513 lines
15 KiB
C
513 lines
15 KiB
C
/* This file contains the main program of the process manager and some related
|
|
* procedures. When MINIX starts up, the kernel runs for a little while,
|
|
* initializing itself and its tasks, and then it runs PM and VFS. Both PM
|
|
* and VFS initialize themselves as far as they can. PM asks the kernel for
|
|
* all free memory and starts serving requests.
|
|
*
|
|
* The entry points into this file are:
|
|
* main: starts PM running
|
|
* setreply: set the reply to be sent to process making an PM system call
|
|
*/
|
|
|
|
#include "pm.h"
|
|
#include <minix/keymap.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/com.h>
|
|
#include <minix/ds.h>
|
|
#include <minix/type.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/type.h>
|
|
#include <minix/vm.h>
|
|
#include <minix/crtso.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <fcntl.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/utsname.h>
|
|
#include <string.h>
|
|
#include <machine/archtypes.h>
|
|
#include <env.h>
|
|
#include "mproc.h"
|
|
#include "param.h"
|
|
|
|
#include "kernel/const.h"
|
|
#include "kernel/config.h"
|
|
#include "kernel/proc.h"
|
|
|
|
#if ENABLE_SYSCALL_STATS
|
|
EXTERN unsigned long calls_stats[NCALLS];
|
|
#endif
|
|
|
|
static void sendreply(void);
|
|
static int get_nice_value(int queue);
|
|
static void handle_vfs_reply(void);
|
|
|
|
#define click_to_round_k(n) \
|
|
((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
|
|
|
|
/* SEF functions and variables. */
|
|
static void sef_local_startup(void);
|
|
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
|
|
static int sef_cb_signal_manager(endpoint_t target, int signo);
|
|
|
|
/*===========================================================================*
|
|
* main *
|
|
*===========================================================================*/
|
|
int main()
|
|
{
|
|
/* Main routine of the process manager. */
|
|
int result;
|
|
|
|
/* SEF local startup. */
|
|
sef_local_startup();
|
|
|
|
/* This is PM's main loop- get work and do it, forever and forever. */
|
|
while (TRUE) {
|
|
int ipc_status;
|
|
|
|
/* Wait for the next message and extract useful information from it. */
|
|
if (sef_receive_status(ANY, &m_in, &ipc_status) != OK)
|
|
panic("PM sef_receive_status error");
|
|
who_e = m_in.m_source; /* who sent the message */
|
|
if(pm_isokendpt(who_e, &who_p) != OK)
|
|
panic("PM got message from invalid endpoint: %d", who_e);
|
|
call_nr = m_in.m_type; /* system call number */
|
|
|
|
/* Process slot of caller. Misuse PM's own process slot if the kernel is
|
|
* calling. This can happen in case of synchronous alarms (CLOCK) or or
|
|
* event like pending kernel signals (SYSTEM).
|
|
*/
|
|
mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p];
|
|
if(who_p >= 0 && mp->mp_endpoint != who_e) {
|
|
panic("PM endpoint number out of sync with source: %d",
|
|
mp->mp_endpoint);
|
|
}
|
|
|
|
/* Drop delayed calls from exiting processes. */
|
|
if (mp->mp_flags & EXITING)
|
|
continue;
|
|
|
|
/* Check for system notifications first. Special cases. */
|
|
if (is_ipc_notify(ipc_status)) {
|
|
if (who_p == CLOCK) {
|
|
expire_timers(m_in.NOTIFY_TIMESTAMP);
|
|
}
|
|
|
|
/* done, send reply and continue */
|
|
sendreply();
|
|
continue;
|
|
}
|
|
|
|
switch(call_nr)
|
|
{
|
|
case PM_SETUID_REPLY:
|
|
case PM_SETGID_REPLY:
|
|
case PM_SETSID_REPLY:
|
|
case PM_EXEC_REPLY:
|
|
case PM_EXIT_REPLY:
|
|
case PM_CORE_REPLY:
|
|
case PM_FORK_REPLY:
|
|
case PM_SRV_FORK_REPLY:
|
|
case PM_UNPAUSE_REPLY:
|
|
case PM_REBOOT_REPLY:
|
|
case PM_SETGROUPS_REPLY:
|
|
if (who_e == VFS_PROC_NR)
|
|
{
|
|
handle_vfs_reply();
|
|
result= SUSPEND; /* don't reply */
|
|
}
|
|
else
|
|
result= ENOSYS;
|
|
break;
|
|
case COMMON_GETSYSINFO:
|
|
result = do_getsysinfo();
|
|
break;
|
|
default:
|
|
/* Else, if the system call number is valid, perform the
|
|
* call.
