minix/servers/ext2/inode.c
Ben Gras bd3cde4571 Move primary cache code to libminixfs.
Add primary cache management feature to libminixfs as mfs and ext2
currently do separately, remove cache code from mfs and ext2, and make
them use the libminixfs interface. This makes all fields of the buf
struct private to libminixfs and FS clients aren't supposed to access
them at all. Only the opaque 'void *data' field (the FS block contents,
used to be called bp) is to be accessed by the FS client.

The main purpose is to implement the interface to the 2ndary vm cache
just once, get rid of some code duplication, and add a little
abstraction to reduce the code inertia of the whole caching business.

Some minor sanity checking and prohibition done by mfs in this code
as removed from the generic primary cache code as a result:
        - checking all inodes are not in use when allocating/resizing
          the cache
        - checking readonly filesystems aren't written to
        - checking the superblock isn't written to on mounted filesystems

The minixfslib code relies on fs_blockstats() in the client filesystem to
return some FS usage information.
2012-10-23 19:48:38 +02:00

427 lines
14 KiB
C

/* This file manages the inode table. There are procedures to allocate and
* deallocate inodes, acquire, erase, and release them, and read and write
* them from the disk.
*
* The entry points into this file are
* get_inode: search inode table for a given inode; if not there,
* read it
* put_inode: indicate that an inode is no longer needed in memory
* update_times: update atime, ctime, and mtime
* rw_inode: read a disk block and extract an inode, or corresp. write
* dup_inode: indicate that someone else is using an inode table entry
* find_inode: retrieve pointer to inode in inode cache
*
* Created (MFS based):
* February 2010 (Evgeniy Ivanov)
*/
#include "fs.h"
#include <string.h>
#include "buf.h"
#include "inode.h"
#include "super.h"
#include <minix/vfsif.h>
static void icopy(struct inode *rip, d_inode *dip, int direction, int
norm);
static void addhash_inode(struct inode *node);
static void unhash_inode(struct inode *node);
/*===========================================================================*
* fs_putnode *
*===========================================================================*/
int fs_putnode(void)
{
/* Find the inode specified by the request message and decrease its counter.*/
struct inode *rip;
int count;
rip = find_inode(fs_dev, (ino_t) fs_m_in.REQ_INODE_NR);
if (!rip) {
printf("%s:%d put_inode: inode #%lu dev: %d not found\n", __FILE__,
__LINE__, (ino_t) fs_m_in.REQ_INODE_NR, fs_dev);
panic("fs_putnode failed");
}
count = fs_m_in.REQ_COUNT;
if (count <= 0) {
printf("%s:%d put_inode: bad value for count: %d\n", __FILE__,
__LINE__, count);
panic("fs_putnode failed");
} else if (count > rip->i_count) {
printf("%s:%d put_inode: count too high: %d > %d\n", __FILE__,
__LINE__, count, rip->i_count);
panic("fs_putnode failed");
}
/* Decrease reference counter, but keep one reference;
* it will be consumed by put_inode().
*/
rip->i_count -= count - 1;
put_inode(rip);
return(OK);
}
/*===========================================================================*
* init_inode_cache *
*===========================================================================*/
void init_inode_cache()
{
struct inode *rip;
struct inodelist *rlp;
inode_cache_hit = 0;
inode_cache_miss = 0;
/* init free/unused list */
TAILQ_INIT(&unused_inodes);
/* init hash lists */
for (rlp = &hash_inodes[0]; rlp < &hash_inodes[INODE_HASH_SIZE]; ++rlp)
LIST_INIT(rlp);
/* add free inodes to unused/free list */
for (rip = &inode[0]; rip < &inode[NR_INODES]; ++rip) {
rip->i_num = NO_ENTRY;
TAILQ_INSERT_HEAD(&unused_inodes, rip, i_unused);
}
}
/*===========================================================================*
* addhash_inode *
*===========================================================================*/
static void addhash_inode(struct inode *node)
{
int hashi = node->i_num & INODE_HASH_MASK;
/* insert into hash table */
LIST_INSERT_HEAD(&hash_inodes[hashi], node, i_hash);
}
/*===========================================================================*
* unhash_inode *
*===========================================================================*/
static void unhash_inode(struct inode *node)
{
/* remove from hash table */
LIST_REMOVE(node, i_hash);
}
/*===========================================================================*
* get_inode *
*===========================================================================*/
struct inode *get_inode(
