minix/sys/ufs/lfs/lfs_vnops.c
Ben Gras d65f6f7009 imported code harmonisation
. common/include/arch/i386 is not actually an imported
	  sys/arch/i386/include but leftover Minix files;
	  remove and move to include/
	. move include/ufs to sys/ufs, where it came from, now that
	  we have a sys/ hierarchy
	. move mdocml/ to external/bsd/, now we have that
	. single sys/arch/i386/stand/ import for boot stuff
2012-03-14 16:02:59 +01:00

2478 lines
66 KiB
C

/* $NetBSD: lfs_vnops.c,v 1.238 2011/09/20 14:01:33 chs Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1986, 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.238 2011/09/20 14:01:33 chs Exp $");
#ifdef _KERNEL_OPT
#include "opt_compat_netbsd.h"
#include "opt_uvm_page_trkown.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/resourcevar.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/pool.h>
#include <sys/signalvar.h>
#include <sys/kauth.h>
#include <sys/syslog.h>
#include <sys/fstrans.h>
#include <miscfs/fifofs/fifo.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <uvm/uvm.h>
#include <uvm/uvm_pmap.h>
#include <uvm/uvm_stat.h>
#include <uvm/uvm_pager.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
extern pid_t lfs_writer_daemon;
int lfs_ignore_lazy_sync = 1;
/* Global vfs data structures for lfs. */
int (**lfs_vnodeop_p)(void *);
const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
{ &vop_default_desc, vn_default_error },
{ &vop_lookup_desc, ufs_lookup }, /* lookup */
{ &vop_create_desc, lfs_create }, /* create */
{ &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
{ &vop_mknod_desc, lfs_mknod }, /* mknod */
{ &vop_open_desc, ufs_open }, /* open */
{ &vop_close_desc, lfs_close }, /* close */
{ &vop_access_desc, ufs_access }, /* access */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, lfs_read }, /* read */
{ &vop_write_desc, lfs_write }, /* write */
{ &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
{ &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
{ &vop_poll_desc, ufs_poll }, /* poll */
{ &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
{ &vop_revoke_desc, ufs_revoke }, /* revoke */
{ &vop_mmap_desc, lfs_mmap }, /* mmap */
{ &vop_fsync_desc, lfs_fsync }, /* fsync */
{ &vop_seek_desc, ufs_seek }, /* seek */
{ &vop_remove_desc, lfs_remove }, /* remove */
{ &vop_link_desc, lfs_link }, /* link */
{ &vop_rename_desc, lfs_rename }, /* rename */
{ &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
{ &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
{ &vop_symlink_desc, lfs_symlink }, /* symlink */
{ &vop_readdir_desc, ufs_readdir }, /* readdir */
{ &vop_readlink_desc, ufs_readlink }, /* readlink */
{ &vop_abortop_desc, ufs_abortop }, /* abortop */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, ufs_lock }, /* lock */
{ &vop_unlock_desc, ufs_unlock }, /* unlock */
{ &vop_bmap_desc, ufs_bmap }, /* bmap */
{ &vop_strategy_desc, lfs_strategy }, /* strategy */
{ &vop_print_desc, ufs_print }, /* print */
{ &vop_islocked_desc, ufs_islocked }, /* islocked */
{ &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
{ &vop_advlock_desc, ufs_advlock }, /* advlock */
{ &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
{ &vop_getpages_desc, lfs_getpages }, /* getpages */
{ &vop_putpages_desc, lfs_putpages }, /* putpages */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_vnodeop_opv_desc =
{ &lfs_vnodeop_p, lfs_vnodeop_entries };
int (**lfs_specop_p)(void *);
const struct vnodeopv_entry_desc lfs_specop_entries[] = {
{ &vop_default_desc, vn_default_error },
{ &vop_lookup_desc, spec_lookup }, /* lookup */
{ &vop_create_desc, spec_create }, /* create */
{ &vop_mknod_desc, spec_mknod }, /* mknod */
{ &vop_open_desc, spec_open }, /* open */
{ &vop_close_desc, lfsspec_close }, /* close */
{ &vop_access_desc, ufs_access }, /* access */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, ufsspec_read }, /* read */
{ &vop_write_desc, ufsspec_write }, /* write */
{ &vop_ioctl_desc, spec_ioctl }, /* ioctl */
{ &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
{ &vop_poll_desc, spec_poll }, /* poll */
{ &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
{ &vop_revoke_desc, spec_revoke }, /* revoke */
{ &vop_mmap_desc, spec_mmap }, /* mmap */
{ &vop_fsync_desc, spec_fsync }, /* fsync */
{ &vop_seek_desc, spec_seek }, /* seek */
{ &vop_remove_desc, spec_remove }, /* remove */
{ &vop_link_desc, spec_link }, /* link */
{ &vop_rename_desc, spec_rename }, /* rename */
{ &vop_mkdir_desc, spec_mkdir }, /* mkdir */
{ &vop_rmdir_desc, spec_rmdir }, /* rmdir */
{ &vop_symlink_desc, spec_symlink }, /* symlink */
{ &vop_readdir_desc, spec_readdir }, /* readdir */
{ &vop_readlink_desc, spec_readlink }, /* readlink */
{ &vop_abortop_desc, spec_abortop }, /* abortop */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, ufs_lock }, /* lock */
{ &vop_unlock_desc, ufs_unlock }, /* unlock */
{ &vop_bmap_desc, spec_bmap }, /* bmap */
{ &vop_strategy_desc, spec_strategy }, /* strategy */
{ &vop_print_desc, ufs_print }, /* print */
{ &vop_islocked_desc, ufs_islocked }, /* islocked */
{ &vop_pathconf_desc, spec_pathconf }, /* pathconf */
{ &vop_advlock_desc, spec_advlock }, /* advlock */
{ &vop_bwrite_desc, vn_bwrite }, /* bwrite */
{ &vop_getpages_desc, spec_getpages }, /* getpages */
{ &vop_putpages_desc, spec_putpages }, /* putpages */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_specop_opv_desc =
{ &lfs_specop_p, lfs_specop_entries };
int (**lfs_fifoop_p)(void *);
const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
{ &vop_default_desc, vn_default_error },
{ &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
{ &vop_create_desc, vn_fifo_bypass }, /* create */
{ &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
{ &vop_open_desc, vn_fifo_bypass }, /* open */
{ &vop_close_desc, lfsfifo_close }, /* close */
{ &vop_access_desc, ufs_access }, /* access */
{ &vop_getattr_desc, lfs_getattr }, /* getattr */
{ &vop_setattr_desc, lfs_setattr }, /* setattr */
{ &vop_read_desc, ufsfifo_read }, /* read */
{ &vop_write_desc, ufsfifo_write }, /* write */
{ &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
{ &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
{ &vop_poll_desc, vn_fifo_bypass }, /* poll */
{ &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
{ &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
{ &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
{ &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
{ &vop_seek_desc, vn_fifo_bypass }, /* seek */
{ &vop_remove_desc, vn_fifo_bypass }, /* remove */
{ &vop_link_desc, vn_fifo_bypass }, /* link */
{ &vop_rename_desc, vn_fifo_bypass }, /* rename */
{ &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
{ &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
{ &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
{ &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
{ &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
{ &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
{ &vop_inactive_desc, lfs_inactive }, /* inactive */
{ &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
{ &vop_lock_desc, ufs_lock }, /* lock */
{ &vop_unlock_desc, ufs_unlock }, /* unlock */
{ &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
{ &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
{ &vop_print_desc, ufs_print }, /* print */
{ &vop_islocked_desc, ufs_islocked }, /* islocked */
{ &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
{ &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
{ &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
{ &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
{ NULL, NULL }
};
const struct vnodeopv_desc lfs_fifoop_opv_desc =
{ &lfs_fifoop_p, lfs_fifoop_entries };
static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
#define LFS_READWRITE
#include <ufs/ufs/ufs_readwrite.c>
#undef LFS_READWRITE
/*
* Synch an open file.
