minix/drivers/mmc/mmchost_mmchs.c
Kees Jongenburger 43581a14ee arm:replace ifdef's by runtime checks.
Change-Id: Iff966f2214e2d8bb6b72dd0a119085709f2d4a9c
2013-12-03 09:19:25 +01:00

1268 lines
30 KiB
C

/* kernel headers */
#include <minix/blockdriver.h>
#include <minix/com.h>
#include <minix/vm.h>
#include <minix/spin.h>
#include <minix/log.h>
#include <minix/mmio.h>
#include <minix/type.h>
#include <minix/board.h>
#include <sys/mman.h>
#include <sys/time.h>
/* usr headers */
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <inttypes.h>
#include <limits.h>
#include <unistd.h>
/* local headers */
#include "mmchost.h"
/* header imported from netbsd */
#include "sdmmcreg.h"
#include "sdmmcreg.h"
#include "sdhcreg.h"
/* omap /hardware related */
#include "omap_mmc.h"
#define USE_INTR
#ifdef USE_INTR
static int hook_id = 1;
#endif
#define USE_DMA
#define SANE_TIMEOUT 500000 /* 500 ms */
struct omap_mmchs *mmchs; /* pointer to the current mmchs */
struct omap_mmchs bone_sdcard = {
.io_base = 0,
.io_size = 0x2ff,
.hw_base = 0x48060000,
.irq_nr = 64, /* MMC/SD module 1 */
.regs = &regs_v1,
};
struct omap_mmchs bbxm_sdcard = {
.io_base = 0,
.io_size = 0x2ff,
.hw_base = 0x4809C000,
.irq_nr = 83, /* MMC/SD module 1 */
.regs = &regs_v0,
};
/* Integer divide x by y and ensure that the result z is
* such that x / z is smaller or equal y
*/
#define div_roundup(x, y) (((x)+((y)-1))/(y))
/*
* Define a structure to be used for logging
*/
static struct log log = {
.name = "mmc_host_mmchs",
.log_level = LEVEL_INFO,
.log_func = default_log
};
#define HSMMCSD_0_IN_FREQ 96000000 /* 96MHz */
#define HSMMCSD_0_INIT_FREQ 400000 /* 400kHz */
#define HSMMCSD_0_FREQ_25MHZ 25000000 /* 25MHz */
#define HSMMCSD_0_FREQ_50MHZ 50000000 /* 50MHz */
void
mmc_set32(vir_bytes reg, u32_t mask, u32_t value)
{
assert(reg >= 0 && reg <= mmchs->io_size);
set32(mmchs->io_base + reg, mask, value);
}
u32_t
mmc_read32(vir_bytes reg)
{
assert(reg >= 0 && reg <= mmchs->io_size);
return read32(mmchs->io_base + reg);
}
void
mmc_write32(vir_bytes reg, u32_t value)
{
assert(reg >= 0 && reg <= mmchs->io_size);
write32(mmchs->io_base + reg, value);
}
int
mmchs_set_bus_freq(u32_t freq)
{
u32_t freq_in = HSMMCSD_0_IN_FREQ;
u32_t freq_out = freq;
/* Calculate and program the divisor */
u32_t clkd = div_roundup(freq_in, freq_out);
clkd = (clkd < 2) ? 2 : clkd;
clkd = (clkd > 1023) ? 1023 : clkd;
log_debug(&log, "Setting divider to %d\n", clkd);
mmc_set32(mmchs->regs->SYSCTL, MMCHS_SD_SYSCTL_CLKD, (clkd << 6));
}
/*
* Initialize the MMC controller given a certain
* instance. this driver only handles a single
* mmchs controller at a given time.
