5bc48ef12e
. by making the address and frequency of the free running clock kinfo members, set at runtime in the kernel, instead of compile time constants in libsys Change-Id: I4a8387302d4d3ffd47d2448525725683a74c9a4f
913 lines
25 KiB
C
913 lines
25 KiB
C
|
|
#include "kernel/kernel.h"
|
|
#include "kernel/proc.h"
|
|
#include "kernel/vm.h"
|
|
|
|
#include <machine/vm.h>
|
|
|
|
#include <minix/type.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/cpufeature.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <machine/vm.h>
|
|
|
|
#include "arch_proto.h"
|
|
#include "kernel/proto.h"
|
|
#include "kernel/debug.h"
|
|
#include "omap_timer.h"
|
|
|
|
|
|
#define HASPT(procptr) ((procptr)->p_seg.p_ttbr != 0)
|
|
static int nfreepdes = 0;
|
|
#define MAXFREEPDES 2
|
|
static int freepdes[MAXFREEPDES];
|
|
|
|
static u32_t phys_get32(phys_bytes v);
|
|
|
|
/* list of requested physical mapping */
|
|
static kern_phys_map *kern_phys_map_head;
|
|
|
|
void mem_clear_mapcache(void)
|
|
{
|
|
int i;
|
|
for(i = 0; i < nfreepdes; i++) {
|
|
struct proc *ptproc = get_cpulocal_var(ptproc);
|
|
int pde = freepdes[i];
|
|
u32_t *ptv;
|
|
assert(ptproc);
|
|
ptv = ptproc->p_seg.p_ttbr_v;
|
|
assert(ptv);
|
|
ptv[pde] = 0;
|
|
}
|
|
}
|
|
|
|
/* This function sets up a mapping from within the kernel's address
|
|
* space to any other area of memory, either straight physical
|
|
* memory (pr == NULL) or a process view of memory, in 1MB windows.
|
|
* I.e., it maps in 1MB chunks of virtual (or physical) address space
|
|
* to 1MB chunks of kernel virtual address space.
|
|
*
|
|
* It recognizes pr already being in memory as a special case (no
|
|
* mapping required).
|
|
*
|
|
* The target (i.e. in-kernel) mapping area is one of the freepdes[]
|
|
* VM has earlier already told the kernel about that is available. It is
|
|
* identified as the 'pde' parameter. This value can be chosen freely
|
|
* by the caller, as long as it is in range (i.e. 0 or higher and corresonds
|
|
* to a known freepde slot). It is up to the caller to keep track of which
|
|
* freepde's are in use, and to determine which ones are free to use.
|
|
*
|
|
* The logical number supplied by the caller is translated into an actual
|
|
* pde number to be used, and a pointer to it (linear address) is returned
|
|
* for actual use by phys_copy or memset.
|
|
*/
|
|
static phys_bytes createpde(
|
|
const struct proc *pr, /* Requested process, NULL for physical. */
|
|
const phys_bytes linaddr,/* Address after segment translation. */
|
|
phys_bytes *bytes, /* Size of chunk, function may truncate it. */
|
|
int free_pde_idx, /* index of the free slot to use */
|
|
int *changed /* If mapping is made, this is set to 1. */
|
|
)
|
|
{
|
|
u32_t pdeval;
|
|
phys_bytes offset;
|
|
int pde;
|
|
|
|
assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
|
|
pde = freepdes[free_pde_idx];
|
|
assert(pde >= 0 && pde < 4096);
|
|
|
|
if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) {
|
|
/* Process memory is requested, and
|
|
* it's a process that is already in current page table, or
|
|
* the kernel, which is always there.
|
|
* Therefore linaddr is valid directly, with the requested
|
|
* size.
|
|
*/
|
|
return linaddr;
|
|
}
|
|
|
|
if(pr) {
|
|
/* Requested address is in a process that is not currently
|
|
* accessible directly. Grab the PDE entry of that process'
|
|
* page table that corresponds to the requested address.
