f0d27a9570
. this is OK (although it wastes some memory) as long as the VM interface isn't used, which has its own checks in libsys Change-Id: I28decd367b2cd5c01482bdc71615c65ab61c9a71
928 lines
24 KiB
C
928 lines
24 KiB
C
|
|
#define _SYSTEM
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <minix/dmap.h>
|
|
#include <minix/libminixfs.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/sysutil.h>
|
|
#include <minix/u64.h>
|
|
#include <minix/bdev.h>
|
|
|
|
#define BUFHASH(b) ((b) % nr_bufs)
|
|
#define MARKCLEAN lmfs_markclean
|
|
|
|
#define MINBUFS 6 /* minimal no of bufs for sanity check */
|
|
|
|
static struct buf *front; /* points to least recently used free block */
|
|
static struct buf *rear; /* points to most recently used free block */
|
|
static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
|
|
|
|
static void rm_lru(struct buf *bp);
|
|
static void read_block(struct buf *);
|
|
static void flushall(dev_t dev);
|
|
static void freeblock(struct buf *bp);
|
|
static void cache_heuristic_check(int major);
|
|
|
|
static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
|
|
|
|
static struct buf *buf;
|
|
static struct buf **buf_hash; /* the buffer hash table */
|
|
static unsigned int nr_bufs;
|
|
static int may_use_vmcache;
|
|
|
|
static int fs_block_size = 1024; /* raw i/o block size */
|
|
|
|
static int rdwt_err;
|
|
|
|
static int quiet = 0;
|
|
|
|
void
|
|
lmfs_setquiet(int q) { quiet = q; }
|
|
|
|
u32_t fs_bufs_heuristic(int minbufs, u32_t btotal, u32_t bfree,
|
|
int blocksize, dev_t majordev)
|
|
{
|
|
struct vm_stats_info vsi;
|
|
int bufs;
|
|
u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
|
|
u32_t kbytes_remain_mem, bused;
|
|
|
|
bused = btotal-bfree;
|
|
|
|
/* set a reasonable cache size; cache at most a certain
|
|
* portion of the used FS, and at most a certain %age of remaining
|
|
* memory
|
|
*/
|
|
if(vm_info_stats(&vsi) != OK) {
|
|
bufs = 1024;
|
|
if(!quiet)
|
|
printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
|
|
return bufs;
|
|
}
|
|
|
|
/* remaining free memory is unused memory plus memory in used for cache,
|
|
* as the cache can be evicted
|
|
*/
|
|
kbytes_remain_mem = (u64_t)(vsi.vsi_free + vsi.vsi_cached) *
|
|
vsi.vsi_pagesize / 1024;
|
|
|
|
/* check fs usage. */
|
|
kbytes_used_fs = div64u(mul64u(bused, blocksize), 1024);
|
|
kbytes_total_fs = div64u(mul64u(btotal, blocksize), 1024);
|
|
|
|
/* heuristic for a desired cache size based on FS usage;
|
|
* but never bigger than half of the total filesystem
|
|
*/
|
|
kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
|
|
kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
|
|
|
|
/* heuristic for a maximum usage - 10% of remaining memory */
|
|
kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
|
|
bufs = kbcache * 1024 / blocksize;
|
|
|
|
/* but we simply need MINBUFS no matter what */
|
|
if(bufs < minbufs)
|
|
bufs = minbufs;
|
|
|
|
return bufs;
|
|
}
|
|
|
|
void lmfs_blockschange(dev_t dev, int delta)
|
|
{
|
|
/* Change the number of allocated blocks by 'delta.'
|
|
* Also accumulate the delta since the last cache re-evaluation.
|
|
* If it is outside a certain band, ask the cache library to
|
|
* re-evaluate the cache size.