*/
int
mmchs_init(uint32_t instance)
{
uint32_t value;
value = 0;
struct minix_mem_range mr;
spin_t spin;
assert(mmchs);
mr.mr_base = mmchs->hw_base;
mr.mr_limit = mmchs->hw_base + mmchs->io_size;
/* grant ourself rights to map the register memory */
if (sys_privctl(SELF, SYS_PRIV_ADD_MEM, &mr) != 0) {
panic("Unable to request permission to map memory");
}
/* Set the base address to use */
mmchs->io_base =
(uint32_t) vm_map_phys(SELF, (void *) mmchs->hw_base,
mmchs->io_size);
if (mmchs->io_base == (uint32_t) MAP_FAILED)
panic("Unable to map MMC memory");
/* Soft reset of the controller. This section is documented in the TRM
*/
/* Write 1 to sysconfig[0] to trigger a reset */
mmc_set32(mmchs->regs->SYSCONFIG, MMCHS_SD_SYSCONFIG_SOFTRESET,
MMCHS_SD_SYSCONFIG_SOFTRESET);
/* Read sysstatus to know when it's done */
spin_init(&spin, SANE_TIMEOUT);
while (!(mmc_read32(mmchs->regs->SYSSTATUS)
& MMCHS_SD_SYSSTATUS_RESETDONE)) {
if (spin_check(&spin) == FALSE) {
log_warn(&log, "mmc init timeout\n");
return 1;
}
}
/* Set SD default capabilities */
mmc_set32(mmchs->regs->CAPA, MMCHS_SD_CAPA_VS_MASK,
MMCHS_SD_CAPA_VS18 | MMCHS_SD_CAPA_VS30);
/* TRM mentions MMCHS_SD_CUR_CAPA but does not describe how to limit
* the current */
uint32_t mask =
MMCHS_SD_SYSCONFIG_AUTOIDLE | MMCHS_SD_SYSCONFIG_ENAWAKEUP |
MMCHS_SD_SYSCONFIG_STANDBYMODE | MMCHS_SD_SYSCONFIG_CLOCKACTIVITY |
MMCHS_SD_SYSCONFIG_SIDLEMODE;
/* Automatic clock gating strategy */
value = MMCHS_SD_SYSCONFIG_AUTOIDLE_EN;
/* Enable wake-up capability */
value |= MMCHS_SD_SYSCONFIG_ENAWAKEUP_EN;
/* Smart-idle */
value |= MMCHS_SD_SYSCONFIG_SIDLEMODE_IDLE;
/* Both the interface and functional can be switched off */
value |= MMCHS_SD_SYSCONFIG_CLOCKACTIVITY_OFF;
/* Go into wake-up mode when possible */
value |= MMCHS_SD_SYSCONFIG_STANDBYMODE_WAKEUP_INTERNAL;
/*
* wake-up configuration
*/
mmc_set32(mmchs->regs->SYSCONFIG, mask, value);
/* Wake-up on sd interrupt for SDIO */
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_IWE, MMCHS_SD_HCTL_IWE_EN);
/*
* MMC host and bus configuration
*/
/* Configure data and command transfer (1 bit mode) switching to
* higher bit modes happens after a card is detected */
mmc_set32(mmchs->regs->CON, MMCHS_SD_CON_DW8, MMCHS_SD_CON_DW8_1BIT);
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_DTW,
MMCHS_SD_HCTL_DTW_1BIT);
/* Configure card voltage to 3.0 volt */
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_SDVS,
MMCHS_SD_HCTL_SDVS_VS30);
/* Power on the host controller and wait for the
* MMCHS_SD_HCTL_SDBP_POWER_ON to be set */
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_SDBP,
MMCHS_SD_HCTL_SDBP_ON);
spin_init(&spin, SANE_TIMEOUT);
while ((mmc_read32(mmchs->regs->HCTL) & MMCHS_SD_HCTL_SDBP)
!= MMCHS_SD_HCTL_SDBP_ON) {
if (spin_check(&spin) == FALSE) {
log_warn(&log, "mmc init timeout SDBP not set\n");
return 1;
}
}
/* Enable internal clock and clock to the card */
mmc_set32(mmchs->regs->SYSCTL, MMCHS_SD_SYSCTL_ICE,
MMCHS_SD_SYSCTL_ICE_EN);
mmchs_set_bus_freq(HSMMCSD_0_INIT_FREQ);
mmc_set32(mmchs->regs->SYSCTL, MMCHS_SD_SYSCTL_CEN,
MMCHS_SD_SYSCTL_CEN_EN);
spin_init(&spin, SANE_TIMEOUT);
while ((mmc_read32(mmchs->regs->SYSCTL) & MMCHS_SD_SYSCTL_ICS)
!= MMCHS_SD_SYSCTL_ICS_STABLE) {
if (spin_check(&spin) == FALSE) {
log_warn(&log, "clock not stable\n");
return 1;
}
}
/*
* See spruh73e page 3576 Card Detection, Identification, and Selection
*/
/* Enable command interrupt */
mmc_set32(mmchs->regs->IE, MMCHS_SD_IE_CC_ENABLE,
MMCHS_SD_IE_CC_ENABLE_ENABLE);
/* Enable transfer complete interrupt */
mmc_set32(mmchs->regs->IE, MMCHS_SD_IE_TC_ENABLE,
MMCHS_SD_IE_TC_ENABLE_ENABLE);
/* enable error interrupts */
mmc_set32(mmchs->regs->IE, MMCHS_SD_IE_ERROR_MASK, 0xffffffffu);
/* clear the error interrupts */
mmc_set32(mmchs->regs->SD_STAT, MMCHS_SD_STAT_ERROR_MASK, 0xffffffffu);
/* send a init signal to the host controller. This does not actually
* send a command to a card manner */
mmc_set32(mmchs->regs->CON, MMCHS_SD_CON_INIT, MMCHS_SD_CON_INIT_INIT);
/* command 0 , type other commands not response etc) */
mmc_write32(mmchs->regs->CMD, 0x00);
spin_init(&spin, SANE_TIMEOUT);
while ((mmc_read32(mmchs->regs->SD_STAT) & MMCHS_SD_STAT_CC)
!= MMCHS_SD_STAT_CC_RAISED) {
if (mmc_read32(mmchs->regs->SD_STAT) & 0x8000) {
log_warn(&log, "%s, error stat %x\n",
__FUNCTION__, mmc_read32(mmchs->regs->SD_STAT));
return 1;
}
if (spin_check(&spin) == FALSE) {
log_warn(&log, "Interrupt not raised during init\n");
return 1;
}
}
/* clear the cc interrupt status */