|
|
*/
|
|
assert(pr->p_seg.p_ttbr_v);
|
|
pdeval = pr->p_seg.p_ttbr_v[ARM_VM_PDE(linaddr)];
|
|
} else {
|
|
/* Requested address is physical. Make up the PDE entry. */
|
|
pdeval = (linaddr & ARM_VM_SECTION_MASK)
|
|
| ARM_VM_SECTION
|
|
| ARM_VM_SECTION_DOMAIN
|
|
| ARM_VM_SECTION_DEVICE
|
|
| ARM_VM_SECTION_USER;
|
|
}
|
|
|
|
/* Write the pde value that we need into a pde that the kernel
|
|
* can access, into the currently loaded page table so it becomes
|
|
* visible.
|
|
*/
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
|
|
if(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] != pdeval) {
|
|
get_cpulocal_var(ptproc)->p_seg.p_ttbr_v[pde] = pdeval;
|
|
*changed = 1;
|
|
}
|
|
|
|
/* Memory is now available, but only the 1MB window of virtual
|
|
* address space that we have mapped; calculate how much of
|
|
* the requested range is visible and return that in *bytes,
|
|
* if that is less than the requested range.
|
|
*/
|
|
offset = linaddr & ARM_VM_OFFSET_MASK_1MB; /* Offset in 1MB window. */
|
|
*bytes = MIN(*bytes, ARM_SECTION_SIZE - offset);
|
|
|
|
/* Return the linear address of the start of the new mapping. */
|
|
return ARM_SECTION_SIZE*pde + offset;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* check_resumed_caller *
|
|
*===========================================================================*/
|
|
static int check_resumed_caller(struct proc *caller)
|
|
{
|
|
/* Returns the result from VM if caller was resumed, otherwise OK. */
|
|
if (caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
|
|
assert(caller->p_vmrequest.vmresult != VMSUSPEND);
|
|
return caller->p_vmrequest.vmresult;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lin_lin_copy *
|
|
*===========================================================================*/
|
|
static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
|
|
struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
|
|
{
|
|
u32_t addr;
|
|
proc_nr_t procslot;
|
|
|
|
assert(get_cpulocal_var(ptproc));
|
|
assert(get_cpulocal_var(proc_ptr));
|
|
assert(read_ttbr0() == get_cpulocal_var(ptproc)->p_seg.p_ttbr);
|
|
|
|
procslot = get_cpulocal_var(ptproc)->p_nr;
|
|
|
|
assert(procslot >= 0 && procslot < ARM_VM_DIR_ENTRIES);
|
|
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
|
|
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
|
|
|
|
while(bytes > 0) {
|
|
phys_bytes srcptr, dstptr;
|
|
vir_bytes chunk = bytes;
|
|
int changed = 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned cpu = cpuid;
|
|
|
|
if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) {
|
|
changed = 1;
|
|
UNSET_BIT(srcproc->p_stale_tlb, cpu);
|
|
}
|
|
if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) {
|
|
changed = 1;
|
|
UNSET_BIT(dstproc->p_stale_tlb, cpu);
|
|
}
|
|
#endif
|
|
|
|
/* Set up 1MB ranges. */
|
|
srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
|
|
dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
|
|
if(changed) {
|
|
reload_ttbr0();
|
|
}
|
|
/* Copy pages. */
|
|
PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
|
|
|
|
if(addr) {
|
|
/* If addr is nonzero, a page fault was caught.
|
|
*
|
|
* phys_copy does all memory accesses word-aligned (rounded
|
|
* down), so pagefaults can occur at a lower address than
|
|
* the specified offsets. compute the lower bounds for sanity
|
|
* check use.