|
|
*/
|
|
static int bitdelta = 0;
|
|
bitdelta += delta;
|
|
#define BANDKB (10*1024) /* recheck cache every 10MB change */
|
|
if(bitdelta*fs_block_size/1024 > BANDKB ||
|
|
bitdelta*fs_block_size/1024 < -BANDKB) {
|
|
lmfs_cache_reevaluate(dev);
|
|
bitdelta = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
lmfs_markdirty(struct buf *bp)
|
|
{
|
|
bp->lmfs_flags |= VMMC_DIRTY;
|
|
}
|
|
|
|
void
|
|
lmfs_markclean(struct buf *bp)
|
|
{
|
|
bp->lmfs_flags &= ~VMMC_DIRTY;
|
|
}
|
|
|
|
int
|
|
lmfs_isclean(struct buf *bp)
|
|
{
|
|
return !(bp->lmfs_flags & VMMC_DIRTY);
|
|
}
|
|
|
|
dev_t
|
|
lmfs_dev(struct buf *bp)
|
|
{
|
|
return bp->lmfs_dev;
|
|
}
|
|
|
|
int lmfs_bytes(struct buf *bp)
|
|
{
|
|
return bp->lmfs_bytes;
|
|
}
|
|
|
|
static void
|
|
free_unused_blocks(void)
|
|
{
|
|
struct buf *bp;
|
|
|
|
int freed = 0, bytes = 0;
|
|
printf("libminixfs: freeing; %d blocks in use\n", bufs_in_use);
|
|
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
if(bp->lmfs_bytes > 0 && bp->lmfs_count == 0) {
|
|
freed++;
|
|
bytes += bp->lmfs_bytes;
|
|
freeblock(bp);
|
|
}
|
|
}
|
|
printf("libminixfs: freeing; %d blocks, %d bytes\n", freed, bytes);
|
|
}
|
|
|
|
static void
|
|
lmfs_alloc_block(struct buf *bp)
|
|
{
|
|
ASSERT(!bp->data);
|
|
ASSERT(bp->lmfs_bytes == 0);
|
|
if((bp->data = minix_mmap(0, fs_block_size,
|
|
PROT_READ|PROT_WRITE, MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
|
|
free_unused_blocks();
|
|
if((bp->data = minix_mmap(0, fs_block_size, PROT_READ|PROT_WRITE,
|
|
MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
|
|
panic("libminixfs: could not allocate block");
|
|
}
|
|
}
|
|
assert(bp->data);
|
|
bp->lmfs_bytes = fs_block_size;
|
|
bp->lmfs_needsetcache = 1;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_get_block *
|
|
*===========================================================================*/
|
|
struct buf *lmfs_get_block(register dev_t dev, register block_t block,
|
|
int only_search)
|
|
{
|
|
return lmfs_get_block_ino(dev, block, only_search, VMC_NO_INODE, 0);
|
|
}
|
|
|
|
void minix_munmap_t(void *a, int len)
|
|
{
|
|
vir_bytes av = (vir_bytes) a;
|
|
assert(a);
|
|
assert(a != MAP_FAILED);
|
|
assert(len > 0);
|
|
assert(!(len % PAGE_SIZE));
|
|
assert(!(av % PAGE_SIZE));
|
|
|
|
if(minix_munmap(a, len) < 0)
|
|
panic("libminixfs cache: munmap failed");
|
|
}
|
|
|
|
static void raisecount(struct buf *bp)
|
|
{
|
|
assert(bufs_in_use >= 0);
|
|
ASSERT(bp->lmfs_count >= 0);
|
|
bp->lmfs_count++;
|
|
if(bp->lmfs_count == 1) bufs_in_use++;
|
|
assert(bufs_in_use > 0);
|
|
}
|
|
|
|
static void lowercount(struct buf *bp)
|
|
{
|
|
assert(bufs_in_use > 0);
|
|
ASSERT(bp->lmfs_count > 0);
|
|
bp->lmfs_count--;
|
|
if(bp->lmfs_count == 0) bufs_in_use--;
|
|
assert(bufs_in_use >= 0);
|
|
}
|
|
|
|
static void freeblock(struct buf *bp)
|
|
{
|
|
ASSERT(bp->lmfs_count == 0);
|
|
/* If the block taken is dirty, make it clean by writing it to the disk.
|
|
* Avoid hysteresis by flushing all other dirty blocks for the same device.
