723e51327f
The main purpose of this patch is to fix handling of unpause calls from PM while another call is ongoing. The solution to this problem sparked a full revision of the threading model, consisting of a large number of related changes: - all active worker threads are now always associated with a process, and every process has at most one active thread working for it; - the process lock is always held by a process's worker thread; - a process can now have both normal work and postponed PM work associated to it; - timer expiry and non-postponed PM work is done from the main thread; - filp garbage collection is done from a thread associated with VFS; - reboot calls from PM are now done from a thread associated with PM; - the DS events handler is protected from starting multiple threads; - support for a system worker thread has been removed; - the deadlock recovery thread has been replaced by a parameter to the worker_start() function; the number of worker threads has consequently been increased by one; - saving and restoring of global but per-thread variables is now centralized in worker_suspend() and worker_resume(); err_code is now saved and restored in all cases; - the concept of jobs has been removed, and job_m_in now points to a message stored in the worker thread structure instead; - the PM lock has been removed; - the separate exec lock has been replaced by a lock on the VM process, which was already being locked for exec calls anyway; - PM_UNPAUSE is now processed as a postponed PM request, from a thread associated with the target process; - the FP_DROP_WORK flag has been removed, since it is no longer more than just an optimization and only applied to processes operating on a pipe when getting killed; - assignment to "fp" now takes place only when obtaining new work in the main thread or a worker thread, when resuming execution of a thread, and in the special case of exiting processes during reboot; - there are no longer special cases where the yield() call is used to force a thread to run. Change-Id: I7a97b9b95c2450454a9b5318dfa0e6150d4e6858
760 lines
24 KiB
C
760 lines
24 KiB
C
/* This file handles the EXEC system call. It performs the work as follows:
|
|
* - see if the permissions allow the file to be executed
|
|
* - read the header and extract the sizes
|
|
* - fetch the initial args and environment from the user space
|
|
* - allocate the memory for the new process
|
|
* - copy the initial stack from PM to the process
|
|
* - read in the text and data segments and copy to the process
|
|
* - take care of setuid and setgid bits
|
|
* - fix up 'mproc' table
|
|
* - tell kernel about EXEC
|
|
* - save offset to initial argc (for ps)
|
|
*
|
|
* The entry points into this file are:
|
|
* pm_exec: perform the EXEC system call
|
|
*/
|
|
|
|
#include "fs.h"
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/com.h>
|
|
#include <minix/u64.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <dirent.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/param.h>
|
|
#include "path.h"
|
|
#include "param.h"
|
|
#include "vnode.h"
|
|
#include "file.h"
|
|
#include <minix/vfsif.h>
|
|
#include <machine/vmparam.h>
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
|
|
#define _KERNEL /* for ELF_AUX_ENTRIES */
|
|
#include <libexec.h>
|
|
|
|
/* fields only used by elf and in VFS */
|
|
struct vfs_exec_info {
|
|
struct exec_info args; /* libexec exec args */
|
|
struct vnode *vp; /* Exec file's vnode */
|
|
struct vmnt *vmp; /* Exec file's vmnt */
|
|
struct stat sb; /* Exec file's stat structure */
|
|
int userflags; /* exec() flags from userland */
|
|
int is_dyn; /* Dynamically linked executable */
|
|
int elf_main_fd; /* Dyn: FD of main program execuatble */
|
|
char execname[PATH_MAX]; /* Full executable invocation */
|
|
int vmfd;
|
|
int vmfd_used;
|
|
};
|
|
|
|
static int patch_stack(struct vnode *vp, char stack[ARG_MAX],
|
|
size_t *stk_bytes, char path[PATH_MAX], vir_bytes *vsp);
|
|
static int is_script(struct vfs_exec_info *execi);
|
|
static int insert_arg(char stack[ARG_MAX], size_t *stk_bytes, char *arg,
|
|
vir_bytes *vsp, char replace);
|
|
static void clo_exec(struct fproc *rfp);
|
|
static int stack_prepare_elf(struct vfs_exec_info *execi,
|
|
char *curstack, size_t *frame_len, vir_bytes *vsp);
|
|
static int map_header(struct vfs_exec_info *execi);
|
|
static int read_seg(struct exec_info *execi, off_t off, vir_bytes seg_addr, size_t seg_bytes);
