minix/drivers/acpi/hardware/hwxface.c
Tomas Hruby 9560b6dea8 ACPI driver
- 99% of the code is Intel's ACPICA. The license is compliant with BSD
  and GNU and virtually all systems that use ACPI use this code, For
  instance it is part of the Linux kernel.

- The only minix specific files are

  acpi.c
  osminixxf.c
  platform/acminix.h

  and

  include/minix/acpi.h

- At the moment the driver does not register interrupt hooks which I
  believe is mainly for handling PnP, events like "battery level is
  low" and power management. Should not be difficult to add it if need
  be.

- The interface to the outside world is virtually non-existent except
  a trivial message based service for PCI driver to query which device
  is connected to what IRQ line. This will evolve as more components
  start using this driver. VM, Scheduler and IOMMU are the possible
  users right now.

- because of dependency on a native 64bit (long long, part of c99) it
  is compiled only with a gnu-like compilers which in case of Minix
  includes gcc llvm-gcc and clang
2010-09-02 15:44:04 +00:00

711 lines
23 KiB
C

/******************************************************************************
*
* Module Name: hwxface - Public ACPICA hardware interfaces
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2010, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#include "acpi.h"
#include "accommon.h"
#include "acnamesp.h"
#define _COMPONENT ACPI_HARDWARE
ACPI_MODULE_NAME ("hwxface")
/******************************************************************************
*
* FUNCTION: AcpiReset
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Set reset register in memory or IO space. Note: Does not
* support reset register in PCI config space, this must be
* handled separately.
*
******************************************************************************/
ACPI_STATUS
AcpiReset (
void)
{
ACPI_GENERIC_ADDRESS *ResetReg;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE (AcpiReset);
ResetReg = &AcpiGbl_FADT.ResetRegister;
/* Check if the reset register is supported */
if (!(AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) ||
!ResetReg->Address)
{
return_ACPI_STATUS (AE_NOT_EXIST);
}
if (ResetReg->SpaceId == ACPI_ADR_SPACE_SYSTEM_IO)
{
/*
* For I/O space, write directly to the OSL. This bypasses the port
* validation mechanism, which may block a valid write to the reset
* register.
*/
Status = AcpiOsWritePort ((ACPI_IO_ADDRESS) ResetReg->Address,
AcpiGbl_FADT.ResetValue, ResetReg->BitWidth);
}
else
{
/* Write the reset value to the reset register */
Status = AcpiHwWrite (AcpiGbl_FADT.ResetValue, ResetReg);
}
return_ACPI_STATUS (Status);
}
ACPI_EXPORT_SYMBOL (AcpiReset)
/******************************************************************************
*
* FUNCTION: AcpiRead
*
* PARAMETERS: Value - Where the value is returned
* Reg - GAS register structure
*
* RETURN: Status
*
* DESCRIPTION: Read from either memory or IO space.
*
* LIMITATIONS: <These limitations also apply to AcpiWrite>
* BitWidth must be exactly 8, 16, 32, or 64.
* SpaceID must be SystemMemory or SystemIO.
* BitOffset and AccessWidth are currently ignored, as there has
* not been a need to implement these.
*
******************************************************************************/
ACPI_STATUS
AcpiRead (
UINT64 *ReturnValue,
ACPI_GENERIC_ADDRESS *Reg)
{
UINT32 Value;
UINT32 Width;
UINT64 Address;
ACPI_STATUS Status;
ACPI_FUNCTION_NAME (AcpiRead);
if (!ReturnValue)
{
return (AE_BAD_PARAMETER);
}
/* Validate contents of the GAS register. Allow 64-bit transfers */
Status = AcpiHwValidateRegister (Reg, 64, &Address);
if (ACPI_FAILURE (Status))
{
return (Status);
}
Width = Reg->BitWidth;
if (Width == 64)
{
Width = 32; /* Break into two 32-bit transfers */
