cb176df60f
UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
264 lines
7.6 KiB
C
264 lines
7.6 KiB
C
/* This file contains a simple exception handler. Exceptions in user
|
|
* processes are converted to signals. Exceptions in a kernel task cause
|
|
* a panic.
|
|
*/
|
|
|
|
#include "../../kernel.h"
|
|
#include "proto.h"
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "../../proc.h"
|
|
#include "../../proto.h"
|
|
|
|
extern int vm_copy_in_progress, catch_pagefaults;
|
|
extern struct proc *vm_copy_from, *vm_copy_to;
|
|
|
|
void pagefault( struct proc *pr,
|
|
struct exception_frame * frame,
|
|
int is_nested)
|
|
{
|
|
int in_physcopy = 0;
|
|
|
|
reg_t pagefaultcr2;
|
|
|
|
assert(frame);
|
|
|
|
pagefaultcr2 = read_cr2();
|
|
|
|
#if 0
|
|
printf("kernel: pagefault in pr %d, addr 0x%lx, his cr3 0x%lx, actual cr3 0x%lx\n",
|
|
pr->p_endpoint, pagefaultcr2, pr->p_seg.p_cr3, read_cr3());
|
|
#endif
|
|
|
|
if(pr->p_seg.p_cr3) {
|
|
assert(pr->p_seg.p_cr3 == read_cr3());
|
|
}
|
|
|
|
in_physcopy = (frame->eip > (vir_bytes) phys_copy) &&
|
|
(frame->eip < (vir_bytes) phys_copy_fault);
|
|
|
|
if((is_nested || iskernelp(pr)) &&
|
|
catch_pagefaults && in_physcopy) {
|
|
#if 0
|
|
printf("pf caught! addr 0x%lx\n", pagefaultcr2);
|
|
#endif
|
|
if (is_nested) {
|
|
frame->eip = (reg_t) phys_copy_fault_in_kernel;
|
|
}
|
|
else {
|
|
pr->p_reg.pc = (reg_t) phys_copy_fault;
|
|
pr->p_reg.retreg = pagefaultcr2;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* System processes that don't have their own page table can't
|
|
* have page faults. VM does have its own page table but also
|
|
* can't have page faults (because VM has to handle them).
|
|
*/
|
|
if(is_nested || (pr->p_endpoint <= INIT_PROC_NR &&
|
|
!(pr->p_misc_flags & MF_FULLVM)) || pr->p_endpoint == VM_PROC_NR) {
|
|
/* Page fault we can't / don't want to
|
|
* handle.
|
|
*/
|
|
printf("pagefault for process %d ('%s'), pc = 0x%x, addr = 0x%x, flags = 0x%x, is_nested %d\n",
|
|
pr->p_endpoint, pr->p_name, pr->p_reg.pc,
|
|
pagefaultcr2, frame->errcode, is_nested);
|
|
proc_stacktrace(pr);
|
|
if(pr->p_endpoint != SYSTEM) {
|
|
proc_stacktrace(proc_addr(SYSTEM));
|
|
}
|
|
printf("pc of pagefault: 0x%lx\n", frame->eip);
|
|
panic("page fault in system process: %d", pr->p_endpoint);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Don't schedule this process until pagefault is handled. */
|
|
assert(pr->p_seg.p_cr3 == read_cr3());
|
|
assert(!RTS_ISSET(pr, RTS_PAGEFAULT));
|
|
RTS_SET(pr, RTS_PAGEFAULT);
|
|
|
|
/* Save pagefault details, suspend process,
|
|
* add process to pagefault chain,
|
|
* and tell VM there is a pagefault to be
|
|
* handled.