|
|
*/
|
|
if ((unsigned) call_nr >= NCALLS) {
|
|
result = ENOSYS;
|
|
} else {
|
|
#if ENABLE_SYSCALL_STATS
|
|
calls_stats[call_nr]++;
|
|
#endif
|
|
|
|
result = (*call_vec[call_nr])();
|
|
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Send reply. */
|
|
if (result != SUSPEND) setreply(who_p, result);
|
|
sendreply();
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_local_startup *
|
|
*===========================================================================*/
|
|
static void sef_local_startup()
|
|
{
|
|
/* Register init callbacks. */
|
|
sef_setcb_init_fresh(sef_cb_init_fresh);
|
|
sef_setcb_init_restart(sef_cb_init_fail);
|
|
|
|
/* No live update support for now. */
|
|
|
|
/* Register signal callbacks. */
|
|
sef_setcb_signal_manager(sef_cb_signal_manager);
|
|
|
|
/* Let SEF perform startup. */
|
|
sef_startup();
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_cb_init_fresh *
|
|
*===========================================================================*/
|
|
static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
|
|
{
|
|
/* Initialize the process manager.
|
|
* Memory use info is collected from the boot monitor, the kernel, and
|
|
* all processes compiled into the system image. Initially this information
|
|
* is put into an array mem_chunks. Elements of mem_chunks are struct memory,
|
|
* and hold base, size pairs in units of clicks. This array is small, there
|
|
* should be no more than 8 chunks. After the array of chunks has been built
|
|
* the contents are used to initialize the hole list. Space for the hole list
|
|
* is reserved as an array with twice as many elements as the maximum number
|
|
* of processes allowed. It is managed as a linked list, and elements of the
|
|
* array are struct hole, which, in addition to storage for a base and size in
|
|
* click units also contain space for a link, a pointer to another element.
|
|
*/
|
|
int s;
|
|
static struct boot_image image[NR_BOOT_PROCS];
|
|
register struct boot_image *ip;
|
|
static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
|
|
SIGEMT, SIGFPE, SIGBUS, SIGSEGV };
|
|
static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT };
|
|
static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE,
|
|
SIGBUS, SIGSEGV };
|
|
register struct mproc *rmp;
|
|
register char *sig_ptr;
|
|
message mess;
|
|
|
|
/* Initialize process table, including timers. */
|
|
for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
|
|
init_timer(&rmp->mp_timer);
|
|
rmp->mp_magic = MP_MAGIC;
|
|
}
|
|
|
|
/* Build the set of signals which cause core dumps, and the set of signals
|
|
* that are by default ignored.
|
|
*/
|
|
sigemptyset(&core_sset);
|
|
for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
|
|
sigaddset(&core_sset, *sig_ptr);
|
|
sigemptyset(&ign_sset);
|
|
for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
|
|
sigaddset(&ign_sset, *sig_ptr);
|
|
sigemptyset(&noign_sset);
|
|
for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++)
|
|
sigaddset(&noign_sset, *sig_ptr);
|
|
|
|
/* Obtain a copy of the boot monitor parameters and the kernel info struct.
|
|
* Parse the list of free memory chunks. This list is what the boot monitor
|
|
* reported, but it must be corrected for the kernel and system processes.
|
|
*/
|
|
if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
|
|
panic("get monitor params failed: %d", s);
|
|
if ((s=sys_getkinfo(&kinfo)) != OK)
|
|
panic("get kernel info failed: %d", s);
|
|
|
|
/* Initialize PM's process table. Request a copy of the system image table
|
|
* that is defined at the kernel level to see which slots to fill in.
|
|
*/
|
|
if (OK != (s=sys_getimage(image)))
|
|
panic("couldn't get image table: %d", s);
|
|
procs_in_use = 0; /* start populating table */
|
|
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
|
|
if (ip->proc_nr >= 0) { /* task have negative nrs */
|
|
procs_in_use += 1; /* found user process */
|
|
|
|
/* Set process details found in the image table. */
|
|
rmp = &mproc[ip->proc_nr];
|
|
strlcpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN);
|
|
(void) sigemptyset(&rmp->mp_ignore);
|
|
(void) sigemptyset(&rmp->mp_sigmask);
|
|
(void) sigemptyset(&rmp->mp_catch);
|
|
if (ip->proc_nr == INIT_PROC_NR) { /* user process */
|
|
/* INIT is root, we make it father of itself. This is
|
|
* not really OK, INIT should have no father, i.e.
|
|
* a father with pid NO_PID. But PM currently assumes
|
|
* that mp_parent always points to a valid slot number.