*/
/* ARGSUSED */
int
lfs_fsync(void *v)
{
struct vop_fsync_args /* {
struct vnode *a_vp;
kauth_cred_t a_cred;
int a_flags;
off_t offlo;
off_t offhi;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
int error, wait;
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
/* If we're mounted read-only, don't try to sync. */
if (fs->lfs_ronly)
return 0;
/* If a removed vnode is being cleaned, no need to sync here. */
if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
return 0;
/*
* Trickle sync simply adds this vnode to the pager list, as if
* the pagedaemon had requested a pageout.
*/
if (ap->a_flags & FSYNC_LAZY) {
if (lfs_ignore_lazy_sync == 0) {
mutex_enter(&lfs_lock);
if (!(ip->i_flags & IN_PAGING)) {
ip->i_flags |= IN_PAGING;
TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
i_lfs_pchain);
}
wakeup(&lfs_writer_daemon);
mutex_exit(&lfs_lock);
}
return 0;
}
/*
* If a vnode is bring cleaned, flush it out before we try to
* reuse it. This prevents the cleaner from writing files twice
* in the same partial segment, causing an accounting underflow.
*/
if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
lfs_vflush(vp);
}
wait = (ap->a_flags & FSYNC_WAIT);
do {
mutex_enter(vp->v_interlock);
error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
round_page(ap->a_offhi),
PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
if (error == EAGAIN) {
mutex_enter(&lfs_lock);
mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
hz / 100 + 1, &lfs_lock);
mutex_exit(&lfs_lock);
}
} while (error == EAGAIN);
if (error)
return error;
if ((ap->a_flags & FSYNC_DATAONLY) == 0)
error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
if (error == 0 && ap->a_flags & FSYNC_CACHE) {
int l = 0;
error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
curlwp->l_cred);
}
if (wait && !VPISEMPTY(vp))
LFS_SET_UINO(ip, IN_MODIFIED);
return error;
}
/*
* Take IN_ADIROP off, then call ufs_inactive.
*/
int
lfs_inactive(void *v)
{
struct vop_inactive_args /* {
struct vnode *a_vp;
} */ *ap = v;
lfs_unmark_vnode(ap->a_vp);
/*
* The Ifile is only ever inactivated on unmount.
* Streamline this process by not giving it more dirty blocks.
*/
if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
mutex_enter(&lfs_lock);
LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
mutex_exit(&lfs_lock);
VOP_UNLOCK(ap->a_vp);
return 0;
}
return ufs_inactive(v);
}
/*
* These macros are used to bracket UFS directory ops, so that we can
* identify all the pages touched during directory ops which need to
* be ordered and flushed atomically, so that they may be recovered.
*
* Because we have to mark nodes VU_DIROP in order to prevent
* the cache from reclaiming them while a dirop is in progress, we must
* also manage the number of nodes so marked (otherwise we can run out).
* We do this by setting lfs_dirvcount to the number of marked vnodes; it
* is decremented during segment write, when VU_DIROP is taken off.
*/
#define MARK_VNODE(vp) lfs_mark_vnode(vp)
#define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
#define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
#define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
static int lfs_set_dirop_create(struct vnode *, struct vnode **);
static int lfs_set_dirop(struct vnode *, struct vnode *);
static int
lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
{
struct lfs *fs;
int error;
KASSERT(VOP_ISLOCKED(dvp));
KASSERT(vp == NULL || VOP_ISLOCKED(vp));
fs = VTOI(dvp)->i_lfs;
ASSERT_NO_SEGLOCK(fs);
/*
* LFS_NRESERVE calculates direct and indirect blocks as well
* as an inode block; an overestimate in most cases.
*/
if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
return (error);
restart:
mutex_enter(&lfs_lock);
if (fs->lfs_dirops == 0) {
mutex_exit(&lfs_lock);
lfs_check(dvp, LFS_UNUSED_LBN, 0);
mutex_enter(&lfs_lock);
}
while (fs->lfs_writer) {
error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
"lfs_sdirop", 0, &lfs_lock);
if (error == EINTR) {
mutex_exit(&lfs_lock);
goto unreserve;
}
}
if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
wakeup(&lfs_writer_daemon);
mutex_exit(&lfs_lock);
preempt();
goto restart;
}
if (lfs_dirvcount > LFS_MAX_DIROP) {
mutex_exit(&lfs_lock);
DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
"dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
if ((error = mtsleep(&lfs_dirvcount,
PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
&lfs_lock)) != 0) {
goto unreserve;
}
goto restart;
}
++fs->lfs_dirops;
fs->lfs_doifile = 1;
mutex_exit(&lfs_lock);
/* Hold a reference so SET_ENDOP will be happy */
vref(dvp);
if (vp) {
vref(vp);
MARK_VNODE(vp);
}
MARK_VNODE(dvp);
return 0;
unreserve:
lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
return error;
}
/*
* Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
* in getnewvnode(), if we have a stacked filesystem mounted on top
* of us.
*
* NB: this means we have to clear the new vnodes on error. Fortunately
* SET_ENDOP is there to do that for us.
*/
static int
lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
{
int error;
struct lfs *fs;
fs = VFSTOUFS(dvp->v_mount)->um_lfs;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly)
return EROFS;
if (vpp == NULL) {
return lfs_set_dirop(dvp, NULL);
}
error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
if (error) {
DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
dvp, error));
return error;
}
if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
ungetnewvnode(*vpp);
*vpp = NULL;
return error;
}
return 0;
}
#define SET_ENDOP_BASE(fs, dvp, str) \
do { \
mutex_enter(&lfs_lock); \
--(fs)->lfs_dirops; \
if (!(fs)->lfs_dirops) { \
if ((fs)->lfs_nadirop) { \
panic("SET_ENDOP: %s: no dirops but " \
" nadirop=%d", (str), \
(fs)->lfs_nadirop); \
} \
wakeup(&(fs)->lfs_writer); \
mutex_exit(&lfs_lock); \
lfs_check((dvp), LFS_UNUSED_LBN, 0); \
} else \
mutex_exit(&lfs_lock); \
} while(0)
#define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
do { \
UNMARK_VNODE(dvp); \
if (nvpp && *nvpp) \
UNMARK_VNODE(*nvpp); \
/* Check for error return to stem vnode leakage */ \
if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
ungetnewvnode(*(nvpp)); \
SET_ENDOP_BASE((fs), (dvp), (str)); \
lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
vrele(dvp); \
} while(0)
#define SET_ENDOP_CREATE_AP(ap, str) \
SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
(ap)->a_vpp, (str))
#define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
do { \
UNMARK_VNODE(dvp); \
if (ovp) \
UNMARK_VNODE(ovp); \
SET_ENDOP_BASE((fs), (dvp), (str)); \
lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
vrele(dvp); \
if (ovp) \
vrele(ovp); \
} while(0)
void
lfs_mark_vnode(struct vnode *vp)
{
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
mutex_enter(&lfs_lock);
if (!(ip->i_flag & IN_ADIROP)) {
if (!(vp->v_uflag & VU_DIROP)) {
mutex_enter(vp->v_interlock);
(void)lfs_vref(vp);
++lfs_dirvcount;
++fs->lfs_dirvcount;
TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
vp->v_uflag |= VU_DIROP;
}
++fs->lfs_nadirop;
ip->i_flag |= IN_ADIROP;
} else
KASSERT(vp->v_uflag & VU_DIROP);
mutex_exit(&lfs_lock);
}
void
lfs_unmark_vnode(struct vnode *vp)
{
struct inode *ip = VTOI(vp);
if (ip && (ip->i_flag & IN_ADIROP)) {
KASSERT(vp->v_uflag & VU_DIROP);
mutex_enter(&lfs_lock);
--ip->i_lfs->lfs_nadirop;
mutex_exit(&lfs_lock);
ip->i_flag &= ~IN_ADIROP;
}
}
int
lfs_symlink(void *v)
{
struct vop_symlink_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
char *a_target;
} */ *ap = v;
int error;
if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
vput(ap->a_dvp);
return error;
}
error = ufs_symlink(ap);
SET_ENDOP_CREATE_AP(ap, "symlink");
return (error);
}
int
lfs_mknod(void *v)
{
struct vop_mknod_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
struct vattr *vap = ap->a_vap;
struct vnode **vpp = ap->a_vpp;
struct inode *ip;
int error;
struct mount *mp;
ino_t ino;
struct ufs_lookup_results *ulr;
/* XXX should handle this material another way */
ulr = &VTOI(ap->a_dvp)->i_crap;
UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
vput(ap->a_dvp);
return error;
}
error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
ap->a_dvp, ulr, vpp, ap->a_cnp);
/* Either way we're done with the dirop at this point */
SET_ENDOP_CREATE_AP(ap, "mknod");
if (error)
return (error);
ip = VTOI(*vpp);
mp = (*vpp)->v_mount;
ino = ip->i_number;
ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
if (vap->va_rdev != VNOVAL) {
/*
* Want to be able to use this to make badblock
* inodes, so don't truncate the dev number.