dev_t dev, /* device on which inode resides */
ino_t numb /* inode number (ANSI: may not be unshort) */
)
{
/* Find the inode in the hash table. If it is not there, get a free inode
* load it from the disk if it's necessary and put on the hash list
*/
register struct inode *rip;
int hashi;
int i;
hashi = (int) numb & INODE_HASH_MASK;
/* Search inode in the hash table */
LIST_FOREACH(rip, &hash_inodes[hashi], i_hash) {
if (rip->i_num == numb && rip->i_dev == dev) {
/* If unused, remove it from the unused/free list */
if (rip->i_count == 0) {
inode_cache_hit++;
TAILQ_REMOVE(&unused_inodes, rip, i_unused);
}
++rip->i_count;
return(rip);
}
}
inode_cache_miss++;
/* Inode is not on the hash, get a free one */
if (TAILQ_EMPTY(&unused_inodes)) {
err_code = ENFILE;
return(NULL);
}
rip = TAILQ_FIRST(&unused_inodes);
/* If not free unhash it */
if (rip->i_num != NO_ENTRY)
unhash_inode(rip);
/* Inode is not unused any more */
TAILQ_REMOVE(&unused_inodes, rip, i_unused);
/* Load the inode. */
rip->i_dev = dev;
rip->i_num = numb;
rip->i_count = 1;
if (dev != NO_DEV)
rw_inode(rip, READING); /* get inode from disk */
rip->i_update = 0; /* all the times are initially up-to-date */
rip->i_last_dpos = 0; /* no dentries searched for yet */
rip->i_bsearch = NO_BLOCK;
rip->i_last_pos_bl_alloc = 0;
rip->i_last_dentry_size = 0;
rip->i_mountpoint= FALSE;
rip->i_preallocation = opt.use_prealloc;
rip->i_prealloc_count = rip->i_prealloc_index = 0;
for (i = 0; i < EXT2_PREALLOC_BLOCKS; i++) {
if (rip->i_prealloc_blocks[i] != NO_BLOCK) {
/* Actually this should never happen */
free_block(rip->i_sp, rip->i_prealloc_blocks[i]);
rip->i_prealloc_blocks[i] = NO_BLOCK;
ext2_debug("Warning: Unexpected preallocated block.");
}
}
/* Add to hash */
addhash_inode(rip);
return(rip);
}
/*===========================================================================*
* find_inode *
*===========================================================================*/
struct inode *find_inode(
dev_t dev, /* device on which inode resides */
ino_t numb /* inode number (ANSI: may not be unshort) */
)
{
/* Find the inode specified by the inode and device number. */
struct inode *rip;
int hashi;
hashi = (int) numb & INODE_HASH_MASK;
/* Search inode in the hash table */
LIST_FOREACH(rip, &hash_inodes[hashi], i_hash) {
if (rip->i_count > 0 && rip->i_num == numb && rip->i_dev == dev) {
return(rip);
}
}
return(NULL);
}
/*===========================================================================*
* put_inode *
*===========================================================================*/
void put_inode(
register struct inode *rip /* pointer to inode to be released */
)
{
/* The caller is no longer using this inode. If no one else is using it either
* write it back to the disk immediately. If it has no links, truncate it and
* return it to the pool of available inodes.
*/
if (rip == NULL)
return; /* checking here is easier than in caller */
if (rip->i_count < 1)
panic("put_inode: i_count already below 1", rip->i_count);
if (--rip->i_count == 0) { /* i_count == 0 means no one is using it now */
if (rip->i_links_count == NO_LINK) {
/* i_nlinks == NO_LINK means free the inode. */
/* return all the disk blocks */
/* Ignore errors by truncate_inode in case inode is a block
* special or character special file.
*/
(void) truncate_inode(rip, (off_t) 0);
/* free inode clears I_TYPE field, since it's used there */
rip->i_dirt = IN_DIRTY;
free_inode(rip);
}
rip->i_mountpoint = FALSE;
if (rip->i_dirt == IN_DIRTY) rw_inode(rip, WRITING);
discard_preallocated_blocks(rip); /* Return blocks to the filesystem */
if (rip->i_links_count == NO_LINK) {
/* free, put at the front of the LRU list */
unhash_inode(rip);
rip->i_num = NO_ENTRY;
TAILQ_INSERT_HEAD(&unused_inodes, rip, i_unused);
} else {
/* unused, put at the back of the LRU (cache it) */
TAILQ_INSERT_TAIL(&unused_inodes, rip, i_unused);
}
}
}
/*===========================================================================*
* update_times *
*===========================================================================*/
void update_times(
register struct inode *rip /* pointer to inode to be read/written */
)
{
/* Various system calls are required by the standard to update atime, ctime,
* or mtime. Since updating a time requires sending a message to the clock
* task--an expensive business--the times are marked for update by setting
* bits in i_update. When a stat, fstat, or sync is done, or an inode is
* released, update_times() may be called to actually fill in the times.
*/
time_t cur_time;
struct super_block *sp;
