minix/drivers/acpi/tables/tbfadt.c
Tomas Hruby 9560b6dea8 ACPI driver
- 99% of the code is Intel's ACPICA. The license is compliant with BSD
  and GNU and virtually all systems that use ACPI use this code, For
  instance it is part of the Linux kernel.

- The only minix specific files are

  acpi.c
  osminixxf.c
  platform/acminix.h

  and

  include/minix/acpi.h

- At the moment the driver does not register interrupt hooks which I
  believe is mainly for handling PnP, events like "battery level is
  low" and power management. Should not be difficult to add it if need
  be.

- The interface to the outside world is virtually non-existent except
  a trivial message based service for PCI driver to query which device
  is connected to what IRQ line. This will evolve as more components
  start using this driver. VM, Scheduler and IOMMU are the possible
  users right now.

- because of dependency on a native 64bit (long long, part of c99) it
  is compiled only with a gnu-like compilers which in case of Minix
  includes gcc llvm-gcc and clang
2010-09-02 15:44:04 +00:00

753 lines
26 KiB
C

/******************************************************************************
*
* Module Name: tbfadt - FADT table utilities
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2010, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __TBFADT_C__
#include "acpi.h"
#include "accommon.h"
#include "actables.h"
#define _COMPONENT ACPI_TABLES
ACPI_MODULE_NAME ("tbfadt")
/* Local prototypes */
static inline void
AcpiTbInitGenericAddress (
ACPI_GENERIC_ADDRESS *GenericAddress,
UINT8 SpaceId,
UINT8 ByteWidth,
UINT64 Address);
static void
AcpiTbConvertFadt (
void);
static void
AcpiTbValidateFadt (
void);
static void
AcpiTbSetupFadtRegisters (
void);
/* Table for conversion of FADT to common internal format and FADT validation */
typedef struct acpi_fadt_info
{
char *Name;
UINT8 Address64;
UINT8 Address32;
UINT8 Length;
UINT8 DefaultLength;
UINT8 Type;
} ACPI_FADT_INFO;
#define ACPI_FADT_REQUIRED 1
#define ACPI_FADT_SEPARATE_LENGTH 2
static ACPI_FADT_INFO FadtInfoTable[] =
{
{"Pm1aEventBlock",
ACPI_FADT_OFFSET (XPm1aEventBlock),
ACPI_FADT_OFFSET (Pm1aEventBlock),
ACPI_FADT_OFFSET (Pm1EventLength),
ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
ACPI_FADT_REQUIRED},
{"Pm1bEventBlock",
ACPI_FADT_OFFSET (XPm1bEventBlock),
ACPI_FADT_OFFSET (Pm1bEventBlock),
ACPI_FADT_OFFSET (Pm1EventLength),
ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
0},
{"Pm1aControlBlock",
ACPI_FADT_OFFSET (XPm1aControlBlock),
ACPI_FADT_OFFSET (Pm1aControlBlock),
ACPI_FADT_OFFSET (Pm1ControlLength),
ACPI_PM1_REGISTER_WIDTH,
ACPI_FADT_REQUIRED},
{"Pm1bControlBlock",
ACPI_FADT_OFFSET (XPm1bControlBlock),
ACPI_FADT_OFFSET (Pm1bControlBlock),
ACPI_FADT_OFFSET (Pm1ControlLength),
ACPI_PM1_REGISTER_WIDTH,
0},
{"Pm2ControlBlock",
ACPI_FADT_OFFSET (XPm2ControlBlock),
ACPI_FADT_OFFSET (Pm2ControlBlock),
ACPI_FADT_OFFSET (Pm2ControlLength),
ACPI_PM2_REGISTER_WIDTH,
ACPI_FADT_SEPARATE_LENGTH},
{"PmTimerBlock",
ACPI_FADT_OFFSET (XPmTimerBlock),
ACPI_FADT_OFFSET (PmTimerBlock),
ACPI_FADT_OFFSET (PmTimerLength),
ACPI_PM_TIMER_WIDTH,
ACPI_FADT_REQUIRED},
{"Gpe0Block",
ACPI_FADT_OFFSET (XGpe0Block),
ACPI_FADT_OFFSET (Gpe0Block),
ACPI_FADT_OFFSET (Gpe0BlockLength),
0,
ACPI_FADT_SEPARATE_LENGTH},
{"Gpe1Block",
ACPI_FADT_OFFSET (XGpe1Block),
ACPI_FADT_OFFSET (Gpe1Block),
ACPI_FADT_OFFSET (Gpe1BlockLength),
0,
ACPI_FADT_SEPARATE_LENGTH}
};
#define ACPI_FADT_INFO_ENTRIES \
(sizeof (FadtInfoTable) / sizeof (ACPI_FADT_INFO))