mmc_set32(mmchs->regs->SD_STAT, MMCHS_SD_IE_CC_ENABLE,
MMCHS_SD_IE_CC_ENABLE_ENABLE);
/*
* Set Set SD_CON[1] INIT bit to 0x0 to end the initialization sequence
*/
mmc_set32(mmchs->regs->CON, MMCHS_SD_CON_INIT,
MMCHS_SD_CON_INIT_NOINIT);
/* Set timeout */
mmc_set32(mmchs->regs->SYSCTL, MMCHS_SD_SYSCTL_DTO,
MMCHS_SD_SYSCTL_DTO_2POW27);
/* Clean the MMCHS_SD_STAT register */
mmc_write32(mmchs->regs->SD_STAT, 0xffffffffu);
#ifdef USE_INTR
hook_id = 1;
if (sys_irqsetpolicy(mmchs->irq_nr, 0, &hook_id) != OK) {
log_warn(&log, "mmc: couldn't set IRQ policy %d\n",
mmchs->irq_nr);
return 1;
}
/* enable signaling from MMC controller towards interrupt controller */
mmc_write32(mmchs->regs->ISE, 0xffffffffu);
#endif
return 0;
}
void
intr_deassert(int mask)
{
if (mmc_read32(mmchs->regs->SD_STAT) & 0x8000) {
log_warn(&log, "%s, error stat %08x\n", __FUNCTION__,
mmc_read32(mmchs->regs->SD_STAT));
mmc_set32(mmchs->regs->SD_STAT, MMCHS_SD_STAT_ERROR_MASK,
0xffffffffu);
} else {
mmc_write32(mmchs->regs->SD_STAT, mask);
}
}
/* pointer to the data to transfer used in bwr and brr */
unsigned char *io_data;
int io_len;
void
handle_bwr()
{
/* handle buffer write ready interrupts. These happen in a non
* predictable way (eg. we send a request but don't know if we are
* first doing to get a request completed before we are allowed to
* send the data to the hardware or not */
uint32_t value;
uint32_t count;
assert(mmc_read32(mmchs->regs->PSTATE) & MMCHS_SD_PSTATE_BWE_EN);
assert(io_data != NULL);
for (count = 0; count < io_len; count += 4) {
while (!(mmc_read32(mmchs->regs->
PSTATE) & MMCHS_SD_PSTATE_BWE_EN)) {
log_warn(&log,
"Error expected Buffer to be write enabled(%d)\n",
count);
}
*((char *) &value) = io_data[count];
*((char *) &value + 1) = io_data[count + 1];
*((char *) &value + 2) = io_data[count + 2];
*((char *) &value + 3) = io_data[count + 3];
mmc_write32(mmchs->regs->DATA, value);
}
intr_deassert(MMCHS_SD_IE_BWR_ENABLE);
/* expect buffer to be write enabled */
io_data = NULL;
}
void
handle_brr()
{
/* handle buffer read ready interrupts. genrally these happen afther
* the data is read from the sd card. */
uint32_t value;
uint32_t count;
/* Problem BRE should be true */
assert(mmc_read32(mmchs->regs->PSTATE) & MMCHS_SD_PSTATE_BRE_EN);
assert(io_data != NULL);
for (count = 0; count < io_len; count += 4) {
value = mmc_read32(mmchs->regs->DATA);
io_data[count] = *((char *) &value);
io_data[count + 1] = *((char *) &value + 1);
io_data[count + 2] = *((char *) &value + 2);
io_data[count + 3] = *((char *) &value + 3);
}
/* clear bbr interrupt */
intr_deassert(MMCHS_SD_IE_BRR_ENABLE_ENABLE);
io_data = NULL;
}
static void
mmchs_hw_intr(unsigned int irqs)
{
log_warn(&log, "Hardware interrupt left over (0x%08lx)\n",
mmc_read32(mmchs->regs->SD_STAT));
#ifdef USE_INTR
if (sys_irqenable(&hook_id) != OK)
printf("couldn't re-enable interrupt \n");
#endif
/* Leftover interrupt(s) received; ack it/them. */
}
/*===========================================================================*
* w_intr_wait *
*===========================================================================*/
static int
intr_wait(int mask)
{
long v;
#ifdef USE_INTR
if (sys_irqenable(&hook_id) != OK)
printf("Failed to enable irqenable irq\n");
/* Wait for a task completion interrupt. */
message m;
int ipc_status;
int ticks = SANE_TIMEOUT * sys_hz() / 1000000;
if (ticks <= 0)
ticks = 1;
while (1) {
int rr;
sys_setalarm(ticks, 0);
if ((rr = driver_receive(ANY, &m, &ipc_status)) != OK) {
panic("driver_receive failed: %d", rr);
};
if (is_ipc_notify(ipc_status)) {
switch (_ENDPOINT_P(m.m_source)) {
case CLOCK:
/* Timeout. */
log_warn(&log, "TIMEOUT\n");
return 1;
break;
case HARDWARE:
while ((v =
mmc_read32(mmchs->regs->SD_STAT)) !=
0) {
if (v & MMCHS_SD_IE_BWR_ENABLE) {
handle_bwr();
continue;
}
if (v & MMCHS_SD_IE_BRR_ENABLE) {
handle_brr();
continue;
}
if (v & mask) {
/* this is the normal return
* path, the mask given
* matches the pending
* interrupt. cancel the alarm
* and return */
sys_setalarm(0, 0);
return 0;
} else if (v & (1 << 15)) {
return 1; /* error */
}
log_warn(&log,
"unexpected HW interrupt 0x%08x mask 0X%08x\n",
v, mask);
if (sys_irqenable(&hook_id) != OK)
printf
("Failed to re-enable irqenable irq\n");
}
/* if we end up here re-enable interrupts for
* the next round */
if (sys_irqenable(&hook_id) != OK)
printf
("Failed to re-enable irqenable irq\n");
break;
default:
/*
* unhandled notify message. Queue it and
* handle it in the blockdriver loop.