*/
#if 0
ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
UFS_MPNEEDSWAP((*vpp)->v_mount));
#else
ip->i_ffs1_rdev = vap->va_rdev;
#endif
}
/*
* Call fsync to write the vnode so that we don't have to deal with
* flushing it when it's marked VU_DIROP|VI_XLOCK.
*
* XXX KS - If we can't flush we also can't call vgone(), so must
* return. But, that leaves this vnode in limbo, also not good.
* Can this ever happen (barring hardware failure)?
*/
if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
panic("lfs_mknod: couldn't fsync (ino %llu)",
(unsigned long long)ino);
/* return (error); */
}
/*
* Remove vnode so that it will be reloaded by VFS_VGET and
* checked to see if it is an alias of an existing entry in
* the inode cache.
*/
/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
VOP_UNLOCK(*vpp);
(*vpp)->v_type = VNON;
vgone(*vpp);
error = VFS_VGET(mp, ino, vpp);
if (error != 0) {
*vpp = NULL;
return (error);
}
return (0);
}
int
lfs_create(void *v)
{
struct vop_create_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
int error;
if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
vput(ap->a_dvp);
return error;
}
error = ufs_create(ap);
SET_ENDOP_CREATE_AP(ap, "create");
return (error);
}
int
lfs_mkdir(void *v)
{
struct vop_mkdir_args /* {
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;
struct vattr *a_vap;
} */ *ap = v;
int error;
if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
vput(ap->a_dvp);
return error;
}
error = ufs_mkdir(ap);
SET_ENDOP_CREATE_AP(ap, "mkdir");
return (error);
}
int
lfs_remove(void *v)
{
struct vop_remove_args /* {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
} */ *ap = v;
struct vnode *dvp, *vp;
struct inode *ip;
int error;
dvp = ap->a_dvp;
vp = ap->a_vp;
ip = VTOI(vp);
if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
if (dvp == vp)
vrele(vp);
else
vput(vp);
vput(dvp);
return error;
}
error = ufs_remove(ap);
if (ip->i_nlink == 0)
lfs_orphan(ip->i_lfs, ip->i_number);
SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
return (error);
}
int
lfs_rmdir(void *v)
{
struct vop_rmdir_args /* {
struct vnodeop_desc *a_desc;
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
int error;
vp = ap->a_vp;
ip = VTOI(vp);
if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
if (ap->a_dvp == vp)
vrele(ap->a_dvp);
else
vput(ap->a_dvp);
vput(vp);
return error;
}
error = ufs_rmdir(ap);
if (ip->i_nlink == 0)
lfs_orphan(ip->i_lfs, ip->i_number);
SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
return (error);
}
int
lfs_link(void *v)
{
struct vop_link_args /* {
struct vnode *a_dvp;
struct vnode *a_vp;
struct componentname *a_cnp;
} */ *ap = v;
int error;
struct vnode **vpp = NULL;
if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
vput(ap->a_dvp);
return error;
}
error = ufs_link(ap);
SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
return (error);
}
int
lfs_rename(void *v)
{
struct vop_rename_args /* {
struct vnode *a_fdvp;
struct vnode *a_fvp;
struct componentname *a_fcnp;
struct vnode *a_tdvp;
struct vnode *a_tvp;
struct componentname *a_tcnp;
} */ *ap = v;
struct vnode *tvp, *fvp, *tdvp, *fdvp;
struct componentname *tcnp, *fcnp;
int error;
struct lfs *fs;
fs = VTOI(ap->a_fdvp)->i_lfs;
tvp = ap->a_tvp;
tdvp = ap->a_tdvp;
tcnp = ap->a_tcnp;
fvp = ap->a_fvp;
fdvp = ap->a_fdvp;
fcnp = ap->a_fcnp;
/*
* Check for cross-device rename.
* If it is, we don't want to set dirops, just error out.
* (In particular note that MARK_VNODE(tdvp) will DTWT on
* a cross-device rename.)
*
* Copied from ufs_rename.
*/
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
error = EXDEV;
goto errout;
}
/*
* Check to make sure we're not renaming a vnode onto itself
* (deleting a hard link by renaming one name onto another);
* if we are we can't recursively call VOP_REMOVE since that
* would leave us with an unaccounted-for number of live dirops.
*
* Inline the relevant section of ufs_rename here, *before*
* calling SET_DIROP_REMOVE.
*/
if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
(VTOI(tdvp)->i_flags & APPEND))) {
error = EPERM;
goto errout;
}
if (fvp == tvp) {
if (fvp->v_type == VDIR) {
error = EINVAL;
goto errout;
}
/* Release destination completely. */
VOP_ABORTOP(tdvp, tcnp);
vput(tdvp);
vput(tvp);
/* Delete source. */
vrele(fvp);
fcnp->cn_flags &= ~(MODMASK);
fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
fcnp->cn_nameiop = DELETE;
vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
vput(fdvp);
return (error);
}
return (VOP_REMOVE(fdvp, fvp, fcnp));
}
if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
goto errout;
MARK_VNODE(fdvp);
MARK_VNODE(fvp);
error = ufs_rename(ap);
UNMARK_VNODE(fdvp);
UNMARK_VNODE(fvp);
SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
return (error);
errout:
VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
vrele(fdvp);
vrele(fvp);
return (error);
}
/* XXX hack to avoid calling ITIMES in getattr */
int
lfs_getattr(void *v)
{
struct vop_getattr_args /* {
struct vnode *a_vp;
struct vattr *a_vap;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip = VTOI(vp);
struct vattr *vap = ap->a_vap;
struct lfs *fs = ip->i_lfs;
/*
* Copy from inode table
*/
vap->va_fsid = ip->i_dev;
vap->va_fileid = ip->i_number;
vap->va_mode = ip->i_mode & ~IFMT;
vap->va_nlink = ip->i_nlink;
vap->va_uid = ip->i_uid;
vap->va_gid = ip->i_gid;
vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
vap->va_size = vp->v_size;
vap->va_atime.tv_sec = ip->i_ffs1_atime;
vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
vap->va_flags = ip->i_flags;
vap->va_gen = ip->i_gen;
/* this doesn't belong here */
if (vp->v_type == VBLK)
vap->va_blocksize = BLKDEV_IOSIZE;
else if (vp->v_type == VCHR)
vap->va_blocksize = MAXBSIZE;
else
vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
vap->va_type = vp->v_type;
vap->va_filerev = ip->i_modrev;
return (0);
}
/*
* Check to make sure the inode blocks won't choke the buffer
* cache, then call ufs_setattr as usual.
*/
int
lfs_setattr(void *v)
{
struct vop_setattr_args /* {
struct vnode *a_vp;
struct vattr *a_vap;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
lfs_check(vp, LFS_UNUSED_LBN, 0);
return ufs_setattr(v);
}
/*
* Release the block we hold on lfs_newseg wrapping. Called on file close,
* or explicitly from LFCNWRAPGO. Called with the interlock held.