|
|
|
|
#define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
|
|
|
|
/* Array of loaders for different object file formats */
|
|
typedef int (*exechook_t)(struct vfs_exec_info *execpackage);
|
|
typedef int (*stackhook_t)(struct vfs_exec_info *execi, char *curstack,
|
|
size_t *frame_len, vir_bytes *vsp);
|
|
struct exec_loaders {
|
|
libexec_exec_loadfunc_t load_object; /* load executable into memory */
|
|
stackhook_t setup_stack; /* prepare stack before argc and argv push */
|
|
};
|
|
|
|
static const struct exec_loaders exec_loaders[] = {
|
|
{ libexec_load_elf, stack_prepare_elf },
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
#define lock_exec() lock_proc(fproc_addr(VM_PROC_NR))
|
|
#define unlock_exec() unlock_proc(fproc_addr(VM_PROC_NR))
|
|
|
|
/*===========================================================================*
|
|
* get_read_vp *
|
|
*===========================================================================*/
|
|
static int get_read_vp(struct vfs_exec_info *execi,
|
|
char *fullpath, int copyprogname, int sugid, struct lookup *resolve, struct fproc *fp)
|
|
{
|
|
/* Make the executable that we want to exec() into the binary pointed
|
|
* to by 'fullpath.' This function fills in necessary details in the execi
|
|
* structure, such as opened vnode. It unlocks and releases the vnode if
|
|
* it was already there. This makes it easy to change the executable
|
|
* during the exec(), which is often necessary, by calling this function
|
|
* more than once. This is specifically necessary when we discover the
|
|
* executable is actually a script or a dynamically linked executable.
|
|
*/
|
|
int r;
|
|
|
|
/* Caller wants to switch vp to the file in 'fullpath.'
|
|
* unlock and put it first if there is any there.
|
|
*/
|
|
if(execi->vp) {
|
|
unlock_vnode(execi->vp);
|
|
put_vnode(execi->vp);
|
|
execi->vp = NULL;
|
|
}
|
|
|
|
/* Remember/overwrite the executable name if requested. */
|
|
if(copyprogname) {
|
|
char *cp = strrchr(fullpath, '/');
|
|
if(cp) cp++;
|
|
else cp = fullpath;
|
|
strlcpy(execi->args.progname, cp, sizeof(execi->args.progname));
|
|
execi->args.progname[sizeof(execi->args.progname)-1] = '\0';
|
|
}
|
|
|
|
/* Open executable */
|
|
if ((execi->vp = eat_path(resolve, fp)) == NULL)
|
|
return err_code;
|
|
|
|
unlock_vmnt(execi->vmp);
|
|
|
|
if (!S_ISREG(execi->vp->v_mode))
|
|
return ENOEXEC;
|
|
else if ((r = forbidden(fp, execi->vp, X_BIT)) != OK)
|
|
return r;
|
|
else
|
|
r = req_stat(execi->vp->v_fs_e, execi->vp->v_inode_nr,
|
|
VFS_PROC_NR, (vir_bytes) &(execi->sb));
|
|
|
|
if (r != OK) return r;
|
|
|
|
/* If caller wants us to, honour suid/guid mode bits. */
|
|
if (sugid) {
|
|
/* Deal with setuid/setgid executables */
|
|
if (execi->vp->v_mode & I_SET_UID_BIT) {
|
|
execi->args.new_uid = execi->vp->v_uid;
|
|
execi->args.allow_setuid = 1;
|
|
}
|
|
if (execi->vp->v_mode & I_SET_GID_BIT) {
|
|
execi->args.new_gid = execi->vp->v_gid;
|
|
execi->args.allow_setuid = 1;
|
|
}
|
|
}
|
|
|
|
/* Read in first chunk of file. */
|
|
if((r=map_header(execi)) != OK)
|
|
return r;
|
|
|
|
return OK;
|
|
}
|
|
|
|
#define FAILCHECK(expr) if((r=(expr)) != OK) { goto pm_execfinal; } while(0)
|
|
#define Get_read_vp(e,f,p,s,rs,fp) do { \
|
|
r=get_read_vp(&e,f,p,s,rs,fp); if(r != OK) { FAILCHECK(r); } \
|
|
} while(0)
|
|
|
|
static int vfs_memmap(struct exec_info *execi,
|
|
vir_bytes vaddr, vir_bytes len, vir_bytes foffset, u16_t clearend,
|
|
int protflags)
|
|
{
|
|
struct vfs_exec_info *vi = (struct vfs_exec_info *) execi->opaque;
|
|
struct vnode *vp = ((struct vfs_exec_info *) execi->opaque)->vp;
|
|
int r;
|
|
u16_t flags = 0;
|
|
|
|
if(protflags & PROT_WRITE)
|
|
flags |= MVM_WRITABLE;
|
|
|
|
r = minix_vfs_mmap(execi->proc_e, foffset, len,
|
|
vp->v_dev, vp->v_inode_nr, vi->vmfd, vaddr, clearend, flags);
|
|
if(r == OK) {
|
|
vi->vmfd_used = 1;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pm_exec *
|
|
*===========================================================================*/
|
|
int pm_exec(vir_bytes path, size_t path_len, vir_bytes frame, size_t frame_len,
|
|
vir_bytes *pc, vir_bytes *newsp, vir_bytes *UNUSED(ps_str),
|
|
int user_exec_flags)
|
|
{
|
|
/* Perform the execve(name, argv, envp) call. The user library builds a
|
|
* complete stack image, including pointers, args, environ, etc. The stack
|
|
* is copied to a buffer inside VFS, and then to the new core image.