}
/* Initialize entire 64-bit return value to zero */
*ReturnValue = 0;
Value = 0;
/*
* Two address spaces supported: Memory or IO. PCI_Config is
* not supported here because the GAS structure is insufficient
*/
if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
{
Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
Address, &Value, Width);
if (ACPI_FAILURE (Status))
{
return (Status);
}
*ReturnValue = Value;
if (Reg->BitWidth == 64)
{
/* Read the top 32 bits */
Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
(Address + 4), &Value, 32);
if (ACPI_FAILURE (Status))
{
return (Status);
}
*ReturnValue |= ((UINT64) Value << 32);
}
}
else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
{
Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
Address, &Value, Width);
if (ACPI_FAILURE (Status))
{
return (Status);
}
*ReturnValue = Value;
if (Reg->BitWidth == 64)
{
/* Read the top 32 bits */
Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
(Address + 4), &Value, 32);
if (ACPI_FAILURE (Status))
{
return (Status);
}
*ReturnValue |= ((UINT64) Value << 32);
}
}
ACPI_DEBUG_PRINT ((ACPI_DB_IO,
"Read: %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n",
ACPI_FORMAT_UINT64 (*ReturnValue), Reg->BitWidth,
ACPI_FORMAT_UINT64 (Address),
AcpiUtGetRegionName (Reg->SpaceId)));
return (Status);
}
ACPI_EXPORT_SYMBOL (AcpiRead)
/******************************************************************************
*
* FUNCTION: AcpiWrite
*
* PARAMETERS: Value - Value to be written
* Reg - GAS register structure
*
* RETURN: Status
*
* DESCRIPTION: Write to either memory or IO space.
*
******************************************************************************/
ACPI_STATUS
AcpiWrite (
UINT64 Value,
ACPI_GENERIC_ADDRESS *Reg)
{
UINT32 Width;
UINT64 Address;
ACPI_STATUS Status;
ACPI_FUNCTION_NAME (AcpiWrite);
/* Validate contents of the GAS register. Allow 64-bit transfers */
Status = AcpiHwValidateRegister (Reg, 64, &Address);
if (ACPI_FAILURE (Status))
{
return (Status);
}
Width = Reg->BitWidth;
if (Width == 64)
{
Width = 32; /* Break into two 32-bit transfers */
}
/*
* Two address spaces supported: Memory or IO. PCI_Config is
* not supported here because the GAS structure is insufficient
*/
if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
{
Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
Address, ACPI_LODWORD (Value), Width);
if (ACPI_FAILURE (Status))
{
return (Status);
}
if (Reg->BitWidth == 64)
{
Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
(Address + 4), ACPI_HIDWORD (Value), 32);
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
}
else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
{
Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
Address, ACPI_LODWORD (Value), Width);
if (ACPI_FAILURE (Status))
{
return (Status);
}
if (Reg->BitWidth == 64)
{
Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
(Address + 4), ACPI_HIDWORD (Value), 32);
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
}
ACPI_DEBUG_PRINT ((ACPI_DB_IO,
"Wrote: %8.8X%8.8X width %2d to %8.8X%8.8X (%s)\n",
ACPI_FORMAT_UINT64 (Value), Reg->BitWidth,
ACPI_FORMAT_UINT64 (Address),
AcpiUtGetRegionName (Reg->SpaceId)));
return (Status);
}
ACPI_EXPORT_SYMBOL (AcpiWrite)
/*******************************************************************************
*
* FUNCTION: AcpiReadBitRegister
*
* PARAMETERS: RegisterId - ID of ACPI Bit Register to access
* ReturnValue - Value that was read from the register,
* normalized to bit position zero.
*
* RETURN: Status and the value read from the specified Register. Value
* returned is normalized to bit0 (is shifted all the way right)
*
* DESCRIPTION: ACPI BitRegister read function. Does not acquire the HW lock.
*
* SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