*/
static int
lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
{
if (fs->lfs_stoplwp != curlwp)
return EBUSY;
fs->lfs_stoplwp = NULL;
cv_signal(&fs->lfs_stopcv);
KASSERT(fs->lfs_nowrap > 0);
if (fs->lfs_nowrap <= 0) {
return 0;
}
if (--fs->lfs_nowrap == 0) {
log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
wakeup(&fs->lfs_wrappass);
lfs_wakeup_cleaner(fs);
}
if (waitfor) {
mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
0, &lfs_lock);
}
return 0;
}
/*
* Close called
*/
/* ARGSUSED */
int
lfs_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
fs->lfs_stoplwp == curlwp) {
mutex_enter(&lfs_lock);
log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
lfs_wrapgo(fs, ip, 0);
mutex_exit(&lfs_lock);
}
if (vp == ip->i_lfs->lfs_ivnode &&
vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
return 0;
if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (0);
}
/*
* Close wrapper for special devices.
*
* Update the times on the inode then do device close.
*/
int
lfsspec_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
vp = ap->a_vp;
ip = VTOI(vp);
if (vp->v_usecount > 1) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
}
/*
* Close wrapper for fifo's.
*
* Update the times on the inode then do device close.
*/
int
lfsfifo_close(void *v)
{
struct vop_close_args /* {
struct vnode *a_vp;
int a_fflag;
kauth_cred_ a_cred;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
vp = ap->a_vp;
ip = VTOI(vp);
if (ap->a_vp->v_usecount > 1) {
LFS_ITIMES(ip, NULL, NULL, NULL);
}
return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
}
/*
* Reclaim an inode so that it can be used for other purposes.
*/
int
lfs_reclaim(void *v)
{
struct vop_reclaim_args /* {
struct vnode *a_vp;
} */ *ap = v;
struct vnode *vp = ap->a_vp;
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
int error;
/*
* The inode must be freed and updated before being removed
* from its hash chain. Other threads trying to gain a hold
* on the inode will be stalled because it is locked (VI_XLOCK).
*/
if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
lfs_vfree(vp, ip->i_number, ip->i_omode);
mutex_enter(&lfs_lock);
LFS_CLR_UINO(ip, IN_ALLMOD);
mutex_exit(&lfs_lock);
if ((error = ufs_reclaim(vp)))
return (error);
/*
* Take us off the paging and/or dirop queues if we were on them.
* We shouldn't be on them.
*/
mutex_enter(&lfs_lock);
if (ip->i_flags & IN_PAGING) {
log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
fs->lfs_fsmnt);
ip->i_flags &= ~IN_PAGING;
TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
}
if (vp->v_uflag & VU_DIROP) {
panic("reclaimed vnode is VU_DIROP");
vp->v_uflag &= ~VU_DIROP;
TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
}
mutex_exit(&lfs_lock);
pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
lfs_deregister_all(vp);
pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
ip->inode_ext.lfs = NULL;
genfs_node_destroy(vp);
pool_put(&lfs_inode_pool, vp->v_data);
vp->v_data = NULL;
return (0);
}
/*
* Read a block from a storage device.
* In order to avoid reading blocks that are in the process of being
* written by the cleaner---and hence are not mutexed by the normal
* buffer cache / page cache mechanisms---check for collisions before
* reading.
*
* We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
* the active cleaner test.
*
* XXX This code assumes that lfs_markv makes synchronous checkpoints.
*/
int
lfs_strategy(void *v)
{
struct vop_strategy_args /* {
struct vnode *a_vp;
struct buf *a_bp;
} */ *ap = v;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct inode *ip;
daddr_t tbn;
int i, sn, error, slept;
bp = ap->a_bp;
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_lfs;
/* lfs uses its strategy routine only for read */
KASSERT(bp->b_flags & B_READ);
if (vp->v_type == VBLK || vp->v_type == VCHR)
panic("lfs_strategy: spec");
KASSERT(bp->b_bcount != 0);
if (bp->b_blkno == bp->b_lblkno) {
error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
NULL);
if (error) {
bp->b_error = error;
bp->b_resid = bp->b_bcount;
biodone(bp);
return (error);
}
if ((long)bp->b_blkno == -1) /* no valid data */
clrbuf(bp);
}
if ((long)bp->b_blkno < 0) { /* block is not on disk */
bp->b_resid = bp->b_bcount;
biodone(bp);
return (0);
}
slept = 1;
mutex_enter(&lfs_lock);
while (slept && fs->lfs_seglock) {
mutex_exit(&lfs_lock);
/*
* Look through list of intervals.
* There will only be intervals to look through
* if the cleaner holds the seglock.
* Since the cleaner is synchronous, we can trust
* the list of intervals to be current.
*/
tbn = dbtofsb(fs, bp->b_blkno);
sn = dtosn(fs, tbn);
slept = 0;
for (i = 0; i < fs->lfs_cleanind; i++) {
if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
tbn >= fs->lfs_cleanint[i]) {
DLOG((DLOG_CLEAN,
"lfs_strategy: ino %d lbn %" PRId64
" ind %d sn %d fsb %" PRIx32
" given sn %d fsb %" PRIx64 "\n",
ip->i_number, bp->b_lblkno, i,
dtosn(fs, fs->lfs_cleanint[i]),
fs->lfs_cleanint[i], sn, tbn));
DLOG((DLOG_CLEAN,
"lfs_strategy: sleeping on ino %d lbn %"
PRId64 "\n", ip->i_number, bp->b_lblkno));
mutex_enter(&lfs_lock);
if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
/* Cleaner can't wait for itself */
mtsleep(&fs->lfs_iocount,
(PRIBIO + 1) | PNORELOCK,
"clean2", 0,
&lfs_lock);
slept = 1;
break;
} else if (fs->lfs_seglock) {
mtsleep(&fs->lfs_seglock,
(PRIBIO + 1) | PNORELOCK,
"clean1", 0,
&lfs_lock);
slept = 1;
break;
}
mutex_exit(&lfs_lock);
}
}
mutex_enter(&lfs_lock);
}
mutex_exit(&lfs_lock);
vp = ip->i_devvp;
VOP_STRATEGY(vp, bp);
return (0);
}
void
lfs_flush_dirops(struct lfs *fs)
{
struct inode *ip, *nip;
struct vnode *vp;
extern int lfs_dostats;
struct segment *sp;
ASSERT_MAYBE_SEGLOCK(fs);
KASSERT(fs->lfs_nadirop == 0);
if (fs->lfs_ronly)
return;
mutex_enter(&lfs_lock);
if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
mutex_exit(&lfs_lock);
return;
} else
mutex_exit(&lfs_lock);
if (lfs_dostats)
++lfs_stats.flush_invoked;
/*
* Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
* Technically this is a checkpoint (the on-disk state is valid)
* even though we are leaving out all the file data.
*/
lfs_imtime(fs);
lfs_seglock(fs, SEGM_CKP);
sp = fs->lfs_sp;
/*
* lfs_writevnodes, optimized to get dirops out of the way.
* Only write dirops, and don't flush files' pages, only
* blocks from the directories.
*
* We don't need to vref these files because they are
* dirops and so hold an extra reference until the
* segunlock clears them of that status.
*
* We don't need to check for IN_ADIROP because we know that
* no dirops are active.
*
*/
mutex_enter(&lfs_lock);
for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
nip = TAILQ_NEXT(ip, i_lfs_dchain);
mutex_exit(&lfs_lock);
vp = ITOV(ip);
KASSERT((ip->i_flag & IN_ADIROP) == 0);
/*
* All writes to directories come from dirops; all
* writes to files' direct blocks go through the page
* cache, which we're not touching. Reads to files
* and/or directories will not be affected by writing
* directory blocks inodes and file inodes. So we don't
* really need to lock. If we don't lock, though,
* make sure that we don't clear IN_MODIFIED
* unnecessarily.