|
|
*/
|
|
if (bp->lmfs_dev != NO_DEV) {
|
|
if (!lmfs_isclean(bp)) flushall(bp->lmfs_dev);
|
|
assert(bp->lmfs_bytes == fs_block_size);
|
|
bp->lmfs_dev = NO_DEV;
|
|
}
|
|
|
|
/* Fill in block's parameters and add it to the hash chain where it goes. */
|
|
MARKCLEAN(bp); /* NO_DEV blocks may be marked dirty */
|
|
if(bp->lmfs_bytes > 0) {
|
|
assert(bp->data);
|
|
minix_munmap_t(bp->data, bp->lmfs_bytes);
|
|
bp->lmfs_bytes = 0;
|
|
bp->data = NULL;
|
|
} else assert(!bp->data);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_get_block_ino *
|
|
*===========================================================================*/
|
|
struct buf *lmfs_get_block_ino(dev_t dev, block_t block, int only_search,
|
|
ino_t ino, u64_t ino_off)
|
|
{
|
|
/* Check to see if the requested block is in the block cache. If so, return
|
|
* a pointer to it. If not, evict some other block and fetch it (unless
|
|
* 'only_search' is 1). All the blocks in the cache that are not in use
|
|
* are linked together in a chain, with 'front' pointing to the least recently
|
|
* used block and 'rear' to the most recently used block. If 'only_search' is
|
|
* 1, the block being requested will be overwritten in its entirety, so it is
|
|
* only necessary to see if it is in the cache; if it is not, any free buffer
|
|
* will do. It is not necessary to actually read the block in from disk.
|
|
* If 'only_search' is PREFETCH, the block need not be read from the disk,
|
|
* and the device is not to be marked on the block, so callers can tell if
|
|
* the block returned is valid.
|
|
* In addition to the LRU chain, there is also a hash chain to link together
|
|
* blocks whose block numbers end with the same bit strings, for fast lookup.
|
|
*/
|
|
|
|
int b;
|
|
static struct buf *bp;
|
|
u64_t dev_off = (u64_t) block * fs_block_size;
|
|
struct buf *prev_ptr;
|
|
|
|
assert(buf_hash);
|
|
assert(buf);
|
|
assert(nr_bufs > 0);
|
|
|
|
ASSERT(fs_block_size > 0);
|
|
|
|
assert(dev != NO_DEV);
|
|
|
|
if((ino_off % fs_block_size)) {
|
|
|
|
printf("cache: unaligned lmfs_get_block_ino ino_off %llu\n",
|
|
ino_off);
|
|
util_stacktrace();
|
|
}
|
|
|
|
/* Search the hash chain for (dev, block). */
|
|
b = BUFHASH(block);
|
|
bp = buf_hash[b];
|
|
while (bp != NULL) {
|
|
if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev) {
|
|
if(bp->lmfs_flags & VMMC_EVICTED) {
|
|
/* We had it but VM evicted it; invalidate it. */
|
|
ASSERT(bp->lmfs_count == 0);
|
|
ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
|
|
ASSERT(!(bp->lmfs_flags & VMMC_DIRTY));
|
|
bp->lmfs_dev = NO_DEV;
|
|
bp->lmfs_bytes = 0;
|
|
bp->data = NULL;
|
|
break;
|
|
}
|
|
ASSERT(bp->lmfs_needsetcache == 0);
|
|
/* Block needed has been found. */
|
|
if (bp->lmfs_count == 0) {
|
|
rm_lru(bp);
|
|
ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
|
|
bp->lmfs_flags |= VMMC_BLOCK_LOCKED;
|
|
}
|
|
raisecount(bp);
|
|
ASSERT(bp->lmfs_bytes == fs_block_size);
|
|
ASSERT(bp->lmfs_dev == dev);
|
|
ASSERT(bp->lmfs_dev != NO_DEV);
|
|
ASSERT(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
|
|
ASSERT(bp->data);
|
|
|
|
if(ino != VMC_NO_INODE) {
|
|
if(bp->lmfs_inode == VMC_NO_INODE
|
|
|| bp->lmfs_inode != ino
|
|
|| bp->lmfs_inode_offset != ino_off) {
|
|
bp->lmfs_inode = ino;
|
|
bp->lmfs_inode_offset = ino_off;
|
|
bp->lmfs_needsetcache = 1;
|
|
}
|
|
}
|
|
|
|
return(bp);
|
|
} else {
|
|
/* This block is not the one sought. */
|
|
bp = bp->lmfs_hash; /* move to next block on hash chain */