|
|
*
|
|
* ps_str is not currently used, but may be if the ps_strings structure has to
|
|
* be moved to another location.
|
|
*/
|
|
int r;
|
|
vir_bytes vsp;
|
|
static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
|
|
struct vfs_exec_info execi;
|
|
int i;
|
|
static char fullpath[PATH_MAX],
|
|
elf_interpreter[PATH_MAX],
|
|
firstexec[PATH_MAX],
|
|
finalexec[PATH_MAX];
|
|
struct lookup resolve;
|
|
struct fproc *vmfp = fproc_addr(VM_PROC_NR);
|
|
stackhook_t makestack = NULL;
|
|
struct filp *newfilp = NULL;
|
|
|
|
lock_exec();
|
|
|
|
/* unset execi values are 0. */
|
|
memset(&execi, 0, sizeof(execi));
|
|
execi.vmfd = -1;
|
|
|
|
/* passed from exec() libc code */
|
|
execi.userflags = user_exec_flags;
|
|
execi.args.stack_high = kinfo.user_sp;
|
|
execi.args.stack_size = DEFAULT_STACK_LIMIT;
|
|
|
|
fp->text_size = 0;
|
|
fp->data_size = 0;
|
|
|
|
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &execi.vmp, &execi.vp);
|
|
|
|
resolve.l_vmnt_lock = VMNT_READ;
|
|
resolve.l_vnode_lock = VNODE_READ;
|
|
|
|
/* Fetch the stack from the user before destroying the old core image. */
|
|
if (frame_len > ARG_MAX)
|
|
FAILCHECK(ENOMEM); /* stack too big */
|
|
|
|
r = sys_datacopy(fp->fp_endpoint, (vir_bytes) frame, SELF, (vir_bytes) mbuf,
|
|
(size_t) frame_len);
|
|
if (r != OK) { /* can't fetch stack (e.g. bad virtual addr) */
|
|
printf("VFS: pm_exec: sys_datacopy failed\n");
|
|
FAILCHECK(r);
|
|
}
|
|
|
|
/* Compute the current virtual stack pointer, has to be done before calling
|
|
* patch_stack, which needs it, and will adapt as required. */
|
|
vsp = execi.args.stack_high - frame_len;
|
|
|
|
/* The default is to keep the original user and group IDs */
|
|
execi.args.new_uid = fp->fp_effuid;
|
|
execi.args.new_gid = fp->fp_effgid;
|
|
|
|
/* Get the exec file name. */
|
|
FAILCHECK(fetch_name(path, path_len, fullpath));
|
|
strlcpy(finalexec, fullpath, PATH_MAX);
|
|
strlcpy(firstexec, fullpath, PATH_MAX);
|
|
|
|
/* Get_read_vp will return an opened vn in execi.
|
|
* if necessary it releases the existing vp so we can
|
|
* switch after we find out what's inside the file.
|
|
* It reads the start of the file.
|
|
*/
|
|
Get_read_vp(execi, fullpath, 1, 1, &resolve, fp);
|
|
|
|
/* If this is a script (i.e. has a #!/interpreter line),
|
|
* retrieve the name of the interpreter and open that
|
|
* executable instead.