* PM2 Control.
*
* Note: The hardware lock is not required when reading the ACPI bit registers
* since almost all of them are single bit and it does not matter that
* the parent hardware register can be split across two physical
* registers. The only multi-bit field is SLP_TYP in the PM1 control
* register, but this field does not cross an 8-bit boundary (nor does
* it make much sense to actually read this field.)
*
******************************************************************************/
ACPI_STATUS
AcpiReadBitRegister (
UINT32 RegisterId,
UINT32 *ReturnValue)
{
ACPI_BIT_REGISTER_INFO *BitRegInfo;
UINT32 RegisterValue;
UINT32 Value;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE_U32 (AcpiReadBitRegister, RegisterId);
/* Get the info structure corresponding to the requested ACPI Register */
BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
if (!BitRegInfo)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Read the entire parent register */
Status = AcpiHwRegisterRead (BitRegInfo->ParentRegister,
&RegisterValue);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Normalize the value that was read, mask off other bits */
Value = ((RegisterValue & BitRegInfo->AccessBitMask)
>> BitRegInfo->BitPosition);
ACPI_DEBUG_PRINT ((ACPI_DB_IO,
"BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
RegisterId, BitRegInfo->ParentRegister, RegisterValue, Value));
*ReturnValue = Value;
return_ACPI_STATUS (AE_OK);
}
ACPI_EXPORT_SYMBOL (AcpiReadBitRegister)
/*******************************************************************************
*
* FUNCTION: AcpiWriteBitRegister
*
* PARAMETERS: RegisterId - ID of ACPI Bit Register to access
* Value - Value to write to the register, in bit
* position zero. The bit is automaticallly
* shifted to the correct position.
*
* RETURN: Status
*
* DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
* since most operations require a read/modify/write sequence.
*
* SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
* PM2 Control.
*
* Note that at this level, the fact that there may be actually two
* hardware registers (A and B - and B may not exist) is abstracted.
*
******************************************************************************/
ACPI_STATUS
AcpiWriteBitRegister (
UINT32 RegisterId,
UINT32 Value)
{
ACPI_BIT_REGISTER_INFO *BitRegInfo;
ACPI_CPU_FLAGS LockFlags;
UINT32 RegisterValue;
ACPI_STATUS Status = AE_OK;
ACPI_FUNCTION_TRACE_U32 (AcpiWriteBitRegister, RegisterId);
/* Get the info structure corresponding to the requested ACPI Register */
BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
if (!BitRegInfo)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
LockFlags = AcpiOsAcquireLock (AcpiGbl_HardwareLock);
/*
* At this point, we know that the parent register is one of the
* following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
*/
if (BitRegInfo->ParentRegister != ACPI_REGISTER_PM1_STATUS)
{
/*
* 1) Case for PM1 Enable, PM1 Control, and PM2 Control
*
* Perform a register read to preserve the bits that we are not
* interested in
*/
Status = AcpiHwRegisterRead (BitRegInfo->ParentRegister,
&RegisterValue);
if (ACPI_FAILURE (Status))
{
goto UnlockAndExit;
}
/*
* Insert the input bit into the value that was just read
* and write the register
*/
ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition,
BitRegInfo->AccessBitMask, Value);
Status = AcpiHwRegisterWrite (BitRegInfo->ParentRegister,
RegisterValue);
}
else
{
/*
* 2) Case for PM1 Status
*
* The Status register is different from the rest. Clear an event
* by writing 1, writing 0 has no effect. So, the only relevant
* information is the single bit we're interested in, all others
* should be written as 0 so they will be left unchanged.
*/
