minix/kernel/table.c
Thomas Veerman 958b25be50 - Introduce support for sticky bit.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
  the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
  functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
  the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
  - Several path lookup bugs in MFS.
  - A link can be too big for the path buffer.
  - A mountpoint can become inaccessible when the creation of a new inode
    fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
  suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
  unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
  named pipes. However, named pipes still reside on the (M)FS, as they are part
  of the file system on disk. To make this work VFS now has a concept of
  'mapped' inodes, which causes read, write, truncate and stat requests to be
  redirected to the mapped FS, and all other requests to the original FS.
2009-12-20 20:27:14 +00:00

90 lines
4 KiB
C

/* The object file of "table.c" contains most kernel data. Variables that
* are declared in the *.h files appear with EXTERN in front of them, as in
*
* EXTERN int x;
*
* Normally EXTERN is defined as extern, so when they are included in another
* file, no storage is allocated. If EXTERN were not present, but just say,
*
* int x;
*
* then including this file in several source files would cause 'x' to be
* declared several times. While some linkers accept this, others do not,
* so they are declared extern when included normally. However, it must be
* declared for real somewhere. That is done here, by redefining EXTERN as
* the null string, so that inclusion of all *.h files in table.c actually
* generates storage for them.
*
* Various variables could not be declared EXTERN, but are declared PUBLIC
* or PRIVATE. The reason for this is that extern variables cannot have a
* default initialization. If such variables are shared, they must also be
* declared in one of the *.h files without the initialization. Examples
* include 'boot_image' (this file) and 'idt' and 'gdt' (protect.c).
*
* Changes:
* Nov 22, 2009 rewrite of privilege management (Cristiano Giuffrida)
* Aug 02, 2005 set privileges and minimal boot image (Jorrit N. Herder)
* Oct 17, 2004 updated above and tasktab comments (Jorrit N. Herder)
* May 01, 2004 changed struct for system image (Jorrit N. Herder)
*/
#define _TABLE
#include "kernel.h"
#include "proc.h"
#include "ipc.h"
#include <minix/com.h>
/* Define stack sizes for the kernel tasks included in the system image. */
#define NO_STACK 0
#define SMALL_STACK (1024 * sizeof(char *))
#define IDL_S SMALL_STACK /* 3 intr, 3 temps, 4 db for Intel */
#define HRD_S NO_STACK /* dummy task, uses kernel stack */
#define TSK_S SMALL_STACK /* system and clock task */
/* Stack space for all the task stacks. Declared as (char *) to align it. */
#define TOT_STACK_SPACE (IDL_S + HRD_S + (2 * TSK_S))
PUBLIC char *t_stack[TOT_STACK_SPACE / sizeof(char *)];
/* Define boot process flags. */
#define BVM_F (PROC_FULLVM) /* boot processes with VM */
/* The system image table lists all programs that are part of the boot image.
* The order of the entries here MUST agree with the order of the programs
* in the boot image and all kernel tasks must come first.
*
* Each entry provides the process number, flags, quantum size, scheduling
* queue, and a name for the process table. The initial program counter and
* stack size is also provided for kernel tasks.
*
* Note: the quantum size must be positive in all cases!
*/
PUBLIC struct boot_image image[] = {
/* process nr, pc, flags, qs, queue, stack, name */
{IDLE, NULL, 0, 0, 0, IDL_S, "idle" },
{CLOCK,clock_task, 0, 8, TASK_Q, TSK_S, "clock" },
{SYSTEM, sys_task, 0, 8, TASK_Q, TSK_S, "system"},
{HARDWARE, 0, 0, 8, TASK_Q, HRD_S, "kernel"},
{PM_PROC_NR, 0, 0, 32, 4, 0, "pm" },
{FS_PROC_NR, 0, 0, 32, 5, 0, "vfs" },
{RS_PROC_NR, 0, 0, 4, 4, 0, "rs" },
{MEM_PROC_NR, 0, BVM_F, 4, 3, 0, "memory"},
{LOG_PROC_NR, 0, BVM_F, 4, 2, 0, "log" },
{TTY_PROC_NR, 0, BVM_F, 4, 1, 0, "tty" },
{DS_PROC_NR, 0, BVM_F, 4, 4, 0, "ds" },
{MFS_PROC_NR, 0, BVM_F, 32, 5, 0, "mfs" },
{VM_PROC_NR, 0, 0, 32, 2, 0, "vm" },
{PFS_PROC_NR, 0, BVM_F, 32, 5, 0, "pfs" },
{INIT_PROC_NR, 0, BVM_F, 8, USER_Q, 0, "init" },
};
/* Verify the size of the system image table at compile time. Also verify that
* the first chunk of the ipc mask has enough bits to accommodate the processes
* in the image.
* If a problem is detected, the size of the 'dummy' array will be negative,
* causing a compile time error. Note that no space is actually allocated
* because 'dummy' is declared extern.
*/
extern int dummy[(NR_BOOT_PROCS==sizeof(image)/
sizeof(struct boot_image))?1:-1];
extern int dummy[(BITCHUNK_BITS > NR_BOOT_PROCS - 1) ? 1 : -1];