|
|
*/
|
|
if(is_script(&execi)) {
|
|
/* patch_stack will add interpreter name and
|
|
* args to stack and retrieve the new binary
|
|
* name into fullpath.
|
|
*/
|
|
FAILCHECK(fetch_name(path, path_len, fullpath));
|
|
FAILCHECK(patch_stack(execi.vp, mbuf, &frame_len, fullpath, &vsp));
|
|
|
|
strlcpy(finalexec, fullpath, PATH_MAX);
|
|
strlcpy(firstexec, fullpath, PATH_MAX);
|
|
Get_read_vp(execi, fullpath, 1, 0, &resolve, fp);
|
|
}
|
|
|
|
/* If this is a dynamically linked executable, retrieve
|
|
* the name of that interpreter in elf_interpreter and open that
|
|
* executable instead. But open the current executable in an
|
|
* fd for the current process.
|
|
*/
|
|
if(elf_has_interpreter(execi.args.hdr, execi.args.hdr_len,
|
|
elf_interpreter, sizeof(elf_interpreter))) {
|
|
/* Switch the executable vnode to the interpreter */
|
|
execi.is_dyn = 1;
|
|
|
|
/* The interpreter (loader) needs an fd to the main program,
|
|
* which is currently in finalexec
|
|
*/
|
|
if((r = execi.elf_main_fd = common_open(finalexec, O_RDONLY, 0)) < 0) {
|
|
printf("VFS: exec: dynamic: open main exec failed %s (%d)\n",
|
|
fullpath, r);
|
|
FAILCHECK(r);
|
|
}
|
|
|
|
/* ld.so is linked at 0, but it can relocate itself; we
|
|
* want it higher to trap NULL pointer dereferences.
|
|
* Let's put it below the stack, and reserve 10MB for ld.so.
|
|
*/
|
|
execi.args.load_offset =
|
|
execi.args.stack_high - execi.args.stack_size - 0xa00000;
|
|
|
|
/* Remember it */
|
|
strlcpy(execi.execname, finalexec, PATH_MAX);
|
|
|
|
/* The executable we need to execute first (loader)
|
|
* is in elf_interpreter, and has to be in fullpath to
|
|
* be looked up
|
|
*/
|
|
strlcpy(fullpath, elf_interpreter, PATH_MAX);
|
|
strlcpy(firstexec, elf_interpreter, PATH_MAX);
|
|
Get_read_vp(execi, fullpath, 0, 0, &resolve, fp);
|
|
}
|
|
|
|
/* We also want an FD for VM to mmap() the process in if possible. */
|
|
{
|
|
struct vnode *vp = execi.vp;
|
|
assert(vp);
|
|
if ((vp->v_vmnt->m_fs_flags & RES_HASPEEK) &&
|
|
major(vp->v_dev) != MEMORY_MAJOR) {
|
|
int newfd = -1;
|
|
if(get_fd(vmfp, 0, R_BIT, &newfd, &newfilp) == OK) {
|
|
assert(newfd >= 0 && newfd < OPEN_MAX);
|
|
assert(!vmfp->fp_filp[newfd]);
|
|
newfilp->filp_count = 1;
|
|
newfilp->filp_vno = vp;
|
|
newfilp->filp_flags = O_RDONLY;
|
|
FD_SET(newfd, &vmfp->fp_filp_inuse);
|
|
vmfp->fp_filp[newfd] = newfilp;
|
|
/* dup_vnode(vp); */
|
|
execi.vmfd = newfd;
|
|
execi.args.memmap = vfs_memmap;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* callback functions and data */
|
|
execi.args.copymem = read_seg;
|
|
execi.args.clearproc = libexec_clearproc_vm_procctl;
|
|
execi.args.clearmem = libexec_clear_sys_memset;
|
|
execi.args.allocmem_prealloc_cleared = libexec_alloc_mmap_prealloc_cleared;
|
|
execi.args.allocmem_prealloc_junk = libexec_alloc_mmap_prealloc_junk;
|
|
execi.args.allocmem_ondemand = libexec_alloc_mmap_ondemand;
|
|
execi.args.opaque = &execi;
|
|
|
|
execi.args.proc_e = fp->fp_endpoint;
|
|
execi.args.frame_len = frame_len;
|
|
execi.args.filesize = execi.vp->v_size;
|
|
|
|
for (i = 0; exec_loaders[i].load_object != NULL; i++) {
|
|
r = (*exec_loaders[i].load_object)(&execi.args);
|
|
/* Loaded successfully, so no need to try other loaders */
|
|
if (r == OK) { makestack = exec_loaders[i].setup_stack; break; }
|
|
}
|
|
|
|
FAILCHECK(r);
|
|
|
|
/* Inform PM */
|
|