*/
blockdriver_mq_queue(&m, ipc_status);
}
} else {
/*
* unhandled message. Queue it and handle it in the
* blockdriver loop.
*/
blockdriver_mq_queue(&m, ipc_status);
}
}
sys_setalarm(0, 0); /* cancel the alarm */
#else
spin_t spin;
spin_init(&spin, SANE_TIMEOUT);
/* Wait for completion */
int counter = 0;
while (1 == 1) {
counter++;
v = mmc_read32(mmchs->regs->SD_STAT);
if (spin_check(&spin) == FALSE) {
log_warn(&log,
"Timeout waiting for interrupt (%d) value 0x%08x mask 0x%08x\n",
counter, v, mask);
return 1;
}
if (v & MMCHS_SD_IE_BWR_ENABLE) {
handle_bwr();
continue;
}
if (v & MMCHS_SD_IE_BRR_ENABLE) {
handle_brr();
continue;
}
if (v & mask) {
return 0;
} else if (v & 0xFF00) {
log_debug(&log,
"unexpected HW interrupt (%d) 0x%08x mask 0x%08x\n",
v, mask);
return 1;
}
}
return 1; /* unreached */
#endif /* USE_INTR */
}
int
mmchs_send_cmd(uint32_t command, uint32_t arg)
{
/* Read current interrupt status and fail it an interrupt is already
* asserted */
assert(mmc_read32(mmchs->regs->SD_STAT) == 0);
/* Set arguments */
mmc_write32(mmchs->regs->ARG, arg);
/* Set command */
mmc_set32(mmchs->regs->CMD, MMCHS_SD_CMD_MASK, command);
if (intr_wait(MMCHS_SD_STAT_CC)) {
uint32_t v = mmc_read32(mmchs->regs->SD_STAT);
intr_deassert(MMCHS_SD_STAT_CC);
log_warn(&log, "Failure waiting for interrupt 0x%lx\n", v);
return 1;
}
intr_deassert(MMCHS_SD_STAT_CC);
if ((command & MMCHS_SD_CMD_RSP_TYPE) ==
MMCHS_SD_CMD_RSP_TYPE_48B_BUSY) {
/*
* Command with busy response *CAN* also set the TC bit if they exit busy
*/
if ((mmc_read32(mmchs->regs->SD_STAT)
& MMCHS_SD_IE_TC_ENABLE_ENABLE) == 0) {
log_warn(&log, "TC should be raised\n");
}
intr_deassert(MMCHS_SD_STAT_TC);
}
return 0;
}
int
mmc_send_cmd(struct mmc_command *c)
{
/* convert the command to a hsmmc command */
int ret;
uint32_t cmd, arg;
cmd = MMCHS_SD_CMD_INDX_CMD(c->cmd);
arg = c->args;
assert(c->data_type == DATA_NONE || c->data_type == DATA_READ
|| c->data_type == DATA_WRITE);
switch (c->resp_type) {
case RESP_LEN_48_CHK_BUSY:
cmd |= MMCHS_SD_CMD_RSP_TYPE_48B_BUSY;
break;
case RESP_LEN_48:
cmd |= MMCHS_SD_CMD_RSP_TYPE_48B;
break;
case RESP_LEN_136:
cmd |= MMCHS_SD_CMD_RSP_TYPE_136B;
break;
case RESP_NO_RESPONSE:
cmd |= MMCHS_SD_CMD_RSP_TYPE_NO_RESP;
break;
default:
return 1;
}
/* read single block */
if (c->data_type == DATA_READ) {
cmd |= MMCHS_SD_CMD_DP_DATA; /* Command with data transfer */
cmd |= MMCHS_SD_CMD_MSBS_SINGLE; /* single block */
cmd |= MMCHS_SD_CMD_DDIR_READ; /* read data from card */
}
/* write single block */
if (c->data_type == DATA_WRITE) {
cmd |= MMCHS_SD_CMD_DP_DATA; /* Command with data transfer */
cmd |= MMCHS_SD_CMD_MSBS_SINGLE; /* single block */
cmd |= MMCHS_SD_CMD_DDIR_WRITE; /* write to the card */
}
/* check we are in a sane state */
if ((mmc_read32(mmchs->regs->SD_STAT) & 0xffffu)) {
log_warn(&log, "%s, interrupt already raised stat %08x\n",
__FUNCTION__, mmc_read32(mmchs->regs->SD_STAT));
mmc_write32(mmchs->regs->SD_STAT, MMCHS_SD_IE_CC_ENABLE_CLEAR);
}
if (cmd & MMCHS_SD_CMD_DP_DATA) {
if (cmd & MMCHS_SD_CMD_DDIR_READ) {
/* if we are going to read enable the buffer ready
* interrupt */
mmc_set32(mmchs->regs->IE,
MMCHS_SD_IE_BRR_ENABLE,
MMCHS_SD_IE_BRR_ENABLE_ENABLE);
} else {
mmc_set32(mmchs->regs->IE,
MMCHS_SD_IE_BWR_ENABLE,
MMCHS_SD_IE_BWR_ENABLE_ENABLE);
}
io_data = c->data;
io_len = c->data_len;
assert(io_len <= 0xFFF); /* only 12 bits */
assert(io_data != NULL);
mmc_set32(mmchs->regs->BLK, MMCHS_SD_BLK_BLEN, io_len);
}
ret = mmchs_send_cmd(cmd, arg);
if (cmd & MMCHS_SD_CMD_DP_DATA) {
