sum *
*===========================================================================*/
static int make_sum(sector_t current_sector, sector_t sectors_left)
{
/* Compute checksums over all data in the buffer with expanded data.
* As side effect, possibly read in first and last checksum sectors
* and data to fill the gap between the last data sector and the last
* checksum sector.
*/
sector_t sector_in_group, group_left;
size_t size, gap;
char *extp;
int r;
/* See the description of the extended buffer in transfer(). A number
* of points are relevant for this function in particular:
*
* 1) If the "xx" head of the buffer does not cover an entire group,
* we need to copy in the first checksum sector so that we can
* modify it.
* 2) We can generate checksums for the full "yyyyy" groups without
* copying in the corresponding checksum sectors first, because
* those sectors will be overwritten entirely anyway.
* 3) We copy in not only the checksum sector for the group containing
* the "zzz" tail data, but also all the data between "zzz" and the
* last checksum sector. This allows us to write all the data in
* the buffer in one operation. In theory, we could verify the
* checksum of the data in this gap for extra early failure
* detection, but we currently do not do this.
*
* If points 1 and 3 cover the same group (implying a small, unaligned
* write operation), the read operation is done only once. Whether
* point 1 or 3 is skipped depends on whether there is a gap before
* the checksum sector.
*/
sector_in_group = current_sector % NR_SUM_SEC;
group_left = NR_SUM_SEC - sector_in_group;
extp = ext_buffer;
/* This loop covers points 1 and 2. */
while (sectors_left >= group_left) {
size = group_left * SECTOR_SIZE;
if (sector_in_group > 0) {
if ((r = read_sectors(extp + size,
LOG2PHYS(current_sector) + group_left,
1)) != OK)
return r;
}
else memset(extp + size, 0, SECTOR_SIZE);
make_group_sum(extp, extp + size, current_sector,
sector_in_group, group_left);
extp += size + SECTOR_SIZE;
sectors_left -= group_left;
current_sector += group_left;
sector_in_group = 0;
group_left = NR_SUM_SEC;
}
/* The remaining code covers point 3. */
if (sectors_left > 0) {
size = sectors_left * SECTOR_SIZE;
if (group_left != NR_SUM_SEC - sector_in_group)
panic("group_left assertion: %d", 0);
gap = group_left - sectors_left;
if (gap <= 0)
panic("gap assertion: %d", 0);
if ((r = read_sectors(extp + size,
LOG2PHYS(current_sector) + sectors_left,
gap + 1)) != OK)
return r;
make_group_sum(extp, extp + size + gap * SECTOR_SIZE,
current_sector, sector_in_group, sectors_left);
}
return OK;
}
/*===========================================================================*
* check_sum *
*===========================================================================*/
static int check_sum(sector_t current_sector, size_t bytes_left)
{
/* Check checksums of all data in the buffer with expanded data.
* Return OK if all checksums are okay, or RET_REDO upon failure.
*/
sector_t sector_in_group;
size_t size, groupbytes_left;
int count;
char *extp;
extp = ext_buffer;
sector_in_group = current_sector % NR_SUM_SEC;
groupbytes_left = (NR_SUM_SEC - sector_in_group) * SECTOR_SIZE;
while (bytes_left > 0) {
size = MIN(bytes_left, groupbytes_left);
count = size / SECTOR_SIZE;
if (check_group_sum(extp, extp + groupbytes_left,
current_sector, sector_in_group, count))
return RET_REDO;
extp += size + SECTOR_SIZE;
bytes_left -= MIN(size + SECTOR_SIZE, bytes_left);
current_sector += count;
sector_in_group = 0;
groupbytes_left = GROUP_SIZE;
}
return OK;
}
/*===========================================================================*
* check_write *
*===========================================================================*/
static int check_write(u64_t pos, size_t size)
{
/* Read back the data just written, from both disks if mirroring is
* enabled, and check the result against the original. Return OK on
* success; report the malfunctioning driver and return RET_REDO
* otherwise.
*/
char *rb0_buffer, *rb1_buffer;
size_t orig_size;
int r;
if (size == 0)
return OK;
rb0_buffer = rb1_buffer =
flt_malloc(size, rb0_array, SBUF_SIZE);
if (USE_MIRROR)
rb1_buffer = flt_malloc(size, rb1_array, SBUF_SIZE);
orig_size = size;
r = read_write(pos, rb0_buffer, rb1_buffer, &size, FLT_READ2);
if (r != OK) {
if (USE_MIRROR) flt_free(rb1_buffer, orig_size, rb1_array);
flt_free(rb0_buffer, orig_size, rb0_array);
return r;
}
/* If we get a size smaller than what we requested, then we somehow
* succeeded in writing past the disk end, and now fail to read it all
* back. This is not an error, and we just compare the part that we
* did manage to read back in.