|
|
*/
|
|
vir_bytes src_aligned = srcptr & ~0x3, dst_aligned = dstptr & ~0x3;
|
|
|
|
if(addr >= src_aligned && addr < (srcptr + chunk)) {
|
|
return EFAULT_SRC;
|
|
}
|
|
if(addr >= dst_aligned && addr < (dstptr + chunk)) {
|
|
return EFAULT_DST;
|
|
}
|
|
|
|
panic("lin_lin_copy fault out of range");
|
|
|
|
/* Not reached. */
|
|
return EFAULT;
|
|
}
|
|
|
|
/* Update counter and addresses for next iteration, if any. */
|
|
bytes -= chunk;
|
|
srclinaddr += chunk;
|
|
dstlinaddr += chunk;
|
|
}
|
|
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
|
|
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
|
|
|
|
return OK;
|
|
}
|
|
|
|
static u32_t phys_get32(phys_bytes addr)
|
|
{
|
|
const u32_t v;
|
|
int r;
|
|
|
|
if((r=lin_lin_copy(NULL, addr,
|
|
proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) {
|
|
panic("lin_lin_copy for phys_get32 failed: %d", r);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_virtual *
|
|
*===========================================================================*/
|
|
phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
phys_bytes phys = 0;
|
|
|
|
if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) {
|
|
printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
|
|
phys = 0;
|
|
} else {
|
|
if(phys == 0)
|
|
panic("vm_lookup returned phys: 0x%lx", phys);
|
|
}
|
|
|
|
if(phys == 0) {
|
|
printf("SYSTEM:umap_virtual: lookup failed\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Now make sure addresses are contiguous in physical memory
|
|
* so that the umap makes sense.
|
|
*/
|
|
if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) {
|
|
printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
|
|
rp->p_name, bytes, vir_addr, vir_addr);
|
|
return 0;
|
|
}
|
|
|
|
/* phys must be larger than 0 (or the caller will think the call
|
|
* failed), and address must not cross a page boundary.
|
|
*/
|
|
assert(phys);
|
|
|
|
return phys;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* vm_lookup *
|
|
*===========================================================================*/
|
|
int vm_lookup(const struct proc *proc, const vir_bytes virtual,
|
|
phys_bytes *physical, u32_t *ptent)
|
|
{
|
|
u32_t *root, *pt;
|
|
int pde, pte;
|
|
u32_t pde_v, pte_v;
|
|
|
|
assert(proc);
|
|
assert(physical);
|
|
assert(!isemptyp(proc));
|
|
assert(HASPT(proc));
|
|
|
|
/* Retrieve page directory entry. */
|
|
root = (u32_t *) proc->p_seg.p_ttbr;
|
|
assert(!((u32_t) root % ARM_PAGEDIR_SIZE));
|
|
pde = ARM_VM_PDE(virtual);
|
|
assert(pde >= 0 && pde < ARM_VM_DIR_ENTRIES);
|
|
pde_v = phys_get32((u32_t) (root + pde));
|
|
|
|
if(!(pde_v & ARM_VM_PDE_PRESENT)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
/* We don't expect to ever see this.
|
|
* LSC Impossible with the previous test.
|
|
if(pde_v & ARM_VM_SECTION) {
|
|
*physical = pde_v & ARM_VM_SECTION_MASK;
|
|
if(ptent) *ptent = pde_v;
|
|
*physical += virtual & ARM_VM_OFFSET_MASK_1MB;
|
|
} else */ {
|
|
/* Retrieve page table entry. */
|
|
pt = (u32_t *) (pde_v & ARM_VM_PDE_MASK);
|
|
assert(!((u32_t) pt % ARM_PAGETABLE_SIZE));
|
|
pte = ARM_VM_PTE(virtual);
|
|
assert(pte >= 0 && pte < ARM_VM_PT_ENTRIES);
|
|
pte_v = phys_get32((u32_t) (pt + pte));
|
|
if(!(pte_v & ARM_VM_PTE_PRESENT)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
if(ptent) *ptent = pte_v;
|
|
|
|
/* Actual address now known; retrieve it and add page offset. */
|
|
*physical = pte_v & ARM_VM_PTE_MASK;
|
|
*physical += virtual % ARM_PAGE_SIZE;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_lookup_range *
|
|
*===========================================================================*/
|
|
size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr,
|
|
phys_bytes *phys_addr, size_t bytes)
|
|
{
|
|
/* Look up the physical address corresponding to linear virtual address
|
|
* 'vir_addr' for process 'proc'. Return the size of the range covered
|
|
* by contiguous physical memory starting from that address; this may
|
|
* be anywhere between 0 and 'bytes' inclusive. If the return value is
|
|
* nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the
|
|
* base physical address of the range. 'vir_addr' and 'bytes' need not
|
|
* be page-aligned, but the caller must have verified that the given
|
|
* linear range is valid for the given process at all.