|
|
*/
|
|
pr->p_pagefault.pf_virtual = pagefaultcr2;
|
|
pr->p_pagefault.pf_flags = frame->errcode;
|
|
pr->p_nextpagefault = pagefaults;
|
|
pagefaults = pr;
|
|
|
|
send_sig(VM_PROC_NR, SIGKPF);
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* exception *
|
|
*===========================================================================*/
|
|
PUBLIC void exception_handler(int is_nested, struct exception_frame * frame)
|
|
{
|
|
/* An exception or unexpected interrupt has occurred. */
|
|
|
|
struct ex_s {
|
|
char *msg;
|
|
int signum;
|
|
int minprocessor;
|
|
};
|
|
static struct ex_s ex_data[] = {
|
|
{ "Divide error", SIGFPE, 86 },
|
|
{ "Debug exception", SIGTRAP, 86 },
|
|
{ "Nonmaskable interrupt", SIGBUS, 86 },
|
|
{ "Breakpoint", SIGEMT, 86 },
|
|
{ "Overflow", SIGFPE, 86 },
|
|
{ "Bounds check", SIGFPE, 186 },
|
|
{ "Invalid opcode", SIGILL, 186 },
|
|
{ "Coprocessor not available", SIGFPE, 186 },
|
|
{ "Double fault", SIGBUS, 286 },
|
|
{ "Coprocessor segment overrun", SIGSEGV, 286 },
|
|
{ "Invalid TSS", SIGSEGV, 286 },
|
|
{ "Segment not present", SIGSEGV, 286 },
|
|
{ "Stack exception", SIGSEGV, 286 }, /* STACK_FAULT already used */
|
|
{ "General protection", SIGSEGV, 286 },
|
|
{ "Page fault", SIGSEGV, 386 }, /* not close */
|
|
{ NIL_PTR, SIGILL, 0 }, /* probably software trap */
|
|
{ "Coprocessor error", SIGFPE, 386 },
|
|
{ "Alignment check", SIGBUS, 386 },
|
|
{ "Machine check", SIGBUS, 386 },
|
|
{ "SIMD exception", SIGFPE, 386 },
|
|
};
|
|
register struct ex_s *ep;
|
|
struct proc *saved_proc;
|
|
|
|
/* Save proc_ptr, because it may be changed by debug statements. */
|
|
saved_proc = proc_ptr;
|
|
|
|
ep = &ex_data[frame->vector];
|
|
|
|
if (frame->vector == 2) { /* spurious NMI on some machines */
|
|
printf("got spurious NMI\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* handle special cases for nested problems as they might be tricky or filter
|
|
* them out quickly if the traps are not nested
|
|
*/
|
|
if (is_nested) {
|
|
/*
|
|
* if a problem occured while copying a message from userspace because
|
|
* of a wrong pointer supplied by userland, handle it the only way we
|
|
* can handle it ...
|
|
*/
|
|
if (((void*)frame->eip >= (void*)copy_msg_to_user &&
|
|
(void*)frame->eip <= (void*)__copy_msg_to_user_end) ||
|
|
((void*)frame->eip >= (void*)copy_msg_from_user &&
|
|
(void*)frame->eip <= (void*)__copy_msg_from_user_end)) {
|
|
switch(frame->vector) {
|
|
/* these error are expected */
|
|
case PAGE_FAULT_VECTOR:
|
|
case PROTECTION_VECTOR:
|
|
frame->eip = (reg_t) __user_copy_msg_pointer_failure;
|
|
return;
|
|
default:
|
|
panic("Copy involving a user pointer failed unexpectedly!");
|
|
}
|
|
}
|
|
}
|
|
|
|
if(frame->vector == PAGE_FAULT_VECTOR) {
|
|
pagefault(saved_proc, frame, is_nested);
|
|
return;
|
|
}
|
|
|
|
/* If an exception occurs while running a process, the is_nested variable
|
|
* will be zero. Exceptions in interrupt handlers or system traps will make
|
|
* is_nested non-zero.