*/
if (memcmp(ext_buffer, rb0_buffer, size)) {
#if DEBUG
printf("Filter: readback from disk 0 failed (size %d)\n",
size);
#endif
return bad_driver(DRIVER_MAIN, BD_DATA, EFAULT);
}
if (USE_MIRROR && memcmp(ext_buffer, rb1_buffer, size)) {
#if DEBUG
printf("Filter: readback from disk 1 failed (size %d)\n",
size);
#endif
return bad_driver(DRIVER_BACKUP, BD_DATA, EFAULT);
}
if (USE_MIRROR) flt_free(rb1_buffer, orig_size, rb1_array);
flt_free(rb0_buffer, orig_size, rb0_array);
return OK;
}
/*===========================================================================*
* expand *
*===========================================================================*/
static void expand(sector_t first_sector, char *buffer, sector_t sectors_left)
{
/* Expand the contiguous data in 'buffer' to interspersed format in
* 'ext_buffer'. The checksum areas are not touched.
*/
char *srcp, *dstp;
sector_t group_left;
size_t size;
int count;
srcp = buffer;
dstp = ext_buffer;
group_left = NR_SUM_SEC - first_sector % NR_SUM_SEC;
while (sectors_left > 0) {
count = MIN(sectors_left, group_left);
size = count * SECTOR_SIZE;
memcpy(dstp, srcp, size);
srcp += size;
dstp += size + SECTOR_SIZE;
sectors_left -= count;
group_left = NR_SUM_SEC;
}
}
/*===========================================================================*
* collapse *
*===========================================================================*/
static void collapse(sector_t first_sector, char *buffer, size_t *sizep)
{
/* Collapse the interspersed data in 'ext_buffer' to contiguous format
* in 'buffer'. As side effect, adjust the given size to reflect the
* resulting contiguous data size.
*/
char *srcp, *dstp;
size_t size, bytes_left, groupbytes_left;
srcp = ext_buffer;
dstp = buffer;
bytes_left = *sizep;
groupbytes_left =
(NR_SUM_SEC - first_sector % NR_SUM_SEC) * SECTOR_SIZE;
while (bytes_left > 0) {
size = MIN(bytes_left, groupbytes_left);
memcpy(dstp, srcp, size);
srcp += size + SECTOR_SIZE;
dstp += size;
bytes_left -= MIN(size + SECTOR_SIZE, bytes_left);
groupbytes_left = GROUP_SIZE;
}
*sizep = dstp - buffer;
}
/*===========================================================================*
* expand_sizes *
*===========================================================================*/
static size_t expand_sizes(sector_t first_sector, sector_t nr_sectors,
size_t *req_size)
{
/* Compute the size of the data area including interspersed checksum
* sectors (req_size) and the size of the data area including
* interspersed and trailing checksum sectors (the return value).
*/
sector_t last_sector, sum_sector, phys_sector;
last_sector = LOG2PHYS(first_sector + nr_sectors - 1);
sum_sector = SEC2SUM_NR(first_sector + nr_sectors - 1);
phys_sector = LOG2PHYS(first_sector);
*req_size = (last_sector - phys_sector + 1) * SECTOR_SIZE;
return (sum_sector - phys_sector + 1) * SECTOR_SIZE;
}
/*===========================================================================*
* collapse_size *
*===========================================================================*/
static void collapse_size(sector_t first_sector, size_t *sizep)
{
/* Compute the size of the contiguous user data written to disk, given
* the result size of the write operation with interspersed checksums.
*/
sector_t sector_in_group;
size_t sectors_from_group_base, nr_sum_secs, nr_data_secs;
sector_in_group = first_sector % NR_SUM_SEC;
sectors_from_group_base = *sizep / SECTOR_SIZE + sector_in_group;
nr_sum_secs = sectors_from_group_base / (NR_SUM_SEC+1);
nr_data_secs = sectors_from_group_base - sector_in_group - nr_sum_secs;
*sizep = nr_data_secs * SECTOR_SIZE;
}
/*===========================================================================*
* transfer *
*===========================================================================*/
int transfer(u64_t pos, char *buffer, size_t *sizep, int flag_rw)
{
/* Transfer data in interspersed-checksum format. When writing, first
* compute checksums, and read back the written data afterwards. When
* reading, check the stored checksums afterwards.
