minix/sys/arch/i386/stand/lib/netif/i82557.c
2012-02-09 18:48:13 +01:00

493 lines
13 KiB
C

/* $NetBSD: i82557.c,v 1.11 2008/12/14 18:46:33 christos Exp $ */
/*
* Copyright (c) 1998, 1999
* Matthias Drochner. All rights reserved.
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <machine/pio.h>
#include <dev/ic/i82557reg.h>
#include <lib/libsa/stand.h>
#include <libi386.h>
#include <pcivar.h>
#if defined(_STANDALONE) && !defined(SUPPORT_NO_NETBSD)
#include <lib/libkern/libkern.h>
#include <bootinfo.h>
#endif
#include "etherdrv.h"
#define RECVBUF_SIZE 1600 /* struct fxp_rfa + packet */
#ifdef _STANDALONE
static pcihdl_t mytag;
static char recvbuf[RECVBUF_SIZE];
#define RECVBUF_PHYS vtophys(recvbuf)
#define RECVBUF_VIRT ((void *)recvbuf)
static union _sndbuf {
struct fxp_cb_config cbp;
struct fxp_cb_ias cb_ias;
struct fxp_cb_tx txp;
} sndbuf;
#define SNDBUF_PHYS vtophys(&sndbuf)
#define SNDBUF_VIRT ((void *)&sndbuf)
#else /* !standalone, userspace testing environment */
#define PCI_MODE1_ENABLE 0x80000000UL
static pcihdl_t mytag = PCI_MODE1_ENABLE | (PCIDEVNO << 11);
extern void *mapmem(int, int);
void *dmamem; /* virtual */
#define RECVBUF_PHYS DMABASE
#define RECVBUF_VIRT dmamem
#define SNDBUF_PHYS (DMABASE + RECVBUF_SIZE)
#define SNDBUF_VIRT ((void *)(((char *)dmamem) + RECVBUF_SIZE))
#endif /* _STANDALONE */
static void fxp_read_eeprom(uint16_t *, int, int);
static inline void fxp_scb_wait(void);
#ifdef DEBUG
static void fxp_checkintr(char *);
#else
#define fxp_checkintr(x)
#endif
static void fxp_startreceiver(void);
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
static uint8_t fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5 /* 21 */
};
static int tx_threshold = 64; /* x8, max 192 */
#define CSR_READ_1(reg) inb(iobase + (reg))
#define CSR_READ_2(reg) inw(iobase + (reg))
#define CSR_WRITE_1(reg, val) outb(iobase + (reg), val)
#define CSR_WRITE_2(reg, val) outw(iobase + (reg), val)
#define CSR_WRITE_4(reg, val) outl(iobase + (reg), val)
#define DELAY(n) delay(n)
static int iobase;
#if defined(_STANDALONE) && !defined(SUPPORT_NO_NETBSD)
static struct btinfo_netif bi_netif;
#endif
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static inline void
fxp_scb_wait(void)
{
int i = 10000;
while (CSR_READ_1(FXP_CSR_SCB_COMMAND) && --i)
DELAY(1);
if (i == 0)
printf("fxp: WARNING: SCB timed out!\n");
}
#ifdef DEBUG
static void
fxp_checkintr(char *msg)
{
uint8_t statack;
int i = 10000;
do {
statack = CSR_READ_1(FXP_CSR_SCB_STATACK);
} while ((statack == 0) && (--i > 0));
if (statack != 0) {
CSR_WRITE_1(FXP_CSR_SCB_STATACK, statack);
printf("%s: ack'd irq %x, i=%d\n", msg, statack, i);
}
}
#endif
int
EtherInit(unsigned char *myadr)
{
#ifndef _STANDALONE
uint32_t id;
#endif
volatile struct fxp_cb_config *cbp;
volatile struct fxp_cb_ias *cb_ias;
int i;
if (pcicheck()) {
printf("pcicheck failed\n");
return 0;
}
#ifdef _STANDALONE
if (pcifinddev(0x8086, 0x1229, &mytag)) {
printf("no fxp\n");
return 0;
}
#else
pcicfgread(&mytag, 0, &id);
if (id != 0x12298086) {
printf("no fxp\n");
return 0;
}
#endif
pcicfgread(&mytag, FXP_PCI_IOBA, &iobase);
iobase &= ~3;
#ifndef _STANDALONE
dmamem = mapmem(DMABASE, DMASIZE);
if (!dmamem)
return 0;
#endif
fxp_read_eeprom((void *)myadr, 0, 3);
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(FXP_CSR_SCB_GENERAL, 0);
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait();
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
cbp = SNDBUF_VIRT;
/*
* This memcpy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
memcpy((void *)cbp, fxp_cb_config_template,
sizeof(fxp_cb_config_template));
#define prm 0
#define phy_10Mbps_only 0
#define all_mcasts 0
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_mbce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int_or_tco_en = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 0; /* interrupt on CU not active */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = !phy_10Mbps_only; /* interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = all_mcasts;/* accept all multicasts */
#undef prm
#undef phy_10Mbps_only
#undef all_mcasts
/*
* Start the config command/DMA.