FAILCHECK(libexec_pm_newexec(fp->fp_endpoint, &execi.args));
|
|
|
|
/* Save off PC */
|
|
*pc = execi.args.pc;
|
|
|
|
/* call a stack-setup function if this executable type wants it */
|
|
if(makestack) FAILCHECK(makestack(&execi, mbuf, &frame_len, &vsp));
|
|
|
|
/* Copy the stack from VFS to new core image. */
|
|
FAILCHECK(sys_datacopy(SELF, (vir_bytes) mbuf, fp->fp_endpoint,
|
|
(vir_bytes) vsp, (phys_bytes)frame_len));
|
|
|
|
/* Return new stack pointer to caller */
|
|
*newsp = vsp;
|
|
|
|
clo_exec(fp);
|
|
|
|
if (execi.args.allow_setuid) {
|
|
/* If after loading the image we're still allowed to run with
|
|
* setuid or setgid, change credentials now */
|
|
fp->fp_effuid = execi.args.new_uid;
|
|
fp->fp_effgid = execi.args.new_gid;
|
|
}
|
|
|
|
/* Remember the new name of the process */
|
|
strlcpy(fp->fp_name, execi.args.progname, PROC_NAME_LEN);
|
|
fp->text_size = execi.args.text_size;
|
|
fp->data_size = execi.args.data_size;
|
|
|
|
pm_execfinal:
|
|
if(newfilp) unlock_filp(newfilp);
|
|
else if (execi.vp != NULL) {
|
|
unlock_vnode(execi.vp);
|
|
put_vnode(execi.vp);
|
|
}
|
|
|
|
if(execi.vmfd >= 0 && !execi.vmfd_used) {
|
|
if(OK != close_fd(vmfp, execi.vmfd)) {
|
|
printf("VFS: unexpected close fail of vm fd\n");
|
|
}
|
|
}
|
|
|
|
unlock_exec();
|
|
|
|
return(r);
|
|
}
|
|
|
|
/* This is a copy-paste of the same macro in libc/sys-minix/stack_utils.c. Keep it
|
|
* synchronized. */
|
|
#define STACK_MIN_SZ \
|
|
( \
|
|
sizeof(int) + sizeof(void *) * 2 + \
|
|
sizeof(AuxInfo) * PMEF_AUXVECTORS + PMEF_EXECNAMELEN1 + \
|
|
sizeof(struct ps_strings) \
|
|
)
|
|
|
|
static int stack_prepare_elf(struct vfs_exec_info *execi, char *frame, size_t *frame_size,
|
|
vir_bytes *vsp)
|
|
{
|
|
AuxInfo *aux_vec, *aux_vec_end;
|
|
vir_bytes vap; /* Address in proc space of the first AuxVec. */
|
|
Elf_Ehdr const * const elf_header = (Elf_Ehdr *) execi->args.hdr;
|
|
struct ps_strings const * const psp = (struct ps_strings *)
|
|
(frame + (*frame_size - sizeof(struct ps_strings)));
|
|
|
|
size_t const execname_len = strlen(execi->execname);
|
|
|
|
if (!execi->is_dyn)
|
|
return OK;
|
|
|
|
if (execi->args.hdr_len < sizeof(*elf_header)) {
|
|
printf("VFS: malformed ELF headers for exec\n");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (*frame_size < STACK_MIN_SZ) {
|
|
printf("VFS: malformed stack for exec(), smaller than minimum"
|
|
" possible size.\n");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
/* Find first Aux vector in the stack frame. */
|
|
vap = (vir_bytes)(psp->ps_envstr + (psp->ps_nenvstr + 1));
|
|
aux_vec = (AuxInfo *) (frame + (vap - *vsp));
|
|
aux_vec_end = aux_vec + PMEF_AUXVECTORS;
|
|
|
|
if (((char *)aux_vec < frame) ||
|
|
((char *)aux_vec > (frame + *frame_size))) {
|
|
printf("VFS: malformed stack for exec(), first AuxVector is"
|
|
" not on the stack.\n");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (((char *)aux_vec_end < frame) ||
|
|
((char *)aux_vec_end > (frame + *frame_size))) {
|
|
printf("VFS: malformed stack for exec(), last AuxVector is"
|
|
" not on the stack.\n");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
/* Userland provides a fully filled stack frame, with argc, argv, envp
|
|
* and then all the argv and envp strings; consistent with ELF ABI,
|
|
* except for a list of Aux vectors that should be between envp points
|
|
* and the start of the strings.