/* Table used to split Event Blocks into separate status/enable registers */
typedef struct acpi_fadt_pm_info
{
ACPI_GENERIC_ADDRESS *Target;
UINT8 Source;
UINT8 RegisterNum;
} ACPI_FADT_PM_INFO;
static ACPI_FADT_PM_INFO FadtPmInfoTable[] =
{
{&AcpiGbl_XPm1aStatus,
ACPI_FADT_OFFSET (XPm1aEventBlock),
0},
{&AcpiGbl_XPm1aEnable,
ACPI_FADT_OFFSET (XPm1aEventBlock),
1},
{&AcpiGbl_XPm1bStatus,
ACPI_FADT_OFFSET (XPm1bEventBlock),
0},
{&AcpiGbl_XPm1bEnable,
ACPI_FADT_OFFSET (XPm1bEventBlock),
1}
};
#define ACPI_FADT_PM_INFO_ENTRIES \
(sizeof (FadtPmInfoTable) / sizeof (ACPI_FADT_PM_INFO))
/*******************************************************************************
*
* FUNCTION: AcpiTbInitGenericAddress
*
* PARAMETERS: GenericAddress - GAS struct to be initialized
* SpaceId - ACPI Space ID for this register
* ByteWidth - Width of this register, in bytes
* Address - Address of the register
*
* RETURN: None
*
* DESCRIPTION: Initialize a Generic Address Structure (GAS)
* See the ACPI specification for a full description and
* definition of this structure.
*
******************************************************************************/
static inline void
AcpiTbInitGenericAddress (
ACPI_GENERIC_ADDRESS *GenericAddress,
UINT8 SpaceId,
UINT8 ByteWidth,
UINT64 Address)
{
/*
* The 64-bit Address field is non-aligned in the byte packed
* GAS struct.
*/
ACPI_MOVE_64_TO_64 (&GenericAddress->Address, &Address);
/* All other fields are byte-wide */
GenericAddress->SpaceId = SpaceId;
GenericAddress->BitWidth = (UINT8) ACPI_MUL_8 (ByteWidth);
GenericAddress->BitOffset = 0;
GenericAddress->AccessWidth = 0; /* Access width ANY */
}
/*******************************************************************************
*
* FUNCTION: AcpiTbParseFadt
*
* PARAMETERS: TableIndex - Index for the FADT
*
* RETURN: None
*
* DESCRIPTION: Initialize the FADT, DSDT and FACS tables
* (FADT contains the addresses of the DSDT and FACS)
*
******************************************************************************/
void
AcpiTbParseFadt (
UINT32 TableIndex)
{
UINT32 Length;
ACPI_TABLE_HEADER *Table;
/*
* The FADT has multiple versions with different lengths,
* and it contains pointers to both the DSDT and FACS tables.
*
* Get a local copy of the FADT and convert it to a common format
* Map entire FADT, assumed to be smaller than one page.
*/
Length = AcpiGbl_RootTableList.Tables[TableIndex].Length;
Table = AcpiOsMapMemory (
AcpiGbl_RootTableList.Tables[TableIndex].Address, Length);
if (!Table)
{
return;
}
/*
* Validate the FADT checksum before we copy the table. Ignore
* checksum error as we want to try to get the DSDT and FACS.
*/
(void) AcpiTbVerifyChecksum (Table, Length);
/* Create a local copy of the FADT in common ACPI 2.0+ format */
AcpiTbCreateLocalFadt (Table, Length);
/* All done with the real FADT, unmap it */
AcpiOsUnmapMemory (Table, Length);
/* Obtain the DSDT and FACS tables via their addresses within the FADT */
AcpiTbInstallTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XDsdt,
ACPI_SIG_DSDT, ACPI_TABLE_INDEX_DSDT);
AcpiTbInstallTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XFacs,
ACPI_SIG_FACS, ACPI_TABLE_INDEX_FACS);
}
/*******************************************************************************
*
* FUNCTION: AcpiTbCreateLocalFadt
*
* PARAMETERS: Table - Pointer to BIOS FADT
* Length - Length of the table
*
* RETURN: None
*
* DESCRIPTION: Get a local copy of the FADT and convert it to a common format.
* Performs validation on some important FADT fields.
*