|
|
*/
|
|
phys_bytes phys, next_phys;
|
|
size_t len;
|
|
|
|
assert(proc);
|
|
assert(bytes > 0);
|
|
assert(HASPT(proc));
|
|
|
|
/* Look up the first page. */
|
|
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
|
|
return 0;
|
|
|
|
if (phys_addr != NULL)
|
|
*phys_addr = phys;
|
|
|
|
len = ARM_PAGE_SIZE - (vir_addr % ARM_PAGE_SIZE);
|
|
vir_addr += len;
|
|
next_phys = phys + len;
|
|
|
|
/* Look up any next pages and test physical contiguity. */
|
|
while (len < bytes) {
|
|
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
|
|
break;
|
|
|
|
if (next_phys != phys)
|
|
break;
|
|
|
|
len += ARM_PAGE_SIZE;
|
|
vir_addr += ARM_PAGE_SIZE;
|
|
next_phys += ARM_PAGE_SIZE;
|
|
}
|
|
|
|
/* We might now have overshot the requested length somewhat. */
|
|
return MIN(bytes, len);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_suspend *
|
|
*===========================================================================*/
|
|
static void vm_suspend(struct proc *caller, const struct proc *target,
|
|
const vir_bytes linaddr, const vir_bytes len, const int type)
|
|
{
|
|
/* This range is not OK for this process. Set parameters
|
|
* of the request and notify VM about the pending request.
|
|
*/
|
|
assert(!RTS_ISSET(caller, RTS_VMREQUEST));
|
|
assert(!RTS_ISSET(target, RTS_VMREQUEST));
|
|
|
|
RTS_SET(caller, RTS_VMREQUEST);
|
|
|
|
caller->p_vmrequest.req_type = VMPTYPE_CHECK;
|
|
caller->p_vmrequest.target = target->p_endpoint;
|
|
caller->p_vmrequest.params.check.start = linaddr;
|
|
caller->p_vmrequest.params.check.length = len;
|
|
caller->p_vmrequest.params.check.writeflag = 1;
|
|
caller->p_vmrequest.type = type;
|
|
|
|
/* Connect caller on vmrequest wait queue. */
|
|
if(!(caller->p_vmrequest.nextrequestor = vmrequest))
|
|
if(OK != send_sig(VM_PROC_NR, SIGKMEM))
|
|
panic("send_sig failed");
|
|
vmrequest = caller;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_check_range *
|
|
*===========================================================================*/
|
|
int vm_check_range(struct proc *caller, struct proc *target,
|
|
vir_bytes vir_addr, size_t bytes)
|
|
{
|
|
/* Public interface to vm_suspend(), for use by kernel calls. On behalf
|
|
* of 'caller', call into VM to check linear virtual address range of
|
|
* process 'target', starting at 'vir_addr', for 'bytes' bytes. This
|
|
* function assumes that it will called twice if VM returned an error
|
|
* the first time (since nothing has changed in that case), and will
|
|
* then return the error code resulting from the first call. Upon the
|
|
* first call, a non-success error code is returned as well.