*/
if (vp->v_iflag & VI_XLOCK) {
mutex_enter(&lfs_lock);
continue;
}
/* XXX see below
* waslocked = VOP_ISLOCKED(vp);
*/
if (vp->v_type != VREG &&
((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
lfs_writefile(fs, sp, vp);
if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
!(ip->i_flag & IN_ALLMOD)) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_MODIFIED);
mutex_exit(&lfs_lock);
}
}
KDASSERT(ip->i_number != LFS_IFILE_INUM);
(void) lfs_writeinode(fs, sp, ip);
mutex_enter(&lfs_lock);
/*
* XXX
* LK_EXCLOTHER is dead -- what is intended here?
* if (waslocked == LK_EXCLOTHER)
* LFS_SET_UINO(ip, IN_MODIFIED);
*/
}
mutex_exit(&lfs_lock);
/* We've written all the dirops there are */
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
lfs_finalize_fs_seguse(fs);
(void) lfs_writeseg(fs, sp);
lfs_segunlock(fs);
}
/*
* Flush all vnodes for which the pagedaemon has requested pageouts.
* Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
* has just run, this would be an error). If we have to skip a vnode
* for any reason, just skip it; if we have to wait for the cleaner,
* abort. The writer daemon will call us again later.
*/
void
lfs_flush_pchain(struct lfs *fs)
{
struct inode *ip, *nip;
struct vnode *vp;
extern int lfs_dostats;
struct segment *sp;
int error;
ASSERT_NO_SEGLOCK(fs);
if (fs->lfs_ronly)
return;
mutex_enter(&lfs_lock);
if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
mutex_exit(&lfs_lock);
return;
} else
mutex_exit(&lfs_lock);
/* Get dirops out of the way */
lfs_flush_dirops(fs);
if (lfs_dostats)
++lfs_stats.flush_invoked;
/*
* Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
*/
lfs_imtime(fs);
lfs_seglock(fs, 0);
sp = fs->lfs_sp;
/*
* lfs_writevnodes, optimized to clear pageout requests.
* Only write non-dirop files that are in the pageout queue.
* We're very conservative about what we write; we want to be
* fast and async.
*/
mutex_enter(&lfs_lock);
top:
for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
nip = TAILQ_NEXT(ip, i_lfs_pchain);
vp = ITOV(ip);
if (!(ip->i_flags & IN_PAGING))
goto top;
mutex_enter(vp->v_interlock);
if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
mutex_exit(vp->v_interlock);
continue;
}
if (vp->v_type != VREG) {
mutex_exit(vp->v_interlock);
continue;
}
if (lfs_vref(vp))
continue;
mutex_exit(&lfs_lock);
if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
lfs_vunref(vp);
mutex_enter(&lfs_lock);
continue;
}
error = lfs_writefile(fs, sp, vp);
if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
!(ip->i_flag & IN_ALLMOD)) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_MODIFIED);
mutex_exit(&lfs_lock);
}
KDASSERT(ip->i_number != LFS_IFILE_INUM);
(void) lfs_writeinode(fs, sp, ip);
VOP_UNLOCK(vp);
lfs_vunref(vp);
if (error == EAGAIN) {
lfs_writeseg(fs, sp);
mutex_enter(&lfs_lock);
break;
}
mutex_enter(&lfs_lock);
}
mutex_exit(&lfs_lock);
(void) lfs_writeseg(fs, sp);
lfs_segunlock(fs);
}
/*
* Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
*/
int
lfs_fcntl(void *v)
{
struct vop_fcntl_args /* {
struct vnode *a_vp;
u_int a_command;
void * a_data;
int a_fflag;
kauth_cred_t a_cred;
} */ *ap = v;
struct timeval tv;
struct timeval *tvp;
BLOCK_INFO *blkiov;
CLEANERINFO *cip;
SEGUSE *sup;
int blkcnt, error, oclean;
size_t fh_size;
struct lfs_fcntl_markv blkvp;
struct lwp *l;
fsid_t *fsidp;
struct lfs *fs;
struct buf *bp;
fhandle_t *fhp;
daddr_t off;
/* Only respect LFS fcntls on fs root or Ifile */
if (VTOI(ap->a_vp)->i_number != ROOTINO &&
VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
return ufs_fcntl(v);
}
/* Avoid locking a draining lock */
if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
return ESHUTDOWN;
}
/* LFS control and monitoring fcntls are available only to root */
l = curlwp;
if (((ap->a_command & 0xff00) >> 8) == 'L' &&
(error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
NULL)) != 0)
return (error);
fs = VTOI(ap->a_vp)->i_lfs;
fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
error = 0;
switch ((int)ap->a_command) {
case LFCNSEGWAITALL_COMPAT_50:
case LFCNSEGWAITALL_COMPAT:
fsidp = NULL;
/* FALLSTHROUGH */
case LFCNSEGWAIT_COMPAT_50:
case LFCNSEGWAIT_COMPAT:
{
struct timeval50 *tvp50
= (struct timeval50 *)ap->a_data;
timeval50_to_timeval(tvp50, &tv);
tvp = &tv;
}
goto segwait_common;
case LFCNSEGWAITALL:
fsidp = NULL;
/* FALLSTHROUGH */
case LFCNSEGWAIT:
tvp = (struct timeval *)ap->a_data;
segwait_common:
mutex_enter(&lfs_lock);
++fs->lfs_sleepers;
mutex_exit(&lfs_lock);
error = lfs_segwait(fsidp, tvp);
mutex_enter(&lfs_lock);
if (--fs->lfs_sleepers == 0)
wakeup(&fs->lfs_sleepers);
mutex_exit(&lfs_lock);
return error;
case LFCNBMAPV:
case LFCNMARKV:
blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
blkcnt = blkvp.blkcnt;
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
return (EINVAL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
if ((error = copyin(blkvp.blkiov, blkiov,
blkcnt * sizeof(BLOCK_INFO))) != 0) {
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
}
mutex_enter(&lfs_lock);
++fs->lfs_sleepers;
mutex_exit(&lfs_lock);
if (ap->a_command == LFCNBMAPV)
error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
else /* LFCNMARKV */
error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
if (error == 0)
error = copyout(blkiov, blkvp.blkiov,
blkcnt * sizeof(BLOCK_INFO));
mutex_enter(&lfs_lock);
if (--fs->lfs_sleepers == 0)
wakeup(&fs->lfs_sleepers);
mutex_exit(&lfs_lock);
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
return error;
case LFCNRECLAIM:
/*
* Flush dirops and write Ifile, allowing empty segments
* to be immediately reclaimed.
*/
lfs_writer_enter(fs, "pndirop");
off = fs->lfs_offset;
lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
lfs_flush_dirops(fs);
LFS_CLEANERINFO(cip, fs, bp);
oclean = cip->clean;
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
fs->lfs_sp->seg_flags |= SEGM_PROT;
lfs_segunlock(fs);
lfs_writer_leave(fs);
#ifdef DEBUG
LFS_CLEANERINFO(cip, fs, bp);
DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
" blocks, cleaned %" PRId32 " segments (activesb %d)\n",
fs->lfs_offset - off, cip->clean - oclean,
fs->lfs_activesb));
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
#endif
return 0;
case LFCNIFILEFH_COMPAT:
/* Return the filehandle of the Ifile */
if ((error = kauth_authorize_system(l->l_cred,
KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
return (error);
fhp = (struct fhandle *)ap->a_data;
fhp->fh_fsid = *fsidp;
fh_size = 16; /* former VFS_MAXFIDSIZ */
return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
case LFCNIFILEFH_COMPAT2:
case LFCNIFILEFH:
/* Return the filehandle of the Ifile */
fhp = (struct fhandle *)ap->a_data;
fhp->fh_fsid = *fsidp;
fh_size = sizeof(struct lfs_fhandle) -
offsetof(fhandle_t, fh_fid);
return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
case LFCNREWIND:
/* Move lfs_offset to the lowest-numbered segment */
return lfs_rewind(fs, *(int *)ap->a_data);
case LFCNINVAL:
/* Mark a segment SEGUSE_INVAL */
LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
if (sup->su_nbytes > 0) {
brelse(bp, 0);
lfs_unset_inval_all(fs);
return EBUSY;
}
sup->su_flags |= SEGUSE_INVAL;
VOP_BWRITE(bp->b_vp, bp);
return 0;
case LFCNRESIZE:
/* Resize the filesystem */
return lfs_resize_fs(fs, *(int *)ap->a_data);
case LFCNWRAPSTOP:
case LFCNWRAPSTOP_COMPAT:
/*
* Hold lfs_newseg at segment 0; if requested, sleep until
* the filesystem wraps around. To support external agents
* (dump, fsck-based regression test) that need to look at
* a snapshot of the filesystem, without necessarily
* requiring that all fs activity stops.