|
|
}
|
|
}
|
|
|
|
/* Desired block is not on available chain. Find a free block to use. */
|
|
if(bp) {
|
|
ASSERT(bp->lmfs_flags & VMMC_EVICTED);
|
|
} else {
|
|
if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
|
|
}
|
|
assert(bp);
|
|
|
|
rm_lru(bp);
|
|
|
|
/* Remove the block that was just taken from its hash chain. */
|
|
b = BUFHASH(bp->lmfs_blocknr);
|
|
prev_ptr = buf_hash[b];
|
|
if (prev_ptr == bp) {
|
|
buf_hash[b] = bp->lmfs_hash;
|
|
} else {
|
|
/* The block just taken is not on the front of its hash chain. */
|
|
while (prev_ptr->lmfs_hash != NULL)
|
|
if (prev_ptr->lmfs_hash == bp) {
|
|
prev_ptr->lmfs_hash = bp->lmfs_hash; /* found it */
|
|
break;
|
|
} else {
|
|
prev_ptr = prev_ptr->lmfs_hash; /* keep looking */
|
|
}
|
|
}
|
|
|
|
freeblock(bp);
|
|
|
|
bp->lmfs_inode = ino;
|
|
bp->lmfs_inode_offset = ino_off;
|
|
|
|
bp->lmfs_flags = VMMC_BLOCK_LOCKED;
|
|
bp->lmfs_needsetcache = 0;
|
|
bp->lmfs_dev = dev; /* fill in device number */
|
|
bp->lmfs_blocknr = block; /* fill in block number */
|
|
ASSERT(bp->lmfs_count == 0);
|
|
raisecount(bp);
|
|
b = BUFHASH(bp->lmfs_blocknr);
|
|
bp->lmfs_hash = buf_hash[b];
|
|
|
|
buf_hash[b] = bp; /* add to hash list */
|
|
|
|
assert(dev != NO_DEV);
|
|
|
|
/* Block is not found in our cache, but we do want it
|
|
* if it's in the vm cache.
|
|
*/
|
|
assert(!bp->data);
|
|
assert(!bp->lmfs_bytes);
|
|
if(vmcache) {
|
|
if((bp->data = vm_map_cacheblock(dev, dev_off, ino, ino_off,
|
|
&bp->lmfs_flags, fs_block_size)) != MAP_FAILED) {
|
|
bp->lmfs_bytes = fs_block_size;
|
|
ASSERT(!bp->lmfs_needsetcache);
|
|
return bp;
|
|
}
|
|
}
|
|
bp->data = NULL;
|
|
|
|
/* Not in the cache; reserve memory for its contents. */
|
|
|
|
lmfs_alloc_block(bp);
|
|
|
|
assert(bp->data);
|
|
|
|
if(only_search == PREFETCH) {
|
|
/* PREFETCH: don't do i/o. */
|
|
bp->lmfs_dev = NO_DEV;
|
|
} else if (only_search == NORMAL) {
|
|
read_block(bp);
|
|
} else if(only_search == NO_READ) {
|
|
/* This block will be overwritten by new contents. */
|
|
} else
|
|
panic("unexpected only_search value: %d", only_search);
|
|
|
|
assert(bp->data);
|
|
|
|
return(bp); /* return the newly acquired block */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_put_block *
|
|
*===========================================================================*/
|
|
void lmfs_put_block(bp, block_type)
|
|
register struct buf *bp; /* pointer to the buffer to be released */
|
|
int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
|
|
{
|
|
/* Return a block to the list of available blocks. Depending on 'block_type'
|
|
* it may be put on the front or rear of the LRU chain. Blocks that are
|
|
* expected to be needed again shortly (e.g., partially full data blocks)
|
|
* go on the rear; blocks that are unlikely to be needed again shortly
|
|
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
|
|
* the integrity of the file system (e.g., inode blocks) are written to
|
|
* disk immediately if they are dirty.
|
|
*/
|
|
dev_t dev;
|
|
u64_t dev_off;
|
|
int r;
|
|
|
|
if (bp == NULL) return; /* it is easier to check here than in caller */
|
|
|
|
dev = bp->lmfs_dev;
|
|
|
|
dev_off = (u64_t) bp->lmfs_blocknr * fs_block_size;
|
|
|
|
lowercount(bp);
|
|
if (bp->lmfs_count != 0) return; /* block is still in use */
|
|
|
|
/* Put this block back on the LRU chain. */
|
|
if (dev == DEV_RAM || (block_type & ONE_SHOT)) {
|
|
/* Block probably won't be needed quickly. Put it on front of chain.