sp = rip->i_sp; /* get pointer to super block. */
if (sp->s_rd_only)
return; /* no updates for read-only file systems */
cur_time = clock_time();
if (rip->i_update & ATIME)
rip->i_atime = cur_time;
if (rip->i_update & CTIME)
rip->i_ctime = cur_time;
if (rip->i_update & MTIME)
rip->i_mtime = cur_time;
rip->i_update = 0; /* they are all up-to-date now */
}
/*===========================================================================*
* rw_inode *
*===========================================================================*/
void rw_inode(
register struct inode *rip, /* pointer to inode to be read/written */
int rw_flag /* READING or WRITING */
)
{
/* An entry in the inode table is to be copied to or from the disk. */
register struct buf *bp;
register struct super_block *sp;
register struct group_desc *gd;
register d_inode *dip;
u32_t block_group_number;
block_t b, offset;
/* Get the block where the inode resides. */
sp = get_super(rip->i_dev); /* get pointer to super block */
rip->i_sp = sp; /* inode must contain super block pointer */
block_group_number = (rip->i_num - 1) / sp->s_inodes_per_group;
gd = get_group_desc(block_group_number);
if (gd == NULL)
panic("can't get group_desc to read/write inode");
offset = ((rip->i_num - 1) % sp->s_inodes_per_group) * EXT2_INODE_SIZE(sp);
/* offset requires shifting, since each block contains several inodes,
* e.g. inode 2 is stored in bklock 0.
*/
b = (block_t) gd->inode_table + (offset >> sp->s_blocksize_bits);
bp = get_block(rip->i_dev, b, NORMAL);
offset &= (sp->s_block_size - 1);
dip = (d_inode*) (b_data(bp) + offset);
/* Do the read or write. */
if (rw_flag == WRITING) {
if (rip->i_update)
update_times(rip); /* times need updating */
if (sp->s_rd_only == FALSE)
lmfs_markdirty(bp);
}
icopy(rip, dip, rw_flag, TRUE);
put_block(bp, INODE_BLOCK);
rip->i_dirt = IN_CLEAN;
}
/*===========================================================================*
* icopy *
*===========================================================================*/
static void icopy(
register struct inode *rip, /* pointer to the in-core inode struct */
register d_inode *dip, /* pointer to the on-disk struct */
int direction, /* READING (from disk) or WRITING (to disk) */
int norm /* TRUE = do not swap bytes; FALSE = swap */
)
{
int i;
if (direction == READING) {
/* Copy inode to the in-core table, swapping bytes if need be. */
rip->i_mode = conv2(norm,dip->i_mode);
rip->i_uid = conv2(norm,dip->i_uid);
rip->i_size = conv4(norm,dip->i_size);
rip->i_atime = conv4(norm,dip->i_atime);
rip->i_ctime = conv4(norm,dip->i_ctime);
rip->i_mtime = conv4(norm,dip->i_mtime);
rip->i_dtime = conv4(norm,dip->i_dtime);
rip->i_gid = conv2(norm,dip->i_gid);
rip->i_links_count = conv2(norm,dip->i_links_count);
rip->i_blocks = conv4(norm,dip->i_blocks);
rip->i_flags = conv4(norm,dip->i_flags);
/* Minix doesn't touch osd1 and osd2 either, so just copy. */
memcpy(&rip->osd1, &dip->osd1, sizeof(rip->osd1));
for (i = 0; i < EXT2_N_BLOCKS; i++)
rip->i_block[i] = conv4(norm, dip->i_block[i]);
rip->i_generation = conv4(norm,dip->i_generation);
rip->i_file_acl = conv4(norm,dip->i_file_acl);
rip->i_dir_acl = conv4(norm,dip->i_dir_acl);
rip->i_faddr = conv4(norm,dip->i_faddr);
memcpy(&rip->osd2, &dip->osd2, sizeof(rip->osd2));
} else {
/* Copying inode to disk from the in-core table. */
dip->i_mode = conv2(norm,rip->i_mode);
dip->i_uid = conv2(norm,rip->i_uid);
dip->i_size = conv4(norm,rip->i_size);
dip->i_atime = conv4(norm,rip->i_atime);
dip->i_ctime = conv4(norm,rip->i_ctime);
dip->i_mtime = conv4(norm,rip->i_mtime);
dip->i_dtime = conv4(norm,rip->i_dtime);
dip->i_gid = conv2(norm,rip->i_gid);
dip->i_links_count = conv2(norm,rip->i_links_count);
dip->i_blocks = conv4(norm,rip->i_blocks);
dip->i_flags = conv4(norm,rip->i_flags);
/* Minix doesn't touch osd1 and osd2 either, so just copy. */
memcpy(&dip->osd1, &rip->osd1, sizeof(dip->osd1));
for (i = 0; i < EXT2_N_BLOCKS; i++)
dip->i_block[i] = conv4(norm, rip->i_block[i]);
dip->i_generation = conv4(norm,rip->i_generation);
dip->i_file_acl = conv4(norm,rip->i_file_acl);
dip->i_dir_acl = conv4(norm,rip->i_dir_acl);
dip->i_faddr = conv4(norm,rip->i_faddr);
memcpy(&dip->osd2, &rip->osd2, sizeof(dip->osd2));
}
}
/*===========================================================================*
* dup_inode *
*===========================================================================*/
void dup_inode(
struct inode *ip /* The inode to be duplicated. */
)
{
/* This routine is a simplified form of get_inode() for the case where
* the inode pointer is already known.
*/
ip->i_count++;
}