*/
if (fs->lfs_stoplwp == curlwp)
return EALREADY;
mutex_enter(&lfs_lock);
while (fs->lfs_stoplwp != NULL)
cv_wait(&fs->lfs_stopcv, &lfs_lock);
fs->lfs_stoplwp = curlwp;
if (fs->lfs_nowrap == 0)
log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
++fs->lfs_nowrap;
if (*(int *)ap->a_data == 1
|| ap->a_command == LFCNWRAPSTOP_COMPAT) {
log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
"segwrap", 0, &lfs_lock);
log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
if (error) {
lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
}
}
mutex_exit(&lfs_lock);
return 0;
case LFCNWRAPGO:
case LFCNWRAPGO_COMPAT:
/*
* Having done its work, the agent wakes up the writer.
* If the argument is 1, it sleeps until a new segment
* is selected.
*/
mutex_enter(&lfs_lock);
error = lfs_wrapgo(fs, VTOI(ap->a_vp),
ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
*((int *)ap->a_data));
mutex_exit(&lfs_lock);
return error;
case LFCNWRAPPASS:
if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
return EALREADY;
mutex_enter(&lfs_lock);
if (fs->lfs_stoplwp != curlwp) {
mutex_exit(&lfs_lock);
return EALREADY;
}
if (fs->lfs_nowrap == 0) {
mutex_exit(&lfs_lock);
return EBUSY;
}
fs->lfs_wrappass = 1;
wakeup(&fs->lfs_wrappass);
/* Wait for the log to wrap, if asked */
if (*(int *)ap->a_data) {
mutex_enter(ap->a_vp->v_interlock);
lfs_vref(ap->a_vp);
VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
"segwrap", 0, &lfs_lock);
log(LOG_NOTICE, "LFCNPASS done waiting\n");
VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
lfs_vunref(ap->a_vp);
}
mutex_exit(&lfs_lock);
return error;
case LFCNWRAPSTATUS:
mutex_enter(&lfs_lock);
*(int *)ap->a_data = fs->lfs_wrapstatus;
mutex_exit(&lfs_lock);
return 0;
default:
return ufs_fcntl(v);
}
return 0;
}
int
lfs_getpages(void *v)
{
struct vop_getpages_args /* {
struct vnode *a_vp;
voff_t a_offset;
struct vm_page **a_m;
int *a_count;
int a_centeridx;
vm_prot_t a_access_type;
int a_advice;
int a_flags;
} */ *ap = v;
if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
(ap->a_access_type & VM_PROT_WRITE) != 0) {
return EPERM;
}
if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
mutex_exit(&lfs_lock);
}
/*
* we're relying on the fact that genfs_getpages() always read in
* entire filesystem blocks.
*/
return genfs_getpages(v);
}
/*
* Wait for a page to become unbusy, possibly printing diagnostic messages
* as well.
*
* Called with vp->v_interlock held; return with it held.
*/
static void
wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
{
if ((pg->flags & PG_BUSY) == 0)
return; /* Nothing to wait for! */
#if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
static struct vm_page *lastpg;
if (label != NULL && pg != lastpg) {
if (pg->owner_tag) {
printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
curproc->p_pid, curlwp->l_lid, label,
pg, pg->owner, pg->lowner, pg->owner_tag);
} else {
printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
curproc->p_pid, curlwp->l_lid, label, pg);
}
}
lastpg = pg;
#endif
pg->flags |= PG_WANTED;
UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
mutex_enter(vp->v_interlock);
}
/*
* This routine is called by lfs_putpages() when it can't complete the
* write because a page is busy. This means that either (1) someone,
* possibly the pagedaemon, is looking at this page, and will give it up
* presently; or (2) we ourselves are holding the page busy in the
* process of being written (either gathered or actually on its way to
* disk). We don't need to give up the segment lock, but we might need
* to call lfs_writeseg() to expedite the page's journey to disk.
*
* Called with vp->v_interlock held; return with it held.
*/
/* #define BUSYWAIT */
static void
write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
int seglocked, const char *label)
{
#ifndef BUSYWAIT
struct inode *ip = VTOI(vp);
struct segment *sp = fs->lfs_sp;
int count = 0;
if (pg == NULL)
return;
while (pg->flags & PG_BUSY &&
pg->uobject == &vp->v_uobj) {
mutex_exit(vp->v_interlock);
if (sp->cbpp - sp->bpp > 1) {
/* Write gathered pages */
lfs_updatemeta(sp);
lfs_release_finfo(fs);
(void) lfs_writeseg(fs, sp);
/*
* Reinitialize FIP
*/
KASSERT(sp->vp == vp);
lfs_acquire_finfo(fs, ip->i_number,
ip->i_gen);
}
++count;
mutex_enter(vp->v_interlock);
wait_for_page(vp, pg, label);
}
if (label != NULL && count > 1)
printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
label, (count > 0 ? "looping, " : ""), count);
#else
preempt(1);
#endif
}
/*
* Make sure that for all pages in every block in the given range,
* either all are dirty or all are clean. If any of the pages
* we've seen so far are dirty, put the vnode on the paging chain,
* and mark it IN_PAGING.
*
* If checkfirst != 0, don't check all the pages but return at the
* first dirty page.
*/
static int
check_dirty(struct lfs *fs, struct vnode *vp,
off_t startoffset, off_t endoffset, off_t blkeof,
int flags, int checkfirst, struct vm_page **pgp)
{
int by_list;
struct vm_page *curpg = NULL; /* XXX: gcc */
struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
off_t soff = 0; /* XXX: gcc */
voff_t off;
int i;
int nonexistent;
int any_dirty; /* number of dirty pages */
int dirty; /* number of dirty pages in a block */
int tdirty;
int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
ASSERT_MAYBE_SEGLOCK(fs);
top:
by_list = (vp->v_uobj.uo_npages <=
((endoffset - startoffset) >> PAGE_SHIFT) *
UVM_PAGE_TREE_PENALTY);
any_dirty = 0;
if (by_list) {
curpg = TAILQ_FIRST(&vp->v_uobj.memq);
} else {
soff = startoffset;
}
while (by_list || soff < MIN(blkeof, endoffset)) {
if (by_list) {
/*
* Find the first page in a block. Skip
* blocks outside our area of interest or beyond
* the end of file.
*/
KASSERT(curpg == NULL
|| (curpg->flags & PG_MARKER) == 0);
if (pages_per_block > 1) {
while (curpg &&
((curpg->offset & fs->lfs_bmask) ||
curpg->offset >= vp->v_size ||
curpg->offset >= endoffset)) {
curpg = TAILQ_NEXT(curpg, listq.queue);
KASSERT(curpg == NULL ||
(curpg->flags & PG_MARKER) == 0);
}
}
if (curpg == NULL)
break;
soff = curpg->offset;
}
/*
* Mark all pages in extended range busy; find out if any
* of them are dirty.