|
|
*/
|
|
int r;
|
|
|
|
if ((caller->p_misc_flags & MF_KCALL_RESUME) &&
|
|
(r = caller->p_vmrequest.vmresult) != OK)
|
|
return r;
|
|
|
|
vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL);
|
|
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* delivermsg *
|
|
*===========================================================================*/
|
|
void delivermsg(struct proc *rp)
|
|
{
|
|
int r = OK;
|
|
|
|
assert(rp->p_misc_flags & MF_DELIVERMSG);
|
|
assert(rp->p_delivermsg.m_source != NONE);
|
|
|
|
if (copy_msg_to_user(&rp->p_delivermsg,
|
|
(message *) rp->p_delivermsg_vir)) {
|
|
printf("WARNING wrong user pointer 0x%08lx from "
|
|
"process %s / %d\n",
|
|
rp->p_delivermsg_vir,
|
|
rp->p_name,
|
|
rp->p_endpoint);
|
|
r = EFAULT;
|
|
}
|
|
|
|
/* Indicate message has been delivered; address is 'used'. */
|
|
rp->p_delivermsg.m_source = NONE;
|
|
rp->p_misc_flags &= ~MF_DELIVERMSG;
|
|
|
|
if(!(rp->p_misc_flags & MF_CONTEXT_SET)) {
|
|
rp->p_reg.retreg = r;
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vmmemset *
|
|
*===========================================================================*/
|
|
int vm_memset(struct proc* caller, endpoint_t who, phys_bytes ph, int c,
|
|
phys_bytes count)
|
|
{
|
|
u32_t pattern;
|
|
struct proc *whoptr = NULL;
|
|
phys_bytes cur_ph = ph;
|
|
phys_bytes left = count;
|
|
phys_bytes ptr, chunk, pfa = 0;
|
|
int new_ttbr, r = OK;
|
|
|
|
if ((r = check_resumed_caller(caller)) != OK)
|
|
return r;
|
|
|
|
/* NONE for physical, otherwise virtual */
|
|
if (who != NONE && !(whoptr = endpoint_lookup(who)))
|
|
return ESRCH;
|
|
|
|
c &= 0xFF;
|
|
pattern = c | (c << 8) | (c << 16) | (c << 24);
|
|
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
|
|
assert(!catch_pagefaults);
|
|
catch_pagefaults = 1;
|
|
|
|
/* We can memset as many bytes as we have remaining,
|
|
* or as many as remain in the 1MB chunk we mapped in.
|
|
*/
|
|
while (left > 0) {
|
|
new_ttbr = 0;
|
|
chunk = left;
|
|
ptr = createpde(whoptr, cur_ph, &chunk, 0, &new_ttbr);
|
|
|
|
if (new_ttbr) {
|
|
reload_ttbr0();
|
|
}
|
|
/* If a page fault happens, pfa is non-null */
|
|
if ((pfa = phys_memset(ptr, pattern, chunk))) {
|
|
|
|
/* If a process pagefaults, VM may help out */
|
|
if (whoptr) {
|
|
vm_suspend(caller, whoptr, ph, count,
|
|
VMSTYPE_KERNELCALL);
|
|
assert(catch_pagefaults);
|
|
catch_pagefaults = 0;
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
/* Pagefault when phys copying ?! */
|
|
panic("vm_memset: pf %lx addr=%lx len=%lu\n",
|
|
pfa , ptr, chunk);
|
|
}
|
|
|
|
cur_ph += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_ttbr_v);
|
|
assert(catch_pagefaults);
|
|
catch_pagefaults = 0;
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* virtual_copy_f *
|
|
*===========================================================================*/
|
|
int virtual_copy_f(caller, src_addr, dst_addr, bytes, vmcheck)
|
|
struct proc * caller;
|
|
struct vir_addr *src_addr; /* source virtual address */
|
|
struct vir_addr *dst_addr; /* destination virtual address */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
int vmcheck; /* if nonzero, can return VMSUSPEND */
|
|
{
|
|
/* Copy bytes from virtual address src_addr to virtual address dst_addr. */
|
|
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
|