assert(c->data_len);
if (cmd & MMCHS_SD_CMD_DDIR_READ) {
/* Wait for TC */
if (intr_wait(MMCHS_SD_IE_TC_ENABLE_ENABLE)) {
intr_deassert(MMCHS_SD_IE_TC_ENABLE_ENABLE);
log_warn(&log,
"(Read) Timeout waiting for interrupt\n");
return 1;
}
mmc_write32(mmchs->regs->SD_STAT,
MMCHS_SD_IE_TC_ENABLE_CLEAR);
/* disable the bbr interrupt */
mmc_set32(mmchs->regs->IE,
MMCHS_SD_IE_BRR_ENABLE,
MMCHS_SD_IE_BRR_ENABLE_DISABLE);
} else {
/* Wait for TC */
if (intr_wait(MMCHS_SD_IE_TC_ENABLE_ENABLE)) {
intr_deassert(MMCHS_SD_IE_TC_ENABLE_CLEAR);
log_warn(&log,
"(Write) Timeout waiting for transfer complete\n");
return 1;
}
intr_deassert(MMCHS_SD_IE_TC_ENABLE_CLEAR);
mmc_set32(mmchs->regs->IE,
MMCHS_SD_IE_BWR_ENABLE,
MMCHS_SD_IE_BWR_ENABLE_DISABLE);
}
}
/* copy response into cmd->resp */
switch (c->resp_type) {
case RESP_LEN_48_CHK_BUSY:
case RESP_LEN_48:
c->resp[0] = mmc_read32(mmchs->regs->RSP10);
break;
case RESP_LEN_136:
c->resp[0] = mmc_read32(mmchs->regs->RSP10);
c->resp[1] = mmc_read32(mmchs->regs->RSP32);
c->resp[2] = mmc_read32(mmchs->regs->RSP54);
c->resp[3] = mmc_read32(mmchs->regs->RSP76);
break;
case RESP_NO_RESPONSE:
break;
default:
return 1;
}
return ret;
}
int
mmc_send_app_cmd(struct sd_card_regs *card, struct mmc_command *c)
{
struct mmc_command command;
command.cmd = MMC_APP_CMD;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
command.args = MMC_ARG_RCA(card->rca);
if (mmc_send_cmd(&command)) {
return 1;
}
return mmc_send_cmd(c);
}
int
card_goto_idle_state()
{
struct mmc_command command;
command.cmd = MMC_GO_IDLE_STATE;
command.resp_type = RESP_NO_RESPONSE;
command.data_type = DATA_NONE;
command.args = 0x00;
if (mmc_send_cmd(&command)) {
// Failure
return 1;
}
return 0;
}
int
card_identification()
{
struct mmc_command command;
command.cmd = SD_SEND_IF_COND; /* Send CMD8 */
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
command.args = MMCHS_SD_ARG_CMD8_VHS | MMCHS_SD_ARG_CMD8_CHECK_PATTERN;
if (mmc_send_cmd(&command)) {
/* We currently only support 2.0, and 1.0 won't respond to
* this request */
log_warn(&log, "%s, non SDHC card inserted\n", __FUNCTION__);
return 1;
}
if (!(command.resp[0]
== (MMCHS_SD_ARG_CMD8_VHS | MMCHS_SD_ARG_CMD8_CHECK_PATTERN))) {
log_warn(&log, "%s, check pattern check failed %08x\n",
__FUNCTION__, command.resp[0]);
return 1;
}
return 0;
}
int
card_query_voltage_and_type(struct sd_card_regs *card)
{
struct mmc_command command;
spin_t spin;
command.cmd = SD_APP_OP_COND;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
/* 0x1 << 30 == send HCS (Host capacity support) and get OCR register */
command.args =
MMC_OCR_3_3V_3_4V | MMC_OCR_3_2V_3_3V | MMC_OCR_3_1V_3_2V |
MMC_OCR_3_0V_3_1V | MMC_OCR_2_9V_3_0V | MMC_OCR_2_8V_2_9V |
MMC_OCR_2_7V_2_8V;
command.args |= MMC_OCR_HCS; /* RCA=0000 */
if (mmc_send_app_cmd(card, &command)) {
return 1;
}
spin_init(&spin, SANE_TIMEOUT);
while (!(command.resp[0] & MMC_OCR_MEM_READY)) {
/* Send ADMD41 */
/* 0x1 << 30 == send HCS (Host capacity support) and get OCR
* register */
command.cmd = SD_APP_OP_COND;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
/* 0x1 << 30 == send HCS (Host capacity support) */
command.args = MMC_OCR_3_3V_3_4V | MMC_OCR_3_2V_3_3V
| MMC_OCR_3_1V_3_2V | MMC_OCR_3_0V_3_1V | MMC_OCR_2_9V_3_0V
| MMC_OCR_2_8V_2_9V | MMC_OCR_2_7V_2_8V;
command.args |= MMC_OCR_HCS; /* RCA=0000 */
if (mmc_send_app_cmd(card, &command)) {
return 1;
}
/* if bit 31 is set the response is valid */
if ((command.resp[0] & MMC_OCR_MEM_READY)) {
break;
}
if (spin_check(&spin) == FALSE) {