*/
fxp_scb_wait();
CSR_WRITE_4(FXP_CSR_SCB_GENERAL, SNDBUF_PHYS);
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
i = 10000;
while (!(cbp->cb_status & FXP_CB_STATUS_C) && (--i > 0))
DELAY(1);
if (i == 0)
printf("config timeout");
fxp_checkintr("config");
cb_ias = SNDBUF_VIRT;
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
memcpy((void *)cb_ias->macaddr, myadr, 6);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait();
/* address is still there */
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
i = 10000;
while (!(cb_ias->cb_status & FXP_CB_STATUS_C) && (--i > 0))
DELAY(1);
if (i == 0)
printf("ias timeout");
fxp_checkintr("ias");
fxp_startreceiver();
#if defined(_STANDALONE) && !defined(SUPPORT_NO_NETBSD)
strncpy(bi_netif.ifname, "fxp", sizeof(bi_netif.ifname));
bi_netif.bus = BI_BUS_PCI;
bi_netif.addr.tag = mytag;
BI_ADD(&bi_netif, BTINFO_NETIF, sizeof(bi_netif));
#endif
return 1;
}
void
EtherStop(void)
{
/*
* Issue software reset
*/
CSR_WRITE_4(FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
}
int
EtherSend(char *pkt, int len)
{
volatile struct fxp_cb_tx *txp;
#ifdef _STANDALONE
static volatile struct fxp_tbd tbd;
#endif
volatile struct fxp_tbd *tbdp;
int i;
txp = SNDBUF_VIRT;
#ifdef _STANDALONE
tbdp = &tbd;
txp->tbd_array_addr = vtophys((void *)&tbd);
tbdp->tb_addr = vtophys(pkt);
#else
/* XXX assuming we send at max 400 bytes */
tbdp = (struct fxp_tbd *)(SNDBUF_VIRT + 440);
txp->tbd_array_addr = SNDBUF_PHYS + 440;
memcpy(SNDBUF_VIRT + 400, pkt, len);
tbdp->tb_addr = SNDBUF_PHYS + 400;
#endif
tbdp->tb_size = len;
txp->tbd_number = 1;
txp->cb_status = 0;
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_EL;
txp->tx_threshold = tx_threshold;
txp->link_addr = -1;
txp->byte_count = 0;
fxp_scb_wait();
CSR_WRITE_4(FXP_CSR_SCB_GENERAL, SNDBUF_PHYS);
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
i = 10000;
while (!(txp->cb_status & FXP_CB_STATUS_C) && (--i > 0))
DELAY(1);
if (i == 0)
printf("send timeout");
fxp_checkintr("send");
return len;
}
static void
fxp_startreceiver(void)
{
volatile struct fxp_rfa *rfa;
uint32_t v;
rfa = RECVBUF_VIRT;
rfa->size = RECVBUF_SIZE - sizeof(struct fxp_rfa);
rfa->rfa_status = 0;
rfa->rfa_control = FXP_RFA_CONTROL_S;
rfa->actual_size = 0;
v = RECVBUF_PHYS; /* close the "ring" */
memcpy((void *)&rfa->link_addr, &v, sizeof(v));
v = -1;
memcpy((void *)&rfa->rbd_addr, &v, sizeof(v));
fxp_scb_wait();
CSR_WRITE_4(FXP_CSR_SCB_GENERAL, RECVBUF_PHYS);
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
}
int
EtherReceive(char *pkt, int maxlen)
{
uint8_t ruscus;
volatile struct fxp_rfa *rfa;
int len = 0;
ruscus = CSR_READ_1(FXP_CSR_SCB_RUSCUS);
if (((ruscus >> 2) & 0x0f) == FXP_SCB_RUS_READY)
return 0;
if (((ruscus >> 2) & 0x0f) != FXP_SCB_RUS_SUSPENDED) {
printf("rcv: ruscus=%x\n", ruscus);
return 0;
}
rfa = RECVBUF_VIRT;
if (rfa->rfa_status & FXP_RFA_STATUS_C) {
len = rfa->actual_size & 0x7ff;
if (len <= maxlen) {
memcpy(pkt, (char *) rfa + RFA_SIZE, maxlen);
#if 0
printf("rfa status=%x, len=%x\n",
rfa->rfa_status, len);
#endif
} else
len = 0;
}
fxp_scb_wait();
CSR_WRITE_1(FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_RESUME);
return len;
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static void
fxp_read_eeprom(uint16_t *data, int offset, int words)
{
uint16_t reg;
int i, x;
for (i = 0; i < words; i++) {
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
/*
* Shift in address.
*/
for (x = 6; x > 0; x--) {
if ((i + offset) & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
}