|
|
* It will be the next block to be evicted from the cache.
|
|
*/
|
|
bp->lmfs_prev = NULL;
|
|
bp->lmfs_next = front;
|
|
if (front == NULL)
|
|
rear = bp; /* LRU chain was empty */
|
|
else
|
|
front->lmfs_prev = bp;
|
|
front = bp;
|
|
}
|
|
else {
|
|
/* Block probably will be needed quickly. Put it on rear of chain.
|
|
* It will not be evicted from the cache for a long time.
|
|
*/
|
|
bp->lmfs_prev = rear;
|
|
bp->lmfs_next = NULL;
|
|
if (rear == NULL)
|
|
front = bp;
|
|
else
|
|
rear->lmfs_next = bp;
|
|
rear = bp;
|
|
}
|
|
|
|
assert(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
|
|
bp->lmfs_flags &= ~VMMC_BLOCK_LOCKED;
|
|
|
|
/* block has sensible content - if necesary, identify it to VM */
|
|
if(vmcache && bp->lmfs_needsetcache && dev != NO_DEV) {
|
|
if((r=vm_set_cacheblock(bp->data, dev, dev_off,
|
|
bp->lmfs_inode, bp->lmfs_inode_offset,
|
|
&bp->lmfs_flags, fs_block_size)) != OK) {
|
|
if(r == ENOSYS) {
|
|
printf("libminixfs: ENOSYS, disabling VM calls\n");
|
|
vmcache = 0;
|
|
} else {
|
|
panic("libminixfs: setblock of %p dev 0x%x off "
|
|
"0x%llx failed\n", bp->data, dev, dev_off);
|
|
}
|
|
}
|
|
}
|
|
bp->lmfs_needsetcache = 0;
|
|
|
|
}
|
|
|
|
void lmfs_cache_reevaluate(dev_t dev)
|
|
{
|
|
if(bufs_in_use == 0 && dev != NO_DEV) {
|
|
/* if the cache isn't in use any more, we could resize it. */
|
|
cache_heuristic_check(major(dev));
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* read_block *
|
|
*===========================================================================*/
|
|
static void read_block(bp)
|
|
register struct buf *bp; /* buffer pointer */
|
|
{
|
|
/* Read or write a disk block. This is the only routine in which actual disk
|
|
* I/O is invoked. If an error occurs, a message is printed here, but the error
|
|
* is not reported to the caller. If the error occurred while purging a block
|
|
* from the cache, it is not clear what the caller could do about it anyway.
|
|
*/
|
|
int r, op_failed;
|
|
u64_t pos;
|
|
dev_t dev = bp->lmfs_dev;
|
|
|
|
op_failed = 0;
|
|
|
|
assert(dev != NO_DEV);
|
|
|
|
ASSERT(bp->lmfs_bytes == fs_block_size);
|
|
ASSERT(fs_block_size > 0);
|
|
|
|
pos = mul64u(bp->lmfs_blocknr, fs_block_size);
|
|
if(fs_block_size > PAGE_SIZE) {
|
|
#define MAXPAGES 20
|
|
vir_bytes vaddr = (vir_bytes) bp->data;
|
|
int p;
|
|
static iovec_t iovec[MAXPAGES];
|
|
int pages = fs_block_size/PAGE_SIZE;
|
|
ASSERT(pages > 1 && pages < MAXPAGES);
|
|
for(p = 0; p < pages; p++) {
|
|
iovec[p].iov_addr = vaddr;
|
|
iovec[p].iov_size = PAGE_SIZE;
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
r = bdev_gather(dev, pos, iovec, pages, BDEV_NOFLAGS);
|
|
} else {
|
|
r = bdev_read(dev, pos, bp->data, fs_block_size,
|
|
BDEV_NOFLAGS);
|
|
}
|
|
if (r < 0) {
|
|
printf("fs cache: I/O error on device %d/%d, block %u\n",
|
|
major(dev), minor(dev), bp->lmfs_blocknr);
|
|
op_failed = 1;
|
|
} else if (r != (ssize_t) fs_block_size) {
|
|
r = END_OF_FILE;
|
|
op_failed = 1;
|
|
}
|
|
|
|
if (op_failed) {
|
|
bp->lmfs_dev = NO_DEV; /* invalidate block */
|
|
|
|
/* Report read errors to interested parties. */
|
|
rdwt_err = r;
|
|
}
|
|
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_invalidate *
|
|
*===========================================================================*/
|
|
void lmfs_invalidate(
|
|
dev_t device /* device whose blocks are to be purged */
|
|
)
|
|
{
|
|
/* Remove all the blocks belonging to some device from the cache. */
