minix/tests/lib/libm/t_atan.c
Lionel Sambuc 11be35a165 Importing NetBSD "Kyua" test framework
To do so, a few dependencies have been imported:

 * external/bsd/lutok
 * external/mit/lua
 * external/public-domain/sqlite
 * external/public-domain/xz

The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:

 * external/bsd/atf
 * external/bsd/kyua-atf-compat
 * external/bsd/kyua-cli
 * external/bsd/kyua-tester
 * tests

Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.

To install Kyua do the following:

 * In a cross-build enviromnent, add the following to the build.sh
   commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes

WARNING:
  At this point the import is still experimental, and not supported
  on native builds (a.k.a make build).

Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
2013-07-23 20:43:41 +02:00

284 lines
6.1 KiB
C

/* $NetBSD: t_atan.c,v 1.9 2013/06/14 05:39:28 isaki Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <atf-c.h>
#include <math.h>
static const struct {
double x;
double y;
} values[] = {
{ -100, -1.560796660108231, },
{ -10, -1.471127674303735, },
{ -1, -M_PI / 4, },
{ -0.1, -0.09966865249116204, },
{ 0.1, 0.09966865249116204, },
{ 1, M_PI / 4, },
{ 10, 1.471127674303735, },
{ 100, 1.560796660108231, },
};
/*
* atan(3)
*/
ATF_TC(atan_nan);
ATF_TC_HEAD(atan_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(NaN) == NaN");
}
ATF_TC_BODY(atan_nan, tc)
{
#ifndef __vax__
const double x = 0.0L / 0.0L;
if (isnan(atan(x)) == 0)
atf_tc_fail_nonfatal("atan(NaN) != NaN");
#endif
}
ATF_TC(atan_inf_neg);
ATF_TC_HEAD(atan_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(-Inf) == -pi/2");
}
ATF_TC_BODY(atan_inf_neg, tc)
{
#ifndef __vax__
const double x = -1.0L / 0.0L;
const double eps = 1.0e-15;
if (fabs(atan(x) + M_PI_2) > eps)
atf_tc_fail_nonfatal("atan(-Inf) != -pi/2");
#endif
}
ATF_TC(atan_inf_pos);
ATF_TC_HEAD(atan_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(+Inf) == pi/2");
}
ATF_TC_BODY(atan_inf_pos, tc)
{
#ifndef __vax__
const double x = +1.0L / 0.0L;
const double eps = 1.0e-15;
if (fabs(atan(x) - M_PI_2) > eps)
atf_tc_fail_nonfatal("atan(+Inf) != pi/2");
#endif
}
ATF_TC(atan_inrange);
ATF_TC_HEAD(atan_inrange, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(x) for some values");
}
ATF_TC_BODY(atan_inrange, tc)
{
#ifndef __vax__
const double eps = 1.0e-15;
size_t i;
for (i = 0; i < __arraycount(values); i++) {
if (fabs(atan(values[i].x) - values[i].y) > eps)
atf_tc_fail_nonfatal("atan(%g) != %g",
values[i].x, values[i].y);
}
#endif
}
ATF_TC(atan_zero_neg);
ATF_TC_HEAD(atan_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(-0.0) == -0.0");
}
ATF_TC_BODY(atan_zero_neg, tc)
{
#ifndef __vax__
const double x = -0.0L;
double y = atan(x);
if (fabs(y) > 0.0 || signbit(y) == 0)
atf_tc_fail_nonfatal("atan(-0.0) != -0.0");
#endif
}
ATF_TC(atan_zero_pos);
ATF_TC_HEAD(atan_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atan(+0.0) == +0.0");
}
ATF_TC_BODY(atan_zero_pos, tc)
{
#ifndef __vax__
const double x = 0.0L;
double y = atan(x);
if (fabs(y) > 0.0 || signbit(y) != 0)
atf_tc_fail_nonfatal("atan(+0.0) != +0.0");
#endif
}
/*
* atanf(3)
*/
ATF_TC(atanf_nan);
ATF_TC_HEAD(atanf_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(NaN) == NaN");
}
ATF_TC_BODY(atanf_nan, tc)
{
#ifndef __vax__
const float x = 0.0L / 0.0L;
if (isnan(atanf(x)) == 0)
atf_tc_fail_nonfatal("atanf(NaN) != NaN");
#endif
}
ATF_TC(atanf_inf_neg);
ATF_TC_HEAD(atanf_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(-Inf) == -pi/2");
}
ATF_TC_BODY(atanf_inf_neg, tc)
{
#ifndef __vax__
const float x = -1.0L / 0.0L;
const float eps = 1.0e-7;
if (fabsf(atanf(x) + M_PI_2) > eps)
atf_tc_fail_nonfatal("atanf(-Inf) != -pi/2");
#endif
}
ATF_TC(atanf_inf_pos);
ATF_TC_HEAD(atanf_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(+Inf) == pi/2");
}
ATF_TC_BODY(atanf_inf_pos, tc)
{
#ifndef __vax__
const float x = +1.0L / 0.0L;
const float eps = 1.0e-7;
if (fabsf(atanf(x) - M_PI_2) > eps)
atf_tc_fail_nonfatal("atanf(+Inf) != pi/2");
#endif
}
ATF_TC(atanf_inrange);
ATF_TC_HEAD(atanf_inrange, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(x) for some values");
}
ATF_TC_BODY(atanf_inrange, tc)
{
#ifndef __vax__
const float eps = 1.0e-7;
float x;
float y;
size_t i;
for (i = 0; i < __arraycount(values); i++) {
x = values[i].x;
y = values[i].y;
if (fabs(atanf(x) - y) > eps)
atf_tc_fail_nonfatal("atan(%g) != %g", x, y);
}
#endif
}
ATF_TC(atanf_zero_neg);
ATF_TC_HEAD(atanf_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(-0.0) == -0.0");
}
ATF_TC_BODY(atanf_zero_neg, tc)
{
#ifndef __vax__
const float x = -0.0L;
float y = atanf(x);
if (fabsf(y) > 0.0 || signbit(y) == 0)
atf_tc_fail_nonfatal("atanf(-0.0) != -0.0");
#endif
}
ATF_TC(atanf_zero_pos);
ATF_TC_HEAD(atanf_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test atanf(+0.0) == +0.0");
}
ATF_TC_BODY(atanf_zero_pos, tc)
{
#ifndef __vax__
const float x = 0.0L;
float y = atanf(x);
if (fabsf(y) > 0.0 || signbit(y) != 0)
atf_tc_fail_nonfatal("atanf(+0.0) != +0.0");
#endif
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, atan_nan);
ATF_TP_ADD_TC(tp, atan_inf_neg);
ATF_TP_ADD_TC(tp, atan_inf_pos);
ATF_TP_ADD_TC(tp, atan_inrange);
ATF_TP_ADD_TC(tp, atan_zero_neg);
ATF_TP_ADD_TC(tp, atan_zero_pos);
ATF_TP_ADD_TC(tp, atanf_nan);
ATF_TP_ADD_TC(tp, atanf_inf_neg);
ATF_TP_ADD_TC(tp, atanf_inf_pos);
ATF_TP_ADD_TC(tp, atanf_inrange);
ATF_TP_ADD_TC(tp, atanf_zero_neg);
ATF_TP_ADD_TC(tp, atanf_zero_pos);
return atf_no_error();
}