|
|
*/
|
|
rmp->mp_parent = INIT_PROC_NR;
|
|
rmp->mp_procgrp = rmp->mp_pid = INIT_PID;
|
|
rmp->mp_flags |= IN_USE;
|
|
|
|
/* Set scheduling info */
|
|
rmp->mp_scheduler = KERNEL;
|
|
rmp->mp_nice = get_nice_value(USR_Q);
|
|
}
|
|
else { /* system process */
|
|
if(ip->proc_nr == RS_PROC_NR) {
|
|
rmp->mp_parent = INIT_PROC_NR;
|
|
}
|
|
else {
|
|
rmp->mp_parent = RS_PROC_NR;
|
|
}
|
|
rmp->mp_pid = get_free_pid();
|
|
rmp->mp_flags |= IN_USE | PRIV_PROC;
|
|
|
|
/* RS schedules this process */
|
|
rmp->mp_scheduler = NONE;
|
|
rmp->mp_nice = get_nice_value(SRV_Q);
|
|
}
|
|
|
|
/* Get kernel endpoint identifier. */
|
|
rmp->mp_endpoint = ip->endpoint;
|
|
|
|
/* Tell VFS about this system process. */
|
|
mess.m_type = PM_INIT;
|
|
mess.PM_SLOT = ip->proc_nr;
|
|
mess.PM_PID = rmp->mp_pid;
|
|
mess.PM_PROC = rmp->mp_endpoint;
|
|
if (OK != (s=send(VFS_PROC_NR, &mess)))
|
|
panic("can't sync up with VFS: %d", s);
|
|
}
|
|
}
|
|
|
|
/* Tell VFS that no more system processes follow and synchronize. */
|
|
mess.PR_ENDPT = NONE;
|
|
if (sendrec(VFS_PROC_NR, &mess) != OK || mess.m_type != OK)
|
|
panic("can't sync up with VFS");
|
|
|
|
#if defined(__i386__)
|
|
uts_val.machine[0] = 'i';
|
|
strcpy(uts_val.machine + 1, itoa(getprocessor()));
|
|
#elif defined(__arm__)
|
|
strcpy(uts_val.machine, "arm");
|
|
#endif
|
|
|
|
system_hz = sys_hz();
|
|
|
|
/* Initialize user-space scheduling. */
|
|
sched_init();
|
|
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_cb_signal_manager *
|
|
*===========================================================================*/
|
|
static int sef_cb_signal_manager(endpoint_t target, int signo)
|
|
{
|
|
/* Process signal on behalf of the kernel. */
|
|
int r;
|
|
|
|
r = process_ksig(target, signo);
|
|
sendreply();
|
|
|
|
return r;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* setreply *
|
|
*===========================================================================*/
|
|
void setreply(proc_nr, result)
|
|
int proc_nr; /* process to reply to */
|
|
int result; /* result of call (usually OK or error #) */
|
|
{
|
|
/* Fill in a reply message to be sent later to a user process. System calls
|
|
* may occasionally fill in other fields, this is only for the main return
|
|
* value, and for setting the "must send reply" flag.
|
|
*/
|
|
register struct mproc *rmp = &mproc[proc_nr];
|
|
|
|
if(proc_nr < 0 || proc_nr >= NR_PROCS)
|
|
panic("setreply arg out of range: %d", proc_nr);
|
|
|
|
rmp->mp_reply.reply_res = result;
|
|
rmp->mp_flags |= REPLY; /* reply pending */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sendreply *
|
|
*===========================================================================*/
|
|
static void sendreply()
|
|
{
|
|
int proc_nr;
|
|
int s;
|
|
struct mproc *rmp;
|
|
|
|
/* Send out all pending reply messages, including the answer to
|
|
* the call just made above.
|
|
*/
|
|
for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
|
|
/* In the meantime, the process may have been killed by a
|
|
* signal (e.g. if a lethal pending signal was unblocked)
|
|
* without the PM realizing it. If the slot is no longer in
|
|
* use or the process is exiting, don't try to reply.
|
|
*/
|
|
if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) ==
|
|
(REPLY | IN_USE)) {
|
|
s=sendnb(rmp->mp_endpoint, &rmp->mp_reply);
|
|
if (s != OK) {
|
|
printf("PM can't reply to %d (%s): %d\n",
|
|
rmp->mp_endpoint, rmp->mp_name, s);
|
|
}
|
|
rmp->mp_flags &= ~REPLY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_nice_value *
|
|
*===========================================================================*/
|
|
static int get_nice_value(queue)
|
|
int queue; /* store mem chunks here */
|
|
{
|
|
/* Processes in the boot image have a priority assigned. The PM doesn't know
|
|
* about priorities, but uses 'nice' values instead. The priority is between
|
|
* MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
|
|
*/
|
|
int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) /
|
|
(MIN_USER_Q-MAX_USER_Q+1);
|
|
if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */
|
|
if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */
|
|
return nice_val;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* handle_vfs_reply *
|
|
*===========================================================================*/
|
|
static void handle_vfs_reply()
|
|
{
|
|
struct mproc *rmp;
|
|
endpoint_t proc_e;
|
|
int r, proc_n;
|
|
|
|
/* PM_REBOOT is the only request not associated with a process.