log_warn(&log, "TIMEOUT waiting for the SD card\n");
}
}
card->ocr = command.resp[3];
return 0;
}
int
card_identify(struct sd_card_regs *card)
{
struct mmc_command command;
/* Send cmd 2 (all_send_cid) and expect 136 bits response */
command.cmd = MMC_ALL_SEND_CID;
command.resp_type = RESP_LEN_136;
command.data_type = DATA_NONE;
command.args = MMC_ARG_RCA(0x0); /* RCA=0000 */
if (mmc_send_cmd(&command)) {
return 1;
}
card->cid[0] = command.resp[0];
card->cid[1] = command.resp[1];
card->cid[2] = command.resp[2];
card->cid[3] = command.resp[3];
command.cmd = MMC_SET_RELATIVE_ADDR;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
command.args = 0x0; /* RCA=0000 */
/* R6 response */
if (mmc_send_cmd(&command)) {
return 1;
}
card->rca = SD_R6_RCA(command.resp);
/* MMHCS only supports a single card so sending MMCHS_SD_CMD_CMD2 is
* useless Still we should make it possible in the API to support
* multiple cards */
return 0;
}
int
card_csd(struct sd_card_regs *card)
{
/* Read the Card Specific Data register */
struct mmc_command command;
/* send_csd -> r2 response */
command.cmd = MMC_SEND_CSD;
command.resp_type = RESP_LEN_136;
command.data_type = DATA_NONE;
command.args = MMC_ARG_RCA(card->rca); /* card rca */
if (mmc_send_cmd(&command)) {
return 1;
}
card->csd[0] = command.resp[0];
card->csd[1] = command.resp[1];
card->csd[2] = command.resp[2];
card->csd[3] = command.resp[3];
log_trace(&log, "CSD version %d\n", SD_CSD_CSDVER(card->csd));
if (SD_CSD_CSDVER(card->csd) != SD_CSD_CSDVER_2_0) {
log_warn(&log, "Version 2.0 of CSD register expected\n");
return 1;
}
return 0;
}
int
select_card(struct sd_card_regs *card)
{
struct mmc_command command;
command.cmd = MMC_SELECT_CARD;
command.resp_type = RESP_LEN_48_CHK_BUSY;
command.data_type = DATA_NONE;
command.args = MMC_ARG_RCA(card->rca); /* card rca */
if (mmc_send_cmd(&command)) {
return 1;
}
return 0;
}
int
card_scr(struct sd_card_regs *card)
{
uint8_t buffer[8]; /* 64 bits */
uint8_t *p;
int c;
/* the SD CARD configuration register. This is an additional register
* next to the Card Specific register containing additional data we
* need */
struct mmc_command command;
log_trace(&log, "Read card scr\n");
/* send_csd -> r2 response */
command.cmd = SD_APP_SEND_SCR;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_READ;
command.args = 0xaaaaaaaa;
command.data = buffer;
command.data_len = 8;
if (mmc_send_app_cmd(card, &command)) {
return 1;
}
p = (uint8_t *) card->scr;
/* copy the data to card->scr */
for (c = 7; c >= 0; c--) {
*p++ = buffer[c];
}
if (!SCR_SD_BUS_WIDTHS(card->scr) & SCR_SD_BUS_WIDTHS_4BIT) {
/* it would be very weird not to support 4 bits access */
log_warn(&log, "4 bit access not supported\n");
}
log_trace(&log, "1 bit bus width %ssupported\n",
(SCR_SD_BUS_WIDTHS(card->scr) & SCR_SD_BUS_WIDTHS_1BIT) ? "" :
"un");
log_trace(&log, "4 bit bus width %ssupported\n",
(SCR_SD_BUS_WIDTHS(card->scr) & SCR_SD_BUS_WIDTHS_4BIT) ? "" :
"un");
return 0;
}
int
enable_4bit_mode(struct sd_card_regs *card)
{
struct mmc_command command;
if (SCR_SD_BUS_WIDTHS(card->scr) & SCR_SD_BUS_WIDTHS_4BIT) {
/* set transfer width */
command.cmd = SD_APP_SET_BUS_WIDTH;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_NONE;
command.args = 2; /* 4 bits */
if (mmc_send_app_cmd(card, &command)) {
log_warn(&log,
"SD-card does not support 4 bit transfer\n");
return 1;
}
/* now configure the controller to use 4 bit access */
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_DTW,
MMCHS_SD_HCTL_DTW_4BIT);
return 0;
}