|
|
*/
|
|
if (is_nested == 0 && ! iskernelp(saved_proc)) {
|
|
#if 0
|
|
{
|
|
|
|
printf(
|
|
"vec_nr= %d, trap_errno= 0x%lx, eip= 0x%lx, cs= 0x%x, eflags= 0x%lx\n",
|
|
frame->vector, (unsigned long)frame->errcode,
|
|
(unsigned long)frame->eip, frame->cs,
|
|
(unsigned long)frame->eflags);
|
|
printseg("cs: ", 1, saved_proc, frame->cs);
|
|
printseg("ds: ", 0, saved_proc, saved_proc->p_reg.ds);
|
|
if(saved_proc->p_reg.ds != saved_proc->p_reg.ss) {
|
|
printseg("ss: ", 0, saved_proc, saved_proc->p_reg.ss);
|
|
}
|
|
proc_stacktrace(saved_proc);
|
|
}
|
|
|
|
#endif
|
|
cause_sig(proc_nr(saved_proc), ep->signum);
|
|
return;
|
|
}
|
|
|
|
/* Exception in system code. This is not supposed to happen. */
|
|
if (ep->msg == NIL_PTR || machine.processor < ep->minprocessor)
|
|
printf("\nIntel-reserved exception %d\n", frame->vector);
|
|
else
|
|
printf("\n%s\n", ep->msg);
|
|
printf("is_nested = %d ", is_nested);
|
|
|
|
printf("vec_nr= %d, trap_errno= 0x%x, eip= 0x%x, cs= 0x%x, eflags= 0x%x trap_esp 0x%08x\n",
|
|
frame->vector, frame->errcode, frame->eip, frame->cs, frame->eflags, frame);
|
|
/* TODO should we enable this only when compiled for some debug mode? */
|
|
if (saved_proc) {
|
|
printf("scheduled was: process %d (%s), ", proc_nr(saved_proc), saved_proc->p_name);
|
|
printf("pc = %u:0x%x\n", (unsigned) saved_proc->p_reg.cs,
|
|
(unsigned) saved_proc->p_reg.pc);
|
|
proc_stacktrace(saved_proc);
|
|
|
|
panic("exception in a kernel task: %d", saved_proc->p_endpoint);
|
|
}
|
|
else {
|
|
/* in an early stage of boot process we don't have processes yet */
|
|
panic("exception in kernel while booting");
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* stacktrace *
|
|
*===========================================================================*/
|
|
PUBLIC void proc_stacktrace(struct proc *whichproc)
|
|
{
|
|
reg_t v_bp, v_pc, v_hbp;
|
|
int iskernel;
|
|
|
|
v_bp = whichproc->p_reg.fp;
|
|
|
|
iskernel = iskernelp(whichproc);
|
|
|
|
printf("%-8.8s %6d 0x%lx ",
|
|
whichproc->p_name, whichproc->p_endpoint, whichproc->p_reg.pc);
|
|
|
|
while(v_bp) {
|
|
|
|
#define PRCOPY(pr, pv, v, n) \
|
|
(iskernel ? (memcpy((char *) v, (char *) pv, n), OK) : \
|
|
data_copy(pr->p_endpoint, pv, KERNEL, (vir_bytes) (v), n))
|
|
|
|
if(PRCOPY(whichproc, v_bp, &v_hbp, sizeof(v_hbp)) != OK) {
|
|
printf("(v_bp 0x%lx ?)", v_bp);
|
|
break;
|
|
}
|
|
if(PRCOPY(whichproc, v_bp + sizeof(v_pc), &v_pc, sizeof(v_pc)) != OK) {
|
|
printf("(v_pc 0x%lx ?)", v_bp + sizeof(v_pc));
|
|
break;
|
|
}
|
|
printf("0x%lx ", (unsigned long) v_pc);
|
|
if(v_hbp != 0 && v_hbp <= v_bp) {
|
|
printf("(hbp %lx ?)", v_hbp);
|
|
break;
|
|
}
|
|
v_bp = v_hbp;
|
|
}
|
|
printf("\n");
|
|
}
|