|
|
*
|
|
* It would take some very unpleasant hackery to insert the aux vectors
|
|
* before the strings, and correct all the pointers, so the exec code
|
|
* in libc makes space for us.
|
|
*/
|
|
|
|
#define AUXINFO(a, type, value) \
|
|
do { \
|
|
if (a < aux_vec_end) { \
|
|
a->a_type = type; \
|
|
a->a_v = value; \
|
|
a++; \
|
|
} else { \
|
|
printf("VFS: No more room for ELF AuxVec type %d, skipping it for %s\n", type, execi->execname); \
|
|
(aux_vec_end - 1)->a_type = AT_NULL; \
|
|
(aux_vec_end - 1)->a_v = 0; \
|
|
} \
|
|
} while(0)
|
|
|
|
AUXINFO(aux_vec, AT_BASE, execi->args.load_base);
|
|
AUXINFO(aux_vec, AT_ENTRY, execi->args.pc);
|
|
AUXINFO(aux_vec, AT_EXECFD, execi->elf_main_fd);
|
|
#if 0
|
|
AUXINFO(aux_vec, AT_PHDR, XXX ); /* should be &phdr[0] */
|
|
AUXINFO(aux_vec, AT_PHENT, elf_header->e_phentsize);
|
|
AUXINFO(aux_vec, AT_PHNUM, elf_header->e_phnum);
|
|
|
|
AUXINFO(aux_vec, AT_RUID, XXX);
|
|
AUXINFO(aux_vec, AT_RGID, XXX);
|
|
#endif
|
|
AUXINFO(aux_vec, AT_EUID, execi->args.new_uid);
|
|
AUXINFO(aux_vec, AT_EGID, execi->args.new_gid);
|
|
AUXINFO(aux_vec, AT_PAGESZ, PAGE_SIZE);
|
|
|
|
if(execname_len < PMEF_EXECNAMELEN1) {
|
|
char *spacestart;
|
|
vir_bytes userp;
|
|
|
|
/* Empty space starts after aux_vec table; we can put the name
|
|
* here. */
|
|
spacestart = (char *) aux_vec + 2 * sizeof(AuxInfo);
|
|
strlcpy(spacestart, execi->execname, PMEF_EXECNAMELEN1);
|
|
memset(spacestart + execname_len, '\0',
|
|
PMEF_EXECNAMELEN1 - execname_len);
|
|
|
|
/* What will the address of the string for the user be */
|
|
userp = *vsp + (spacestart - frame);
|
|
|
|
/* Move back to where the AT_NULL is */
|
|
AUXINFO(aux_vec, AT_SUN_EXECNAME, userp);
|
|
}
|
|
|
|
/* Always terminate with AT_NULL */
|
|
AUXINFO(aux_vec, AT_NULL, 0);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* is_script *
|
|
*===========================================================================*/
|
|
static int is_script(struct vfs_exec_info *execi)
|
|
{
|
|
/* Is Interpreted script? */
|
|
assert(execi->args.hdr != NULL);
|
|
|
|
return(execi->args.hdr[0] == '#' && execi->args.hdr[1] == '!'
|
|
&& execi->args.hdr_len >= 2);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* patch_stack *
|
|
*===========================================================================*/
|
|
static int patch_stack(vp, stack, stk_bytes, path, vsp)
|
|
struct vnode *vp; /* pointer for open script file */
|
|
char stack[ARG_MAX]; /* pointer to stack image within VFS */
|
|
size_t *stk_bytes; /* size of initial stack */
|
|
char path[PATH_MAX]; /* path to script file */
|
|
vir_bytes *vsp;
|
|
{
|
|
/* Patch the argument vector to include the path name of the script to be
|
|
* interpreted, and all strings on the #! line. Returns the path name of
|
|
* the interpreter.