return 1; /* expect 4 bits mode to work so having a card
* that doesn't support 4 bits mode */
}
void
dump_char(char *out, char in)
{
int i;
memset(out, 0, 9);
for (i = 0; i < 8; i++) {
out[i] = ((in >> i) & 0x1) ? '1' : '0';
}
}
void
dump(uint8_t * data, int len)
{
int c;
char digit[4][9];
char *p = data;
for (c = 0; c < len;) {
memset(digit, 0, sizeof(digit));
if (c++ < len)
dump_char(digit[0], *data++);
if (c++ < len)
dump_char(digit[1], *data++);
if (c++ < len)
dump_char(digit[2], *data++);
if (c++ < len)
dump_char(digit[3], *data++);
printf("%x %s %s %s %s\n", c, digit[0], digit[1], digit[2],
digit[3]);
}
}
int
mmc_switch(int function, int value, uint8_t * data)
{
struct mmc_command command;
/* function index */
int findex, fshift;
findex = function - 1;
fshift = findex << 2; /* bits used per function */
command.cmd = MMC_SWITCH;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_READ;
command.data = data;
command.data_len = 64;
command.args = (1 << 31) | (0x00ffffff & ~(0xf << fshift));
command.args |= (value << fshift);
if (mmc_send_cmd(&command)) {
log_warn(&log, "Failed to set device in high speed mode\n");
return 1;
}
// dump(data,64);
}
int
enable_high_speed_mode(struct sd_card_regs *card)
{
/* MMC cards using version 4.0 or higher of the specs can work at
* higher bus rates. After setting the bus width one can send the
* HS_TIMING command to set the card in high speed mode after witch
* one can higher up the frequency */
uint8_t buffer[64]; /* 512 bits */
log_info(&log, "Enabling high speed mode\n");
#if 0
Doesnt currently work
if (SCR_SD_SPEC(&card->scr[0]) >= SCR_SD_SPEC_VER_1_10)
{
mmc_switch(1, 1, buffer);
}
#endif
if (SD_CSD_SPEED(card->csd) == SD_CSD_SPEED_25_MHZ) {
log_trace(&log, "Using 25MHz clock\n");
mmchs_set_bus_freq(HSMMCSD_0_FREQ_25MHZ);
} else if (SD_CSD_SPEED(card->csd) == SD_CSD_SPEED_50_MHZ) {
log_trace(&log, "Using 50MHz clock\n");
mmchs_set_bus_freq(HSMMCSD_0_FREQ_50MHZ);
} else {
log_warn(&log, "Unknown speed 0x%x in CSD register\n",
SD_CSD_SPEED(card->csd));
}
return 0;
}
int
read_single_block(struct sd_card_regs *card,
uint32_t blknr, unsigned char *buf)
{
struct mmc_command command;
command.cmd = MMC_READ_BLOCK_SINGLE;
command.args = blknr;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_READ;
command.data = buf;
command.data_len = 512;
if (mmc_send_cmd(&command)) {
log_warn(&log, "Error sending command\n");
return 1;
}
return 0;
}
int
write_single_block(struct sd_card_regs *card,
uint32_t blknr, unsigned char *buf)
{
struct mmc_command command;
command.cmd = MMC_WRITE_BLOCK_SINGLE;
command.args = blknr;
command.resp_type = RESP_LEN_48;
command.data_type = DATA_WRITE;
command.data = buf;
command.data_len = 512;
/* write single block */
if (mmc_send_cmd(&command)) {
log_warn(&log, "Write single block command failed\n");
return 1;
}
return 0;
}
int
mmchs_host_init(struct mmc_host *host)
{
mmchs_init(1);
return 0;
}
void
mmchs_set_log_level(int level)
{
if (level >= 0 && level <= 4) {
log.log_level = level;
}
}
int
mmchs_host_set_instance(struct mmc_host *host, int instance)
{
log_info(&log, "Using instance number %d\n", instance);
if (instance != 0) {
return EIO;
}
return OK;
}
int
mmchs_host_reset(struct mmc_host *host)
{
// mmchs_init(1);
return 0;
}
int
mmchs_card_detect(struct sd_slot *slot)
{
/* @TODO implement proper card detect */
return 1;
}
struct sd_card *
mmchs_card_initialize(struct sd_slot *slot)
{
// mmchs_init(1);
struct sd_card *card;
card = &slot->card;
memset(card, 0, sizeof(struct sd_card));
card->slot = slot;