* NOTE: We create a local copy of the FADT regardless of the version.
*
******************************************************************************/
void
AcpiTbCreateLocalFadt (
ACPI_TABLE_HEADER *Table,
UINT32 Length)
{
/*
* Check if the FADT is larger than the largest table that we expect
* (the ACPI 2.0/3.0 version). If so, truncate the table, and issue
* a warning.
*/
if (Length > sizeof (ACPI_TABLE_FADT))
{
ACPI_WARNING ((AE_INFO,
"FADT (revision %u) is longer than ACPI 2.0 version, "
"truncating length %u to %u",
Table->Revision, Length, (UINT32) sizeof (ACPI_TABLE_FADT)));
}
/* Clear the entire local FADT */
ACPI_MEMSET (&AcpiGbl_FADT, 0, sizeof (ACPI_TABLE_FADT));
/* Copy the original FADT, up to sizeof (ACPI_TABLE_FADT) */
ACPI_MEMCPY (&AcpiGbl_FADT, Table,
ACPI_MIN (Length, sizeof (ACPI_TABLE_FADT)));
/* Convert the local copy of the FADT to the common internal format */
AcpiTbConvertFadt ();
/* Validate FADT values now, before we make any changes */
AcpiTbValidateFadt ();
/* Initialize the global ACPI register structures */
AcpiTbSetupFadtRegisters ();
}
/*******************************************************************************
*
* FUNCTION: AcpiTbConvertFadt
*
* PARAMETERS: None, uses AcpiGbl_FADT
*
* RETURN: None
*
* DESCRIPTION: Converts all versions of the FADT to a common internal format.
* Expand 32-bit addresses to 64-bit as necessary.
*
* NOTE: AcpiGbl_FADT must be of size (ACPI_TABLE_FADT),
* and must contain a copy of the actual FADT.
*
* Notes on 64-bit register addresses:
*
* After this FADT conversion, later ACPICA code will only use the 64-bit "X"
* fields of the FADT for all ACPI register addresses.
*
* The 64-bit "X" fields are optional extensions to the original 32-bit FADT
* V1.0 fields. Even if they are present in the FADT, they are optional and
* are unused if the BIOS sets them to zero. Therefore, we must copy/expand
* 32-bit V1.0 fields if the corresponding X field is zero.
*
* For ACPI 1.0 FADTs, all 32-bit address fields are expanded to the
* corresponding "X" fields in the internal FADT.
*
* For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded
* to the corresponding 64-bit X fields. For compatibility with other ACPI
* implementations, we ignore the 64-bit field if the 32-bit field is valid,
* regardless of whether the host OS is 32-bit or 64-bit.
*
******************************************************************************/
static void
AcpiTbConvertFadt (
void)
{
ACPI_GENERIC_ADDRESS *Address64;
UINT32 Address32;
UINT32 i;
/* Update the local FADT table header length */
AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT);
/*
* Expand the 32-bit FACS and DSDT addresses to 64-bit as necessary.
* Later code will always use the X 64-bit field.
*/
if (!AcpiGbl_FADT.XFacs)
{
AcpiGbl_FADT.XFacs = (UINT64) AcpiGbl_FADT.Facs;
}
if (!AcpiGbl_FADT.XDsdt)
{
AcpiGbl_FADT.XDsdt = (UINT64) AcpiGbl_FADT.Dsdt;
}
/*
* For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
* should be zero are indeed zero. This will workaround BIOSs that
* inadvertently place values in these fields.
*
* The ACPI 1.0 reserved fields that will be zeroed are the bytes located
* at offset 45, 55, 95, and the word located at offset 109, 110.
*/
if (AcpiGbl_FADT.Header.Revision < 3)
{
AcpiGbl_FADT.PreferredProfile = 0;
AcpiGbl_FADT.PstateControl = 0;
AcpiGbl_FADT.CstControl = 0;
AcpiGbl_FADT.BootFlags = 0;
}
/*
* Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
* generic address structures as necessary. Later code will always use
* the 64-bit address structures.