*/
nonexistent = dirty = 0;
for (i = 0; i == 0 || i < pages_per_block; i++) {
if (by_list && pages_per_block <= 1) {
pgs[i] = pg = curpg;
} else {
off = soff + (i << PAGE_SHIFT);
pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
if (pg == NULL) {
++nonexistent;
continue;
}
}
KASSERT(pg != NULL);
/*
* If we're holding the segment lock, we can deadlock
* against a process that has our page and is waiting
* for the cleaner, while the cleaner waits for the
* segment lock. Just bail in that case.
*/
if ((pg->flags & PG_BUSY) &&
(pagedaemon || LFS_SEGLOCK_HELD(fs))) {
if (i > 0)
uvm_page_unbusy(pgs, i);
DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
if (pgp)
*pgp = pg;
return -1;
}
while (pg->flags & PG_BUSY) {
wait_for_page(vp, pg, NULL);
if (i > 0)
uvm_page_unbusy(pgs, i);
goto top;
}
pg->flags |= PG_BUSY;
UVM_PAGE_OWN(pg, "lfs_putpages");
pmap_page_protect(pg, VM_PROT_NONE);
tdirty = (pmap_clear_modify(pg) ||
(pg->flags & PG_CLEAN) == 0);
dirty += tdirty;
}
if (pages_per_block > 0 && nonexistent >= pages_per_block) {
if (by_list) {
curpg = TAILQ_NEXT(curpg, listq.queue);
} else {
soff += fs->lfs_bsize;
}
continue;
}
any_dirty += dirty;
KASSERT(nonexistent == 0);
/*
* If any are dirty make all dirty; unbusy them,
* but if we were asked to clean, wire them so that
* the pagedaemon doesn't bother us about them while
* they're on their way to disk.
*/
for (i = 0; i == 0 || i < pages_per_block; i++) {
pg = pgs[i];
KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
if (dirty) {
pg->flags &= ~PG_CLEAN;
if (flags & PGO_FREE) {
/*
* Wire the page so that
* pdaemon doesn't see it again.
*/
mutex_enter(&uvm_pageqlock);
uvm_pagewire(pg);
mutex_exit(&uvm_pageqlock);
/* Suspended write flag */
pg->flags |= PG_DELWRI;
}
}
if (pg->flags & PG_WANTED)
wakeup(pg);
pg->flags &= ~(PG_WANTED|PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
if (checkfirst && any_dirty)
break;
if (by_list) {
curpg = TAILQ_NEXT(curpg, listq.queue);
} else {
soff += MAX(PAGE_SIZE, fs->lfs_bsize);
}
}
return any_dirty;
}
/*
* lfs_putpages functions like genfs_putpages except that
*
* (1) It needs to bounds-check the incoming requests to ensure that
* they are block-aligned; if they are not, expand the range and
* do the right thing in case, e.g., the requested range is clean
* but the expanded range is dirty.
*
* (2) It needs to explicitly send blocks to be written when it is done.
* If VOP_PUTPAGES is called without the seglock held, we simply take
* the seglock and let lfs_segunlock wait for us.
* XXX There might be a bad situation if we have to flush a vnode while
* XXX lfs_markv is in operation. As of this writing we panic in this
* XXX case.
*
* Assumptions:
*
* (1) The caller does not hold any pages in this vnode busy. If it does,
* there is a danger that when we expand the page range and busy the
* pages we will deadlock.
*
* (2) We are called with vp->v_interlock held; we must return with it
* released.
*
* (3) We don't absolutely have to free pages right away, provided that
* the request does not have PGO_SYNCIO. When the pagedaemon gives
* us a request with PGO_FREE, we take the pages out of the paging
* queue and wake up the writer, which will handle freeing them for us.
*
* We ensure that for any filesystem block, all pages for that
* block are either resident or not, even if those pages are higher
* than EOF; that means that we will be getting requests to free
* "unused" pages above EOF all the time, and should ignore them.
*
* (4) If we are called with PGO_LOCKED, the finfo array we are to write
* into has been set up for us by lfs_writefile. If not, we will
* have to handle allocating and/or freeing an finfo entry.
*
* XXX note that we're (ab)using PGO_LOCKED as "seglock held".
*/
/* How many times to loop before we should start to worry */
#define TOOMANY 4
int
lfs_putpages(void *v)
{
int error;
struct vop_putpages_args /* {
struct vnode *a_vp;
voff_t a_offlo;
voff_t a_offhi;
int a_flags;
} */ *ap = v;
struct vnode *vp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
off_t off, max_endoffset;
bool seglocked, sync, pagedaemon;
struct vm_page *pg, *busypg;
UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
#ifdef DEBUG
int debug_n_again, debug_n_dirtyclean;
#endif
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_lfs;
sync = (ap->a_flags & PGO_SYNCIO) != 0;
pagedaemon = (curlwp == uvm.pagedaemon_lwp);
/* Putpages does nothing for metadata. */
if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
mutex_exit(vp->v_interlock);
return 0;
}
/*
* If there are no pages, don't do anything.
*/
if (vp->v_uobj.uo_npages == 0) {
if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
(vp->v_iflag & VI_ONWORKLST) &&
LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
vp->v_iflag &= ~VI_WRMAPDIRTY;
vn_syncer_remove_from_worklist(vp);
}
mutex_exit(vp->v_interlock);
/* Remove us from paging queue, if we were on it */
mutex_enter(&lfs_lock);
if (ip->i_flags & IN_PAGING) {
ip->i_flags &= ~IN_PAGING;
TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
}
mutex_exit(&lfs_lock);
return 0;
}
blkeof = blkroundup(fs, ip->i_size);
/*
* Ignore requests to free pages past EOF but in the same block
* as EOF, unless the request is synchronous. (If the request is
* sync, it comes from lfs_truncate.)
* XXXUBC Make these pages look "active" so the pagedaemon won't
* XXXUBC bother us with them again.
*/
if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
origoffset = ap->a_offlo;
for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
pg = uvm_pagelookup(&vp->v_uobj, off);
KASSERT(pg != NULL);
while (pg->flags & PG_BUSY) {
pg->flags |= PG_WANTED;
UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
"lfsput2", 0);
mutex_enter(vp->v_interlock);
}
mutex_enter(&uvm_pageqlock);
uvm_pageactivate(pg);
mutex_exit(&uvm_pageqlock);
}
ap->a_offlo = blkeof;
if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
mutex_exit(vp->v_interlock);
return 0;
}
}
/*
* Extend page range to start and end at block boundaries.
* (For the purposes of VOP_PUTPAGES, fragments don't exist.)
*/
origoffset = ap->a_offlo;
origendoffset = ap->a_offhi;
startoffset = origoffset & ~(fs->lfs_bmask);
max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
<< fs->lfs_bshift;
if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
endoffset = max_endoffset;
origendoffset = endoffset;
} else {
origendoffset = round_page(ap->a_offhi);
endoffset = round_page(blkroundup(fs, origendoffset));
}
KASSERT(startoffset > 0 || endoffset >= startoffset);
if (startoffset == endoffset) {
/* Nothing to do, why were we called? */
mutex_exit(vp->v_interlock);
DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
PRId64 "\n", startoffset));
return 0;
}
ap->a_offlo = startoffset;
ap->a_offhi = endoffset;
/*
* If not cleaning, just send the pages through genfs_putpages
* to be returned to the pool.
*/
if (!(ap->a_flags & PGO_CLEANIT))
return genfs_putpages(v);
/* Set PGO_BUSYFAIL to avoid deadlocks */
ap->a_flags |= PGO_BUSYFAIL;
/*
* Likewise, if we are asked to clean but the pages are not
* dirty, we can just free them using genfs_putpages.
*/
#ifdef DEBUG
debug_n_dirtyclean = 0;
#endif
do {
int r;
/* Count the number of dirty pages */
r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
ap->a_flags, 1, NULL);
if (r < 0) {
/* Pages are busy with another process */
mutex_exit(vp->v_interlock);
return EDEADLK;
}
if (r > 0) /* Some pages are dirty */
break;
/*
* Sometimes pages are dirtied between the time that
* we check and the time we try to clean them.