|
|
|
|
register struct buf *bp;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
if (bp->lmfs_dev == device) {
|
|
assert(bp->data);
|
|
assert(bp->lmfs_bytes > 0);
|
|
minix_munmap_t(bp->data, bp->lmfs_bytes);
|
|
bp->lmfs_dev = NO_DEV;
|
|
bp->lmfs_bytes = 0;
|
|
bp->data = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* flushall *
|
|
*===========================================================================*/
|
|
static void flushall(dev_t dev)
|
|
{
|
|
/* Flush all dirty blocks for one device. */
|
|
|
|
register struct buf *bp;
|
|
static struct buf **dirty; /* static so it isn't on stack */
|
|
static unsigned int dirtylistsize = 0;
|
|
int ndirty;
|
|
|
|
if(dirtylistsize != nr_bufs) {
|
|
if(dirtylistsize > 0) {
|
|
assert(dirty != NULL);
|
|
free(dirty);
|
|
}
|
|
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
|
|
panic("couldn't allocate dirty buf list");
|
|
dirtylistsize = nr_bufs;
|
|
}
|
|
|
|
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
|
|
if (!lmfs_isclean(bp) && bp->lmfs_dev == dev) {
|
|
dirty[ndirty++] = bp;
|
|
}
|
|
}
|
|
|
|
lmfs_rw_scattered(dev, dirty, ndirty, WRITING);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_rw_scattered *
|
|
*===========================================================================*/
|
|
void lmfs_rw_scattered(
|
|
dev_t dev, /* major-minor device number */
|
|
struct buf **bufq, /* pointer to array of buffers */
|
|
int bufqsize, /* number of buffers */
|
|
int rw_flag /* READING or WRITING */
|
|
)
|
|
{
|
|
/* Read or write scattered data from a device. */
|
|
|
|
register struct buf *bp;
|
|
int gap;
|
|
register int i;
|
|
register iovec_t *iop;
|
|
static iovec_t *iovec = NULL;
|
|
u64_t pos;
|
|
int iov_per_block;
|
|
|
|
STATICINIT(iovec, NR_IOREQS);
|
|
|
|
assert(dev != NO_DEV);
|
|
assert(!(fs_block_size % PAGE_SIZE));
|
|
assert(fs_block_size > 0);
|
|
iov_per_block = fs_block_size / PAGE_SIZE;
|
|
|
|
/* (Shell) sort buffers on lmfs_blocknr. */
|
|
gap = 1;
|
|
do
|
|
gap = 3 * gap + 1;
|
|
while (gap <= bufqsize);
|
|
while (gap != 1) {
|
|
int j;
|
|
gap /= 3;
|
|
for (j = gap; j < bufqsize; j++) {
|
|
for (i = j - gap;
|
|
i >= 0 && bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
|
|
i -= gap) {
|
|
bp = bufq[i];
|
|
bufq[i] = bufq[i + gap];
|
|
bufq[i + gap] = bp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set up I/O vector and do I/O. The result of bdev I/O is OK if everything
|
|
* went fine, otherwise the error code for the first failed transfer.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
int nblocks = 0, niovecs = 0;
|
|
int r;
|
|
for (iop = iovec; nblocks < bufqsize; nblocks++) {
|
|
int p;
|
|
vir_bytes vdata;
|
|
bp = bufq[nblocks];
|
|
if (bp->lmfs_blocknr != (block_t) bufq[0]->lmfs_blocknr + nblocks)
|
|
break;
|
|
if(niovecs >= NR_IOREQS-iov_per_block) break;
|
|
vdata = (vir_bytes) bp->data;
|
|
for(p = 0; p < iov_per_block; p++) {
|
|
iop->iov_addr = vdata;
|
|
iop->iov_size = PAGE_SIZE;
|
|
vdata += PAGE_SIZE;
|
|
iop++;
|
|
niovecs++;
|
|
}
|
|
}
|
|
|
|
assert(nblocks > 0);
|
|
assert(niovecs > 0);
|
|
|
|
pos = mul64u(bufq[0]->lmfs_blocknr, fs_block_size);
|
|
if (rw_flag == READING)
|
|
r = bdev_gather(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
|
|
else
|
|
r = bdev_scatter(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
|
|
|
|
/* Harvest the results. The driver may have returned an error, or it
|
|
* may have done less than what we asked for.