*/
sector_t first_sector, nr_sectors;
size_t ext_size, req_size, res_size;
u64_t phys_pos;
int r;
/* If we don't use checksums or even checksum layout, simply pass on
* the request to the drivers as is.
*/
if (!USE_SUM_LAYOUT)
return read_write(pos, buffer, buffer, sizep, flag_rw);
/* The extended buffer (for checksumming) essentially looks like this:
*
* ------------------------------
* |xx|C|yyyyy|C|yyyyy|C|zzz |C|
* ------------------------------
*
* In this example, "xxyyyyyyyyyyzzz" is our actual data. The data is
* split up into groups, so that each group is followed by a checksum
* sector C containing the checksums for all data sectors in that
* group. The head and tail of the actual data may cover parts of
* groups; the remaining data (nor their checksums) are not to be
* modified.
*
* The entire buffer is written or read in one operation: the
* read_write() call below. In order to write, we may first have to
* read some data; see the description in make_sum().
*
* Some points of interest here:
* - We need a buffer large enough to hold the all user and non-user
* data, from the first "xx" to the last checksum sector. This size
* is ext_size.
* - For writing, we need to expand the user-provided data from
* contiguous layout to interspersed format. The size of the user
* data after expansion is req_size.
* - For reading, we need to collapse the user-requested data from
* interspersed to contiguous format. For writing, we still need to
* compute the contiguous result size to return to the user.
* - In both cases, the result size may be different from the
* requested write size, because an EOF (as in, disk end) may occur
* and the resulting size is less than the requested size.
* - If we only follow the checksum layout, and do not do any
* checksumming, ext_size is reduced to req_size.
*/
first_sector = POS2SEC(pos);
nr_sectors = *sizep / SECTOR_SIZE;
phys_pos = SEC2POS(LOG2PHYS(first_sector));
#if DEBUG2
printf("Filter: transfer: pos 0x%lx:0x%lx -> phys_pos 0x%lx:0x%lx\n",
ex64hi(pos), ex64lo(pos), ex64hi(phys_pos), ex64lo(phys_pos));
#endif
/* Compute the size for the buffer and for the user data after
* expansion.
*/
ext_size = expand_sizes(first_sector, nr_sectors, &req_size);
if (!USE_CHECKSUM)
ext_size = req_size;
ext_buffer = flt_malloc(ext_size, ext_array, SBUF_SIZE);
if (flag_rw == FLT_WRITE) {
expand(first_sector, buffer, nr_sectors);
if (USE_CHECKSUM && make_sum(first_sector, nr_sectors))
return RET_REDO;
}
/* Perform the actual I/O. */
res_size = ext_size;
r = read_write(phys_pos, ext_buffer, ext_buffer, &res_size, flag_rw);
#if DEBUG2
printf("Filter: transfer: read_write(%"PRIx64", %u, %d) = %d, %u\n",
phys_pos, ext_size, flag_rw, r, res_size);
#endif
if (r != OK) {
flt_free(ext_buffer, ext_size, ext_array);
return r;
}
/* Limit the resulting size to the user data part of the buffer.
* The resulting size may already be less, due to an EOF.
*/
*sizep = MIN(req_size, res_size);
if (flag_rw == FLT_WRITE) {
if (USE_CHECKSUM && check_write(phys_pos, res_size))
return RET_REDO;
collapse_size(first_sector, sizep);
}
else { /* FLT_READ */
if (USE_CHECKSUM && check_sum(first_sector, *sizep))
return RET_REDO;
collapse(first_sector, buffer, sizep);
}
flt_free(ext_buffer, ext_size, ext_array);
return OK;
}
/*===========================================================================*
* convert *
*===========================================================================*/
u64_t convert(u64_t size)
{
/* Given a raw disk size, subtract the amount of disk space used for
* checksums, resulting in the user-visible disk size.
*/
sector_t sectors;
if (!USE_SUM_LAYOUT)
return size;
sectors = POS2SEC(size);
return SEC2POS(sectors / (NR_SUM_SEC + 1) * NR_SUM_SEC);
}