|
|
* Handle its reply first.
|
|
*/
|
|
if (call_nr == PM_REBOOT_REPLY) {
|
|
/* Ask the kernel to abort. All system services, including
|
|
* the PM, will get a HARD_STOP notification. Await the
|
|
* notification in the main loop.
|
|
*/
|
|
sys_abort(RBT_DEFAULT);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Get the process associated with this call */
|
|
proc_e = m_in.PM_PROC;
|
|
|
|
if (pm_isokendpt(proc_e, &proc_n) != OK) {
|
|
panic("handle_vfs_reply: got bad endpoint from VFS: %d", proc_e);
|
|
}
|
|
|
|
rmp = &mproc[proc_n];
|
|
|
|
/* Now that VFS replied, mark the process as VFS-idle again */
|
|
if (!(rmp->mp_flags & VFS_CALL))
|
|
panic("handle_vfs_reply: reply without request: %d", call_nr);
|
|
|
|
rmp->mp_flags &= ~VFS_CALL;
|
|
|
|
if (rmp->mp_flags & UNPAUSED)
|
|
panic("handle_vfs_reply: UNPAUSED set on entry: %d", call_nr);
|
|
|
|
/* Call-specific handler code */
|
|
switch (call_nr) {
|
|
case PM_SETUID_REPLY:
|
|
case PM_SETGID_REPLY:
|
|
case PM_SETGROUPS_REPLY:
|
|
/* Wake up the original caller */
|
|
setreply(rmp-mproc, OK);
|
|
|
|
break;
|
|
|
|
case PM_SETSID_REPLY:
|
|
/* Wake up the original caller */
|
|
setreply(rmp-mproc, rmp->mp_procgrp);
|
|
|
|
break;
|
|
|
|
case PM_EXEC_REPLY:
|
|
exec_restart(rmp, m_in.PM_STATUS, (vir_bytes)m_in.PM_PC,
|
|
(vir_bytes)m_in.PM_NEWSP);
|
|
|
|
break;
|
|
|
|
case PM_EXIT_REPLY:
|
|
exit_restart(rmp, FALSE /*dump_core*/);
|
|
|
|
break;
|
|
|
|
case PM_CORE_REPLY:
|
|
if (m_in.PM_STATUS == OK)
|
|
rmp->mp_sigstatus |= DUMPED;
|
|
|
|
if (m_in.PM_PROC == m_in.PM_TRACED_PROC)
|
|
/* The reply is to a core dump request
|
|
* for a killed process */
|
|
exit_restart(rmp, TRUE /*dump_core*/);
|
|
else
|
|
/* The reply is to a core dump request
|
|
* for a traced process (T_DUMPCORE) */
|
|
/* Wake up the original caller */
|
|
setreply(rmp-mproc, rmp->mp_procgrp);
|
|
|
|
break;
|
|
|
|
case PM_FORK_REPLY:
|
|
/* Schedule the newly created process ... */
|
|
r = (OK);
|
|
if (rmp->mp_scheduler != KERNEL && rmp->mp_scheduler != NONE) {
|
|
r = sched_start_user(rmp->mp_scheduler, rmp);
|
|
}
|
|
|
|
/* If scheduling the process failed, we want to tear down the process
|
|
* and fail the fork */
|
|
if (r != (OK)) {
|
|
/* Tear down the newly created process */
|
|
rmp->mp_scheduler = NONE; /* don't try to stop scheduling */
|
|
exit_proc(rmp, -1, FALSE /*dump_core*/);
|
|
|
|
/* Wake up the parent with a failed fork */
|
|
setreply(rmp->mp_parent, -1);
|
|
|
|
}
|
|
else {
|
|
/* Wake up the child */
|
|
setreply(proc_n, OK);
|
|
|
|
/* Wake up the parent */
|
|
setreply(rmp->mp_parent, rmp->mp_pid);
|
|
}
|
|
|
|
break;
|
|
|
|
case PM_SRV_FORK_REPLY:
|
|
/* Nothing to do */
|
|
|
|
break;
|
|
|
|
case PM_UNPAUSE_REPLY:
|
|
/* Process is now unpaused */
|
|
rmp->mp_flags |= UNPAUSED;
|
|
|
|
break;
|
|
|
|
default:
|
|
panic("handle_vfs_reply: unknown reply code: %d", call_nr);
|
|
}
|
|
|
|
/* Now that the process is idle again, look at pending signals */
|
|
if ((rmp->mp_flags & (IN_USE | EXITING)) == IN_USE)
|
|
restart_sigs(rmp);
|
|
}
|