if (card_goto_idle_state()) {
log_warn(&log, "Failed to go idle state\n");
return NULL;
}
if (card_identification()) {
log_warn(&log, "Failed to do card_identification\n");
return NULL;
}
if (card_query_voltage_and_type(&slot->card.regs)) {
log_warn(&log, "Failed to do card_query_voltage_and_type\n");
return NULL;
}
if (card_identify(&slot->card.regs)) {
log_warn(&log, "Failed to identify card\n");
return NULL;
}
/* We have now initialized the hardware identified the card */
if (card_csd(&slot->card.regs)) {
log_warn(&log, "failed to read csd (card specific data)\n");
return NULL;
}
if (select_card(&slot->card.regs)) {
log_warn(&log, "Failed to select card\n");
return NULL;
}
if (card_scr(&slot->card.regs)) {
log_warn(&log,
"failed to read scr (card additional specific data)\n");
return NULL;
}
if (enable_4bit_mode(&slot->card.regs)) {
log_warn(&log, "failed to configure 4 bit access mode\n");
return NULL;
}
if (enable_high_speed_mode(&slot->card.regs)) {
log_warn(&log, "failed to configure high speed mode mode\n");
return NULL;
}
if (SD_CSD_READ_BL_LEN(slot->card.regs.csd) != 0x09) {
/* for CSD version 2.0 the value is fixed to 0x09 and means a
* block size of 512 */
log_warn(&log, "Block size expect to be 512\n");
return NULL;
}
slot->card.blk_size = 512; /* HARDCODED value */
slot->card.blk_count = SD_CSD_V2_CAPACITY(slot->card.regs.csd);
slot->card.state = SD_MODE_DATA_TRANSFER_MODE;
/* MINIX related stuff to keep track of partitions */
memset(slot->card.part, 0, sizeof(slot->card.part));
memset(slot->card.subpart, 0, sizeof(slot->card.subpart));
slot->card.part[0].dv_base = 0;
slot->card.part[0].dv_size =
(unsigned long long) SD_CSD_V2_CAPACITY(slot->card.regs.csd) * 512;
return &slot->card;
}
/* read count blocks into existing buf */
static int
mmchs_host_read(struct sd_card *card,
uint32_t blknr, uint32_t count, unsigned char *buf)
{
uint32_t i;
i = count;
for (i = 0; i < count; i++) {
read_single_block(&card->regs, blknr + i,
buf + (i * card->blk_size));
}
return OK;
}
/* write count blocks */
static int
mmchs_host_write(struct sd_card *card,
uint32_t blknr, uint32_t count, unsigned char *buf)
{
uint32_t i;
i = count;
for (i = 0; i < count; i++) {
write_single_block(&card->regs, blknr + i,
buf + (i * card->blk_size));
}
return OK;
}
int
mmchs_card_release(struct sd_card *card)
{
assert(card->open_ct == 1);
card->open_ct--;
card->state = SD_MODE_UNINITIALIZED;
/* TODO:Set card state */
/* now configure the controller to use 4 bit access */
mmc_set32(mmchs->regs->HCTL, MMCHS_SD_HCTL_DTW,
MMCHS_SD_HCTL_DTW_1BIT);
return OK;
}
void
host_initialize_host_structure_mmchs(struct mmc_host *host)
{
/* Initialize the basic data structures host slots and cards */
int i;
mmchs = NULL;
struct machine machine ;
sys_getmachine(&machine);
if (BOARD_IS_BBXM(machine.board_id)){
mmchs = &bbxm_sdcard;
} else if ( BOARD_IS_BB(machine.board_id)){
mmchs = &bone_sdcard;
}
assert(mmchs);
host->host_set_instance = mmchs_host_set_instance;
host->host_init = mmchs_host_init;
host->set_log_level = mmchs_set_log_level;
host->host_reset = mmchs_host_reset;
host->card_detect = mmchs_card_detect;
host->card_initialize = mmchs_card_initialize;
host->card_release = mmchs_card_release;
host->hw_intr = mmchs_hw_intr;
host->read = mmchs_host_read;
host->write = mmchs_host_write;
/* initialize data structures */
for (i = 0; i < sizeof(host->slot) / sizeof(host->slot[0]); i++) {
// @TODO set initial card and slot state
host->slot[i].host = host;
host->slot[i].card.slot = &host->slot[i];
}
}