*
* March 2009:
* We now always use the 32-bit address if it is valid (non-null). This
* is not in accordance with the ACPI specification which states that
* the 64-bit address supersedes the 32-bit version, but we do this for
* compatibility with other ACPI implementations. Most notably, in the
* case where both the 32 and 64 versions are non-null, we use the 32-bit
* version. This is the only address that is guaranteed to have been
* tested by the BIOS manufacturer.
*/
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
{
Address32 = *ACPI_ADD_PTR (UINT32,
&AcpiGbl_FADT, FadtInfoTable[i].Address32);
Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS,
&AcpiGbl_FADT, FadtInfoTable[i].Address64);
/*
* If both 32- and 64-bit addresses are valid (non-zero),
* they must match.
*/
if (Address64->Address && Address32 &&
(Address64->Address != (UINT64) Address32))
{
ACPI_ERROR ((AE_INFO,
"32/64X address mismatch in %s: 0x%8.8X/0x%8.8X%8.8X, using 32",
FadtInfoTable[i].Name, Address32,
ACPI_FORMAT_UINT64 (Address64->Address)));
}
/* Always use 32-bit address if it is valid (non-null) */
if (Address32)
{
/*
* Copy the 32-bit address to the 64-bit GAS structure. The
* Space ID is always I/O for 32-bit legacy address fields
*/
AcpiTbInitGenericAddress (Address64, ACPI_ADR_SPACE_SYSTEM_IO,
*ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, FadtInfoTable[i].Length),
(UINT64) Address32);
}
}
}
/*******************************************************************************
*
* FUNCTION: AcpiTbValidateFadt
*
* PARAMETERS: Table - Pointer to the FADT to be validated
*
* RETURN: None
*
* DESCRIPTION: Validate various important fields within the FADT. If a problem
* is found, issue a message, but no status is returned.
* Used by both the table manager and the disassembler.
*
* Possible additional checks:
* (AcpiGbl_FADT.Pm1EventLength >= 4)
* (AcpiGbl_FADT.Pm1ControlLength >= 2)
* (AcpiGbl_FADT.PmTimerLength >= 4)
* Gpe block lengths must be multiple of 2
*
******************************************************************************/
static void
AcpiTbValidateFadt (
void)
{
char *Name;
ACPI_GENERIC_ADDRESS *Address64;
UINT8 Length;
UINT32 i;
/*
* Check for FACS and DSDT address mismatches. An address mismatch between
* the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and
* DSDT/X_DSDT) would indicate the presence of two FACS or two DSDT tables.
*/
if (AcpiGbl_FADT.Facs &&
(AcpiGbl_FADT.XFacs != (UINT64) AcpiGbl_FADT.Facs))
{
ACPI_WARNING ((AE_INFO,
"32/64X FACS address mismatch in FADT - "
"0x%8.8X/0x%8.8X%8.8X, using 32",
AcpiGbl_FADT.Facs, ACPI_FORMAT_UINT64 (AcpiGbl_FADT.XFacs)));
AcpiGbl_FADT.XFacs = (UINT64) AcpiGbl_FADT.Facs;
}
if (AcpiGbl_FADT.Dsdt &&
(AcpiGbl_FADT.XDsdt != (UINT64) AcpiGbl_FADT.Dsdt))
{
ACPI_WARNING ((AE_INFO,
"32/64X DSDT address mismatch in FADT - "
"0x%8.8X/0x%8.8X%8.8X, using 32",
AcpiGbl_FADT.Dsdt, ACPI_FORMAT_UINT64 (AcpiGbl_FADT.XDsdt)));
AcpiGbl_FADT.XDsdt = (UINT64) AcpiGbl_FADT.Dsdt;
}
/* Examine all of the 64-bit extended address fields (X fields) */
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
{
/*
* Generate pointer to the 64-bit address, get the register
* length (width) and the register name
*/
Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS,
&AcpiGbl_FADT, FadtInfoTable[i].Address64);
Length = *ACPI_ADD_PTR (UINT8,
&AcpiGbl_FADT, FadtInfoTable[i].Length);
Name = FadtInfoTable[i].Name;
/*
* For each extended field, check for length mismatch between the
* legacy length field and the corresponding 64-bit X length field.