int i, r;
|
|
struct proc *procs[2];
|
|
|
|
assert((vmcheck && caller) || (!vmcheck && !caller));
|
|
|
|
/* Check copy count. */
|
|
if (bytes <= 0) return(EDOM);
|
|
|
|
/* Do some more checks and map virtual addresses to physical addresses. */
|
|
vir_addr[_SRC_] = src_addr;
|
|
vir_addr[_DST_] = dst_addr;
|
|
|
|
for (i=_SRC_; i<=_DST_; i++) {
|
|
endpoint_t proc_e = vir_addr[i]->proc_nr_e;
|
|
int proc_nr;
|
|
struct proc *p;
|
|
|
|
if(proc_e == NONE) {
|
|
p = NULL;
|
|
} else {
|
|
if(!isokendpt(proc_e, &proc_nr)) {
|
|
printf("virtual_copy: no reasonable endpoint\n");
|
|
return ESRCH;
|
|
}
|
|
p = proc_addr(proc_nr);
|
|
}
|
|
|
|
procs[i] = p;
|
|
}
|
|
|
|
if ((r = check_resumed_caller(caller)) != OK)
|
|
return r;
|
|
|
|
if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset,
|
|
procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) {
|
|
struct proc *target = NULL;
|
|
phys_bytes lin;
|
|
if(r != EFAULT_SRC && r != EFAULT_DST)
|
|
panic("lin_lin_copy failed: %d", r);
|
|
if(!vmcheck || !caller) {
|
|
return r;
|
|
}
|
|
|
|
if(r == EFAULT_SRC) {
|
|
lin = vir_addr[_SRC_]->offset;
|
|
target = procs[_SRC_];
|
|
} else if(r == EFAULT_DST) {
|
|
lin = vir_addr[_DST_]->offset;
|
|
target = procs[_DST_];
|
|
} else {
|
|
panic("r strange: %d", r);
|
|
}
|
|
|
|
assert(caller);
|
|
assert(target);
|
|
|
|
vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL);
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* data_copy *
|
|
*===========================================================================*/
|
|
int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
|
|
const endpoint_t to_proc, const vir_bytes to_addr,
|
|
size_t bytes)
|
|
{
|
|
struct vir_addr src, dst;
|
|
|
|
src.offset = from_addr;
|
|
dst.offset = to_addr;
|
|
src.proc_nr_e = from_proc;
|
|
dst.proc_nr_e = to_proc;
|
|
assert(src.proc_nr_e != NONE);
|
|
assert(dst.proc_nr_e != NONE);
|
|
|
|
return virtual_copy(&src, &dst, bytes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* data_copy_vmcheck *
|
|
*===========================================================================*/
|
|
int data_copy_vmcheck(struct proc * caller,
|
|
const endpoint_t from_proc, const vir_bytes from_addr,
|
|
const endpoint_t to_proc, const vir_bytes to_addr,
|
|
size_t bytes)
|
|
{
|
|
struct vir_addr src, dst;
|
|
|
|
src.offset = from_addr;
|
|
dst.offset = to_addr;
|
|
src.proc_nr_e = from_proc;
|
|
dst.proc_nr_e = to_proc;
|
|
assert(src.proc_nr_e != NONE);
|
|
assert(dst.proc_nr_e != NONE);
|
|
|
|
return virtual_copy_vmcheck(caller, &src, &dst, bytes);
|
|
}
|
|
|
|
void memory_init(void)
|
|
{
|
|
assert(nfreepdes == 0);
|
|
|
|
freepdes[nfreepdes++] = kinfo.freepde_start++;
|
|
freepdes[nfreepdes++] = kinfo.freepde_start++;
|
|
|
|
assert(kinfo.freepde_start < ARM_VM_DIR_ENTRIES);
|
|
assert(nfreepdes == 2);
|
|
assert(nfreepdes <= MAXFREEPDES);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* arch_proc_init *
|
|
*===========================================================================*/
|
|
void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp, char *name)
|
|
{
|
|
arch_proc_reset(pr);
|
|
strcpy(pr->p_name, name);
|
|
|
|
/* set custom state we know */
|
|
pr->p_reg.pc = ip;
|
|
pr->p_reg.sp = sp;
|
|
}
|
|
|
|
static int frclock_index = -1,
|
|