|
|
*/
|
|
enum { INSERT=FALSE, REPLACE=TRUE };
|
|
int n, r;
|
|
off_t pos, new_pos;
|
|
char *sp, *interp = NULL;
|
|
unsigned int cum_io;
|
|
char buf[_MAX_BLOCK_SIZE];
|
|
|
|
/* Make 'path' the new argv[0]. */
|
|
if (!insert_arg(stack, stk_bytes, path, vsp, REPLACE)) return(ENOMEM);
|
|
|
|
pos = 0; /* Read from the start of the file */
|
|
|
|
/* Issue request */
|
|
r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, pos, READING, VFS_PROC_NR,
|
|
(vir_bytes) buf, _MAX_BLOCK_SIZE, &new_pos, &cum_io);
|
|
|
|
if (r != OK) return(r);
|
|
|
|
n = vp->v_size;
|
|
if (n > _MAX_BLOCK_SIZE)
|
|
n = _MAX_BLOCK_SIZE;
|
|
if (n < 2) return ENOEXEC;
|
|
|
|
sp = &(buf[2]); /* just behind the #! */
|
|
n -= 2;
|
|
if (n > PATH_MAX) n = PATH_MAX;
|
|
|
|
/* Use the 'path' variable for temporary storage */
|
|
memcpy(path, sp, n);
|
|
|
|
if ((sp = memchr(path, '\n', n)) == NULL) /* must be a proper line */
|
|
return(ENOEXEC);
|
|
|
|
/* Move sp backwards through script[], prepending each string to stack. */
|
|
for (;;) {
|
|
/* skip spaces behind argument. */
|
|
while (sp > path && (*--sp == ' ' || *sp == '\t')) {}
|
|
if (sp == path) break;
|
|
|
|
sp[1] = 0;
|
|
/* Move to the start of the argument. */
|
|
while (sp > path && sp[-1] != ' ' && sp[-1] != '\t') --sp;
|
|
|
|
interp = sp;
|
|
if (!insert_arg(stack, stk_bytes, sp, vsp, INSERT)) {
|
|
printf("VFS: patch_stack: insert_arg failed\n");
|
|
return(ENOMEM);
|
|
}
|
|
}
|
|
|
|
if(!interp)
|
|
return ENOEXEC;
|
|
|
|
if (interp != path)
|
|
memmove(path, interp, strlen(interp)+1);
|
|
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* insert_arg *
|
|
*===========================================================================*/
|
|
static int insert_arg(char stack[ARG_MAX], size_t *stk_bytes, char *arg,
|
|
vir_bytes *vsp, char replace)
|
|
{
|
|
/* Patch the stack so that arg will become argv[0]. Be careful, the
|
|
* stack may be filled with garbage, although it normally looks like
|
|
* this:
|
|
* nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
|
|
* followed by the strings "pointed" to by the argv[i] and the envp[i].
|
|
* The * pointers are in the new process address space.
|
|
*
|
|
* Return true iff the operation succeeded.