*/
if (Address64->Address &&
(Address64->BitWidth != ACPI_MUL_8 (Length)))
{
ACPI_WARNING ((AE_INFO,
"32/64X length mismatch in %s: %u/%u",
Name, ACPI_MUL_8 (Length), Address64->BitWidth));
}
if (FadtInfoTable[i].Type & ACPI_FADT_REQUIRED)
{
/*
* Field is required (PM1aEvent, PM1aControl, PmTimer).
* Both the address and length must be non-zero.
*/
if (!Address64->Address || !Length)
{
ACPI_ERROR ((AE_INFO,
"Required field %s has zero address and/or length:"
" 0x%8.8X%8.8X/0x%X",
Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
}
}
else if (FadtInfoTable[i].Type & ACPI_FADT_SEPARATE_LENGTH)
{
/*
* Field is optional (PM2Control, GPE0, GPE1) AND has its own
* length field. If present, both the address and length must
* be valid.
*/
if ((Address64->Address && !Length) ||
(!Address64->Address && Length))
{
ACPI_WARNING ((AE_INFO,
"Optional field %s has zero address or length: "
"0x%8.8X%8.8X/0x%X",
Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
}
}
}
}
/*******************************************************************************
*
* FUNCTION: AcpiTbSetupFadtRegisters
*
* PARAMETERS: None, uses AcpiGbl_FADT.
*
* RETURN: None
*
* DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally,
* force FADT register definitions to their default lengths.
*
******************************************************************************/
static void
AcpiTbSetupFadtRegisters (
void)
{
ACPI_GENERIC_ADDRESS *Target64;
ACPI_GENERIC_ADDRESS *Source64;
UINT8 Pm1RegisterByteWidth;
UINT32 i;
/*
* Optionally check all register lengths against the default values and
* update them if they are incorrect.
*/
if (AcpiGbl_UseDefaultRegisterWidths)
{
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
{
Target64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
FadtInfoTable[i].Address64);
/*
* If a valid register (Address != 0) and the (DefaultLength > 0)
* (Not a GPE register), then check the width against the default.
*/
if ((Target64->Address) &&
(FadtInfoTable[i].DefaultLength > 0) &&
(FadtInfoTable[i].DefaultLength != Target64->BitWidth))
{
ACPI_WARNING ((AE_INFO,
"Invalid length for %s: %u, using default %u",
FadtInfoTable[i].Name, Target64->BitWidth,
FadtInfoTable[i].DefaultLength));
/* Incorrect size, set width to the default */
Target64->BitWidth = FadtInfoTable[i].DefaultLength;
}
}
}
/*
* Get the length of the individual PM1 registers (enable and status).
* Each register is defined to be (event block length / 2). Extra divide
* by 8 converts bits to bytes.
*/
Pm1RegisterByteWidth = (UINT8)
ACPI_DIV_16 (AcpiGbl_FADT.XPm1aEventBlock.BitWidth);
/*
* Calculate separate GAS structs for the PM1x (A/B) Status and Enable
* registers. These addresses do not appear (directly) in the FADT, so it
* is useful to pre-calculate them from the PM1 Event Block definitions.
*
* The PM event blocks are split into two register blocks, first is the
* PM Status Register block, followed immediately by the PM Enable
* Register block. Each is of length (Pm1EventLength/2)
*
* Note: The PM1A event block is required by the ACPI specification.
* However, the PM1B event block is optional and is rarely, if ever,
* used.
*/
for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++)
{
Source64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
FadtPmInfoTable[i].Source);
if (Source64->Address)
{
AcpiTbInitGenericAddress (FadtPmInfoTable[i].Target,
Source64->SpaceId, Pm1RegisterByteWidth,
Source64->Address +
(FadtPmInfoTable[i].RegisterNum * Pm1RegisterByteWidth));
}
}
}