usermapped_glo_index = -1,
|
|
usermapped_index = -1, first_um_idx = -1;
|
|
|
|
|
|
/* defined in kernel.lds */
|
|
extern char usermapped_start, usermapped_end, usermapped_nonglo_start;
|
|
|
|
int arch_phys_map(const int index,
|
|
phys_bytes *addr,
|
|
phys_bytes *len,
|
|
int *flags)
|
|
{
|
|
static int first = 1;
|
|
kern_phys_map *phys_maps;
|
|
|
|
int freeidx = 0;
|
|
u32_t glo_len = (u32_t) &usermapped_nonglo_start -
|
|
(u32_t) &usermapped_start;
|
|
|
|
if(first) {
|
|
memset(&minix_kerninfo, 0, sizeof(minix_kerninfo));
|
|
frclock_index = freeidx++;
|
|
if(glo_len > 0) {
|
|
usermapped_glo_index = freeidx++;
|
|
}
|
|
|
|
usermapped_index = freeidx++;
|
|
first_um_idx = usermapped_index;
|
|
if(usermapped_glo_index != -1)
|
|
first_um_idx = usermapped_glo_index;
|
|
first = 0;
|
|
|
|
/* list over the maps and index them */
|
|
phys_maps = kern_phys_map_head;
|
|
while(phys_maps != NULL){
|
|
phys_maps->index = freeidx++;
|
|
phys_maps = phys_maps->next;
|
|
}
|
|
|
|
}
|
|
|
|
if(index == usermapped_glo_index) {
|
|
*addr = vir2phys(&usermapped_start);
|
|
*len = glo_len;
|
|
*flags = VMMF_USER | VMMF_GLO;
|
|
return OK;
|
|
}
|
|
else if(index == usermapped_index) {
|
|
*addr = vir2phys(&usermapped_nonglo_start);
|
|
*len = (u32_t) &usermapped_end -
|
|
(u32_t) &usermapped_nonglo_start;
|
|
*flags = VMMF_USER;
|
|
return OK;
|
|
}
|
|
else if (index == frclock_index) {
|
|
|
|
#ifdef DM37XX
|
|
*addr = OMAP3_GPTIMER10_BASE;
|
|
#endif
|
|
#ifdef AM335X
|
|
*addr = AM335X_DMTIMER7_BASE;
|
|
#endif
|
|
*len = ARM_PAGE_SIZE;
|
|
*flags = VMMF_USER;
|
|
return OK;
|
|
}
|
|
/* if this all fails loop over the maps */
|
|
/* list over the maps and index them */
|
|
phys_maps = kern_phys_map_head;
|
|
while(phys_maps != NULL){
|
|
if(phys_maps->index == index){
|
|
*addr = phys_maps->addr;
|
|
*len = phys_maps->size;
|
|
*flags = VMMF_UNCACHED | VMMF_WRITE;
|
|
return OK;
|
|
}
|
|
phys_maps = phys_maps->next;
|
|
}
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
int arch_phys_map_reply(const int index, const vir_bytes addr)
|
|
{
|
|
kern_phys_map *phys_maps;
|
|
|
|
if(index == first_um_idx) {
|
|
u32_t usermapped_offset;
|
|
assert(addr > (u32_t) &usermapped_start);
|
|
usermapped_offset = addr - (u32_t) &usermapped_start;
|
|
#define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset)
|
|
#define FIXPTR(ptr) ptr = FIXEDPTR(ptr)
|
|
#define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct)
|
|
ASSIGN(kinfo);
|
|
ASSIGN(machine);
|
|
ASSIGN(kmessages);
|
|
ASSIGN(loadinfo);
|
|
|
|
/* adjust the pointers of the functions and the struct
|
|
* itself to the user-accessible mapping
|
|
*/
|
|
minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC;
|
|
minix_kerninfo.minix_feature_flags = minix_feature_flags;
|
|
minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo);
|
|
|
|
return OK;
|
|
}
|
|
|
|
if (index == usermapped_index) {
|
|
return OK;
|
|
}
|
|
else if (index == frclock_index) {
|
|
#if defined(DM37XX)
|
|
minix_kerninfo.minix_frclock_tcrr = addr + OMAP3_TIMER_TCRR;
|
|
minix_kerninfo.minix_arm_frclock_hz = 1625000;
|
|
#elif defined(AM335X)
|
|
minix_kerninfo.minix_frclock_tcrr = addr + AM335X_TIMER_TCRR;
|
|
minix_kerninfo.minix_arm_frclock_hz = 1500000;
|
|
#else
|
|
#error ARM: plese define either AM335X or DM37XX.