* Instruct lfs_gop_write to return EDEADLK in this case
* so we can write them properly.
*/
ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
r = genfs_do_putpages(vp, startoffset, endoffset,
ap->a_flags & ~PGO_SYNCIO, &busypg);
ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
if (r != EDEADLK)
return r;
/* One of the pages was busy. Start over. */
mutex_enter(vp->v_interlock);
wait_for_page(vp, busypg, "dirtyclean");
#ifdef DEBUG
++debug_n_dirtyclean;
#endif
} while(1);
#ifdef DEBUG
if (debug_n_dirtyclean > TOOMANY)
printf("lfs_putpages: dirtyclean: looping, n = %d\n",
debug_n_dirtyclean);
#endif
/*
* Dirty and asked to clean.
*
* Pagedaemon can't actually write LFS pages; wake up
* the writer to take care of that. The writer will
* notice the pager inode queue and act on that.
*
* XXX We must drop the vp->interlock before taking the lfs_lock or we
* get a nasty deadlock with lfs_flush_pchain().
*/
if (pagedaemon) {
mutex_exit(vp->v_interlock);
mutex_enter(&lfs_lock);
if (!(ip->i_flags & IN_PAGING)) {
ip->i_flags |= IN_PAGING;
TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
}
wakeup(&lfs_writer_daemon);
mutex_exit(&lfs_lock);
preempt();
return EWOULDBLOCK;
}
/*
* If this is a file created in a recent dirop, we can't flush its
* inode until the dirop is complete. Drain dirops, then flush the
* filesystem (taking care of any other pending dirops while we're
* at it).
*/
if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
(vp->v_uflag & VU_DIROP)) {
int locked;
DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
/* XXX VOP_ISLOCKED() may not be used for lock decisions. */
locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
mutex_exit(vp->v_interlock);
lfs_writer_enter(fs, "ppdirop");
if (locked)
VOP_UNLOCK(vp); /* XXX why? */
mutex_enter(&lfs_lock);
lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
mutex_exit(&lfs_lock);
if (locked)
VOP_LOCK(vp, LK_EXCLUSIVE);
mutex_enter(vp->v_interlock);
lfs_writer_leave(fs);
/* XXX the flush should have taken care of this one too! */
}
/*
* This is it. We are going to write some pages. From here on
* down it's all just mechanics.
*
* Don't let genfs_putpages wait; lfs_segunlock will wait for us.
*/
ap->a_flags &= ~PGO_SYNCIO;
/*
* If we've already got the seglock, flush the node and return.
* The FIP has already been set up for us by lfs_writefile,
* and FIP cleanup and lfs_updatemeta will also be done there,
* unless genfs_putpages returns EDEADLK; then we must flush
* what we have, and correct FIP and segment header accounting.
*/
get_seglock:
/*
* If we are not called with the segment locked, lock it.
* Account for a new FIP in the segment header, and set sp->vp.
* (This should duplicate the setup at the top of lfs_writefile().)
*/
seglocked = (ap->a_flags & PGO_LOCKED) != 0;
if (!seglocked) {
mutex_exit(vp->v_interlock);
error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
if (error != 0)
return error;
mutex_enter(vp->v_interlock);
lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
}
sp = fs->lfs_sp;
KASSERT(sp->vp == NULL);
sp->vp = vp;
/*
* Ensure that the partial segment is marked SS_DIROP if this
* vnode is a DIROP.
*/
if (!seglocked && vp->v_uflag & VU_DIROP)
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
/*
* Loop over genfs_putpages until all pages are gathered.
* genfs_putpages() drops the interlock, so reacquire it if necessary.
* Whenever we lose the interlock we have to rerun check_dirty, as
* well, since more pages might have been dirtied in our absence.
*/
#ifdef DEBUG
debug_n_again = 0;
#endif
do {
busypg = NULL;
if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
ap->a_flags, 0, &busypg) < 0) {
mutex_exit(vp->v_interlock);
mutex_enter(vp->v_interlock);
write_and_wait(fs, vp, busypg, seglocked, NULL);
if (!seglocked) {
mutex_exit(vp->v_interlock);
lfs_release_finfo(fs);
lfs_segunlock(fs);
mutex_enter(vp->v_interlock);
}
sp->vp = NULL;
goto get_seglock;
}
busypg = NULL;
error = genfs_do_putpages(vp, startoffset, endoffset,
ap->a_flags, &busypg);
if (error == EDEADLK || error == EAGAIN) {
DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
" %d ino %d off %x (seg %d)\n", error,
ip->i_number, fs->lfs_offset,
dtosn(fs, fs->lfs_offset)));
mutex_enter(vp->v_interlock);
write_and_wait(fs, vp, busypg, seglocked, "again");
}
#ifdef DEBUG
++debug_n_again;
#endif
} while (error == EDEADLK);
#ifdef DEBUG
if (debug_n_again > TOOMANY)
printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
#endif
KASSERT(sp != NULL && sp->vp == vp);
if (!seglocked) {
sp->vp = NULL;
/* Write indirect blocks as well */
lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
KASSERT(sp->vp == NULL);
sp->vp = vp;
}
/*
* Blocks are now gathered into a segment waiting to be written.
* All that's left to do is update metadata, and write them.
*/
lfs_updatemeta(sp);
KASSERT(sp->vp == vp);
sp->vp = NULL;
/*
* If we were called from lfs_writefile, we don't need to clean up
* the FIP or unlock the segment lock. We're done.
*/
if (seglocked)
return error;
/* Clean up FIP and send it to disk. */
lfs_release_finfo(fs);
lfs_writeseg(fs, fs->lfs_sp);
/*
* Remove us from paging queue if we wrote all our pages.
*/
if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
mutex_enter(&lfs_lock);
if (ip->i_flags & IN_PAGING) {
ip->i_flags &= ~IN_PAGING;
TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
}
mutex_exit(&lfs_lock);
}
/*
* XXX - with the malloc/copy writeseg, the pages are freed by now
* even if we don't wait (e.g. if we hold a nested lock). This
* will not be true if we stop using malloc/copy.
*/
KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
lfs_segunlock(fs);
/*
* Wait for v_numoutput to drop to zero. The seglock should
* take care of this, but there is a slight possibility that
* aiodoned might not have got around to our buffers yet.
*/
if (sync) {
mutex_enter(vp->v_interlock);
while (vp->v_numoutput > 0) {
DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
" num %d\n", ip->i_number, vp->v_numoutput));
cv_wait(&vp->v_cv, vp->v_interlock);
}
mutex_exit(vp->v_interlock);
}
return error;
}
/*
* Return the last logical file offset that should be written for this file
* if we're doing a write that ends at "size". If writing, we need to know
* about sizes on disk, i.e. fragments if there are any; if reading, we need
* to know about entire blocks.
*/
void
lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
{
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
daddr_t olbn, nlbn;
olbn = lblkno(fs, ip->i_size);
nlbn = lblkno(fs, size);
if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
*eobp = fragroundup(fs, size);
} else {
*eobp = blkroundup(fs, size);
}
}
#ifdef DEBUG
void lfs_dump_vop(void *);
void
lfs_dump_vop(void *v)
{
struct vop_putpages_args /* {
struct vnode *a_vp;
voff_t a_offlo;
voff_t a_offhi;
int a_flags;
} */ *ap = v;
#ifdef DDB
vfs_vnode_print(ap->a_vp, 0, printf);
#endif
lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
}
#endif
int
lfs_mmap(void *v)
{
struct vop_mmap_args /* {
const struct vnodeop_desc *a_desc;
struct vnode *a_vp;
vm_prot_t a_prot;
kauth_cred_t a_cred;
} */ *ap = v;
if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
return EOPNOTSUPP;
return ufs_mmap(v);
}