|
|
*/
|
|
if (r < 0) {
|
|
printf("fs cache: I/O error %d on device %d/%d, block %u\n",
|
|
r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
|
|
}
|
|
for (i = 0; i < nblocks; i++) {
|
|
bp = bufq[i];
|
|
if (r < (ssize_t) fs_block_size) {
|
|
/* Transfer failed. */
|
|
if (i == 0) {
|
|
bp->lmfs_dev = NO_DEV; /* Invalidate block */
|
|
}
|
|
break;
|
|
}
|
|
if (rw_flag == READING) {
|
|
bp->lmfs_dev = dev; /* validate block */
|
|
lmfs_put_block(bp, PARTIAL_DATA_BLOCK);
|
|
} else {
|
|
MARKCLEAN(bp);
|
|
}
|
|
r -= fs_block_size;
|
|
}
|
|
bufq += nblocks;
|
|
bufqsize -= nblocks;
|
|
if (rw_flag == READING) {
|
|
/* Don't bother reading more than the device is willing to
|
|
* give at this time. Don't forget to release those extras.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
lmfs_put_block(*bufq++, PARTIAL_DATA_BLOCK);
|
|
bufqsize--;
|
|
}
|
|
}
|
|
if (rw_flag == WRITING && i == 0) {
|
|
/* We're not making progress, this means we might keep
|
|
* looping. Buffers remain dirty if un-written. Buffers are
|
|
* lost if invalidate()d or LRU-removed while dirty. This
|
|
* is better than keeping unwritable blocks around forever..
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* rm_lru *
|
|
*===========================================================================*/
|
|
static void rm_lru(bp)
|
|
struct buf *bp;
|
|
{
|
|
/* Remove a block from its LRU chain. */
|
|
struct buf *next_ptr, *prev_ptr;
|
|
|
|
next_ptr = bp->lmfs_next; /* successor on LRU chain */
|
|
prev_ptr = bp->lmfs_prev; /* predecessor on LRU chain */
|
|
if (prev_ptr != NULL)
|
|
prev_ptr->lmfs_next = next_ptr;
|
|
else
|
|
front = next_ptr; /* this block was at front of chain */
|
|
|
|
if (next_ptr != NULL)
|
|
next_ptr->lmfs_prev = prev_ptr;
|
|
else
|
|
rear = prev_ptr; /* this block was at rear of chain */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* cache_resize *
|
|
*===========================================================================*/
|
|
static void cache_resize(unsigned int blocksize, unsigned int bufs)
|
|
{
|
|
struct buf *bp;
|
|
|
|
assert(blocksize > 0);
|
|
assert(bufs >= MINBUFS);
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
|
|
|
|
lmfs_buf_pool(bufs);
|
|
|
|
fs_block_size = blocksize;
|
|
}
|
|
|
|
static void cache_heuristic_check(int major)
|
|
{
|
|
int bufs, d;
|
|
u32_t btotal, bfree, bused;
|
|
|
|
fs_blockstats(&btotal, &bfree, &bused);
|
|
|
|
bufs = fs_bufs_heuristic(10, btotal, bfree,
|
|
fs_block_size, major);
|
|
|
|
/* set the cache to the new heuristic size if the new one
|
|
* is more than 10% off from the current one.
|
|
*/
|
|
d = bufs-nr_bufs;
|
|
if(d < 0) d = -d;
|
|
if(d*100/nr_bufs > 10) {
|
|
cache_resize(fs_block_size, bufs);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_set_blocksize *
|
|
*===========================================================================*/
|
|
void lmfs_set_blocksize(int new_block_size, int major)
|
|
{
|
|
cache_resize(new_block_size, MINBUFS);
|
|
cache_heuristic_check(major);
|
|
|
|
/* Decide whether to use seconday cache or not.