|
|
#endif
|
|
|
|
return OK;
|
|
}
|
|
|
|
/* if this all fails loop over the maps */
|
|
/* list over the maps and index them */
|
|
phys_maps = kern_phys_map_head;
|
|
while(phys_maps != NULL){
|
|
if(phys_maps->index == index){
|
|
assert(phys_maps->cb != NULL);
|
|
/* only update the vir addr we are
|
|
going to call the callback in enable
|
|
paging
|
|
*/
|
|
phys_maps->vir = addr;
|
|
return OK;
|
|
}
|
|
phys_maps = phys_maps->next;
|
|
}
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
int arch_enable_paging(struct proc * caller)
|
|
{
|
|
kern_phys_map *phys_maps;
|
|
assert(caller->p_seg.p_ttbr);
|
|
|
|
|
|
/* load caller's page table */
|
|
switch_address_space(caller);
|
|
|
|
/* We have now switched address spaces and the mappings are
|
|
valid. We can now remap previous mappings. This is not a
|
|
good time to do printf as the initial massing is gone and
|
|
the new mapping is not in place */
|
|
phys_maps = kern_phys_map_head;
|
|
while(phys_maps != NULL){
|
|
assert(phys_maps->cb != NULL);
|
|
phys_maps->cb(phys_maps->id, phys_maps->vir);
|
|
phys_maps = phys_maps->next;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
void release_address_space(struct proc *pr)
|
|
{
|
|
pr->p_seg.p_ttbr_v = NULL;
|
|
barrier();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Request a physical mapping
|
|
*/
|
|
int kern_req_phys_map( phys_bytes base_address, vir_bytes io_size,
|
|
kern_phys_map * priv, kern_phys_map_mapped cb,
|
|
vir_bytes id)
|
|
{
|
|
/* Assign the values to the given struct and add priv
|
|
to the list */
|
|
assert(base_address != 0);
|
|
assert(io_size % ARM_PAGE_SIZE == 0);
|
|
assert(cb != NULL);
|
|
|
|
priv->addr = base_address;
|
|
priv->size = io_size;
|
|
priv->cb = cb;
|
|
priv->id = id;
|
|
priv->index = -1;
|
|
priv->next = NULL;
|
|
|
|
|
|
if (kern_phys_map_head == NULL){
|
|
/* keep a list of items this is the first one */
|
|
kern_phys_map_head = priv;
|
|
kern_phys_map_head->next = NULL;
|
|
} else {
|
|
/* insert the item head but first keep track
|
|
of the current by putting it in next */
|
|
priv->next = kern_phys_map_head;
|
|
/* replace the head */
|
|
kern_phys_map_head = priv;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Callback implementation where the id given to the
|
|
* kern_phys_map is a pointer to the io map base address.
|
|
* this implementation will change that base address.
|
|
*/
|
|
int kern_phys_map_mapped_ptr(vir_bytes id, phys_bytes address){
|
|
*((vir_bytes*)id) = address;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Request a physical mapping and put the result in the given prt
|
|
* Note that ptr will only be valid once the callback happend.
|
|
*/
|
|
int kern_phys_map_ptr(
|
|
phys_bytes base_address,
|
|
vir_bytes io_size,
|
|
kern_phys_map * priv,
|
|
vir_bytes ptr)
|
|
{
|
|
return kern_req_phys_map(base_address,io_size,priv,kern_phys_map_mapped_ptr,ptr);
|
|
}
|
|
|