RegisterValue = ACPI_REGISTER_PREPARE_BITS (Value,
BitRegInfo->BitPosition, BitRegInfo->AccessBitMask);
/* No need to write the register if value is all zeros */
if (RegisterValue)
{
Status = AcpiHwRegisterWrite (ACPI_REGISTER_PM1_STATUS,
RegisterValue);
}
}
ACPI_DEBUG_PRINT ((ACPI_DB_IO,
"BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
RegisterId, BitRegInfo->ParentRegister, Value, RegisterValue));
UnlockAndExit:
AcpiOsReleaseLock (AcpiGbl_HardwareLock, LockFlags);
return_ACPI_STATUS (Status);
}
ACPI_EXPORT_SYMBOL (AcpiWriteBitRegister)
/*******************************************************************************
*
* FUNCTION: AcpiGetSleepTypeData
*
* PARAMETERS: SleepState - Numeric sleep state
* *SleepTypeA - Where SLP_TYPa is returned
* *SleepTypeB - Where SLP_TYPb is returned
*
* RETURN: Status - ACPI status
*
* DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested sleep
* state.
*
******************************************************************************/
ACPI_STATUS
AcpiGetSleepTypeData (
UINT8 SleepState,
UINT8 *SleepTypeA,
UINT8 *SleepTypeB)
{
ACPI_STATUS Status = AE_OK;
ACPI_EVALUATE_INFO *Info;
ACPI_FUNCTION_TRACE (AcpiGetSleepTypeData);
/* Validate parameters */
if ((SleepState > ACPI_S_STATES_MAX) ||
!SleepTypeA ||
!SleepTypeB)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Allocate the evaluation information block */
Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO));
if (!Info)
{
return_ACPI_STATUS (AE_NO_MEMORY);
}
Info->Pathname = ACPI_CAST_PTR (char, AcpiGbl_SleepStateNames[SleepState]);
/* Evaluate the namespace object containing the values for this state */
Status = AcpiNsEvaluate (Info);
if (ACPI_FAILURE (Status))
{
ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
"%s while evaluating SleepState [%s]\n",
AcpiFormatException (Status), Info->Pathname));
goto Cleanup;
}
/* Must have a return object */
if (!Info->ReturnObject)
{
ACPI_ERROR ((AE_INFO, "No Sleep State object returned from [%s]",
Info->Pathname));
Status = AE_NOT_EXIST;
}
/* It must be of type Package */
else if (Info->ReturnObject->Common.Type != ACPI_TYPE_PACKAGE)
{
ACPI_ERROR ((AE_INFO, "Sleep State return object is not a Package"));
Status = AE_AML_OPERAND_TYPE;
}
/*
* The package must have at least two elements. NOTE (March 2005): This
* goes against the current ACPI spec which defines this object as a
* package with one encoded DWORD element. However, existing practice
* by BIOS vendors seems to be to have 2 or more elements, at least
* one per sleep type (A/B).
*/
else if (Info->ReturnObject->Package.Count < 2)
{
ACPI_ERROR ((AE_INFO,
"Sleep State return package does not have at least two elements"));
Status = AE_AML_NO_OPERAND;
}
/* The first two elements must both be of type Integer */
else if (((Info->ReturnObject->Package.Elements[0])->Common.Type
!= ACPI_TYPE_INTEGER) ||
((Info->ReturnObject->Package.Elements[1])->Common.Type
!= ACPI_TYPE_INTEGER))
{
ACPI_ERROR ((AE_INFO,
"Sleep State return package elements are not both Integers "
"(%s, %s)",
AcpiUtGetObjectTypeName (Info->ReturnObject->Package.Elements[0]),
AcpiUtGetObjectTypeName (Info->ReturnObject->Package.Elements[1])));
Status = AE_AML_OPERAND_TYPE;
}
else
{
/* Valid _Sx_ package size, type, and value */
*SleepTypeA = (UINT8)
(Info->ReturnObject->Package.Elements[0])->Integer.Value;
*SleepTypeB = (UINT8)
(Info->ReturnObject->Package.Elements[1])->Integer.Value;
}
if (ACPI_FAILURE (Status))
{
ACPI_EXCEPTION ((AE_INFO, Status,
"While evaluating SleepState [%s], bad Sleep object %p type %s",
Info->Pathname, Info->ReturnObject,
AcpiUtGetObjectTypeName (Info->ReturnObject)));
}
AcpiUtRemoveReference (Info->ReturnObject);
Cleanup:
ACPI_FREE (Info);
return_ACPI_STATUS (Status);
}
ACPI_EXPORT_SYMBOL (AcpiGetSleepTypeData)