|
|
* Only do this if
|
|
* - it's available, and
|
|
* - use of it hasn't been disabled for this fs, and
|
|
* - our main FS device isn't a memory device
|
|
*/
|
|
|
|
vmcache = 0;
|
|
|
|
if(may_use_vmcache)
|
|
vmcache = 1;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_buf_pool *
|
|
*===========================================================================*/
|
|
void lmfs_buf_pool(int new_nr_bufs)
|
|
{
|
|
/* Initialize the buffer pool. */
|
|
register struct buf *bp;
|
|
|
|
assert(new_nr_bufs >= MINBUFS);
|
|
|
|
if(nr_bufs > 0) {
|
|
assert(buf);
|
|
(void) fs_sync();
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
if(bp->data) {
|
|
assert(bp->lmfs_bytes > 0);
|
|
minix_munmap_t(bp->data, bp->lmfs_bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(buf)
|
|
free(buf);
|
|
|
|
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf list (%d)", new_nr_bufs);
|
|
|
|
if(buf_hash)
|
|
free(buf_hash);
|
|
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
|
|
|
|
nr_bufs = new_nr_bufs;
|
|
|
|
bufs_in_use = 0;
|
|
front = &buf[0];
|
|
rear = &buf[nr_bufs - 1];
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
bp->lmfs_blocknr = NO_BLOCK;
|
|
bp->lmfs_dev = NO_DEV;
|
|
bp->lmfs_next = bp + 1;
|
|
bp->lmfs_prev = bp - 1;
|
|
bp->data = NULL;
|
|
bp->lmfs_bytes = 0;
|
|
}
|
|
front->lmfs_prev = NULL;
|
|
rear->lmfs_next = NULL;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
|
|
buf_hash[0] = front;
|
|
}
|
|
|
|
int lmfs_bufs_in_use(void)
|
|
{
|
|
return bufs_in_use;
|
|
}
|
|
|
|
int lmfs_nr_bufs(void)
|
|
{
|
|
return nr_bufs;
|
|
}
|
|
|
|
void lmfs_flushall(void)
|
|
{
|
|
struct buf *bp;
|
|
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if(bp->lmfs_dev != NO_DEV && !lmfs_isclean(bp))
|
|
flushall(bp->lmfs_dev);
|
|
}
|
|
|
|
int lmfs_fs_block_size(void)
|
|
{
|
|
return fs_block_size;
|
|
}
|
|
|
|
void lmfs_may_use_vmcache(int ok)
|
|
{
|
|
may_use_vmcache = ok;
|
|
}
|
|
|
|
void lmfs_reset_rdwt_err(void)
|
|
{
|
|
rdwt_err = OK;
|
|
}
|
|
|
|
int lmfs_rdwt_err(void)
|
|
{
|
|
return rdwt_err;
|
|
}
|
|
|
|
int lmfs_do_bpeek(message *m)
|
|
{
|
|
block_t startblock, b, limitblock;
|
|
dev_t dev = m->REQ_DEV2;
|
|
u64_t extra, pos = make64(m->REQ_SEEK_POS_LO, m->REQ_SEEK_POS_HI);
|
|
size_t len = m->REQ_NBYTES;
|
|
struct buf *bp;
|
|
|
|
assert(m->m_type == REQ_BPEEK);
|
|
assert(fs_block_size > 0);
|
|
assert(dev != NO_DEV);
|
|
|
|
if((extra=(pos % fs_block_size))) {
|
|
pos -= extra;
|
|
len += extra;
|
|
}
|
|
|
|
len = roundup(len, fs_block_size);
|
|
|
|
startblock = pos/fs_block_size;
|
|
limitblock = startblock + len/fs_block_size;
|
|
|
|
for(b = startblock; b < limitblock; b++) {
|
|
bp = lmfs_get_block(dev, b, NORMAL);
|
|
assert(bp);
|
|
lmfs_put_block(bp, FULL_DATA_BLOCK);
|
|
}
|
|
|
|
return OK;
|
|
}
|