|
|
*/
|
|
struct ps_strings *psp;
|
|
int offset;
|
|
size_t old_bytes = *stk_bytes;
|
|
|
|
int const arg_len = strlen(arg) + 1;
|
|
|
|
/* Offset to argv[0][0] in the stack frame. */
|
|
int const a0 = (int)(((char **)stack)[1] - *vsp);
|
|
|
|
/* Check that argv[0] points within the stack frame. */
|
|
if ((a0 < 0) || (a0 >= old_bytes)) {
|
|
printf("vfs:: argv[0][] not within stack range!! %i\n", a0);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!replace) {
|
|
/* Prepending arg adds one pointer, one string and a zero byte. */
|
|
offset = arg_len + PTRSIZE;
|
|
} else {
|
|
/* replacing argv[0] with arg adds the difference in length of
|
|
* the two strings. Make sure we don't go beyond the stack size
|
|
* when computing the length of the current argv[0]. */
|
|
offset = arg_len - strnlen(stack + a0, ARG_MAX - a0 - 1);
|
|
}
|
|
|
|
/* As ps_strings follows the strings, ensure the offset is word aligned. */
|
|
offset = offset + (PTRSIZE - ((PTRSIZE + offset) % PTRSIZE));
|
|
|
|
/* The stack will grow (or shrink) by offset bytes. */
|
|
if ((*stk_bytes += offset) > ARG_MAX) {
|
|
printf("vfs:: offset too big!! %d (max %d)\n", *stk_bytes,
|
|
ARG_MAX);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Reposition the strings by offset bytes */
|
|
memmove(stack + a0 + offset, stack + a0, old_bytes - a0);
|
|
|
|
/* Put arg in the new space, leaving padding in front of it. */
|
|
strlcpy(stack + a0 + offset - arg_len, arg, arg_len);
|
|
|
|
if (!replace) {
|
|
/* Make space for a new argv[0]. */
|
|
memmove(stack + 2 * PTRSIZE,
|
|
stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
|
|
|
|
((char **) stack)[0]++; /* nargs++; */
|
|
}
|
|
|
|
/* set argv[0] correctly */
|
|
((char **) stack)[1] = (char *) a0 - arg_len + *vsp;
|
|
|
|
/* Update stack pointer in the process address space. */
|
|
*vsp -= offset;
|
|
|
|
/* Update argv and envp in ps_strings */
|
|
psp = (struct ps_strings *) (stack + *stk_bytes - sizeof(struct ps_strings));
|
|
psp->ps_argvstr -= (offset / PTRSIZE);
|
|
if (!replace) {
|
|
psp->ps_nargvstr++;
|
|
}
|
|
psp->ps_envstr = psp->ps_argvstr + psp->ps_nargvstr + 1;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* read_seg *
|
|
*===========================================================================*/
|
|
static int read_seg(struct exec_info *execi, off_t off, vir_bytes seg_addr, size_t seg_bytes)
|
|
{
|
|
/*
|
|
* The byte count on read is usually smaller than the segment count, because
|
|
* a segment is padded out to a click multiple, and the data segment is only
|
|
* partially initialized.
|
|
*/
|
|
int r;
|
|
off_t new_pos;
|
|
unsigned int cum_io;
|
|
struct vnode *vp = ((struct vfs_exec_info *) execi->opaque)->vp;
|
|
|
|
/* Make sure that the file is big enough */
|
|
if (off + seg_bytes > LONG_MAX) return(EIO);
|
|
if ((unsigned long) vp->v_size < off+seg_bytes) return(EIO);
|
|
|
|
if ((r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, off, READING,
|
|
execi->proc_e, (vir_bytes) seg_addr, seg_bytes,
|
|
&new_pos, &cum_io)) != OK) {
|
|
printf("VFS: read_seg: req_readwrite failed (data)\n");
|
|
return(r);
|
|
}
|
|
|
|
if (r == OK && cum_io != seg_bytes)
|
|
printf("VFS: read_seg segment has not been read properly\n");
|
|
|
|
return(r);
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* clo_exec *
|
|
*===========================================================================*/
|
|
static void clo_exec(struct fproc *rfp)
|
|
{
|
|
/* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec).
|
|
*/
|
|
int i;
|
|
|
|
/* Check the file desriptors one by one for presence of FD_CLOEXEC. */
|
|
for (i = 0; i < OPEN_MAX; i++)
|
|
if ( FD_ISSET(i, &rfp->fp_cloexec_set))
|
|
(void) close_fd(rfp, i);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* map_header *
|
|
*===========================================================================*/
|
|
static int map_header(struct vfs_exec_info *execi)
|
|
{
|
|
int r;
|
|
unsigned int cum_io;
|
|
off_t pos, new_pos;
|
|
static char hdr[PAGE_SIZE]; /* Assume that header is not larger than a page */
|
|
|
|
pos = 0; /* Read from the start of the file */
|
|
|
|
/* How much is sensible to read */
|
|
execi->args.hdr_len = MIN(execi->vp->v_size, sizeof(hdr));
|
|
execi->args.hdr = hdr;
|
|
|
|
r = req_readwrite(execi->vp->v_fs_e, execi->vp->v_inode_nr,
|
|
pos, READING, VFS_PROC_NR, (vir_bytes) hdr,
|
|
execi->args.hdr_len, &new_pos, &cum_io);
|
|
if (r != OK) {
|
|
printf("VFS: exec: map_header: req_readwrite failed\n");
|
|
return(r);
|
|
}
|
|
|
|
return(OK);
|
|
}
|