6f77685609
mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
234 lines
6.1 KiB
C
234 lines
6.1 KiB
C
|
|
#include "../../kernel.h"
|
|
#include "../../proc.h"
|
|
|
|
#include <minix/type.h>
|
|
#include <string.h>
|
|
|
|
#include <sys/vm.h>
|
|
|
|
#include <minix/portio.h>
|
|
|
|
#include "proto.h"
|
|
|
|
/* VM functions and data. */
|
|
|
|
PRIVATE int vm_needs_init= 1;
|
|
PRIVATE u32_t vm_cr3;
|
|
|
|
FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) );
|
|
FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) );
|
|
FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) );
|
|
FORWARD _PROTOTYPE( void set_cr3, (void) );
|
|
FORWARD _PROTOTYPE( void vm_enable_paging, (void) );
|
|
|
|
/* *** Internal VM Functions *** */
|
|
|
|
PUBLIC void vm_init(void)
|
|
{
|
|
int o;
|
|
phys_bytes p, pt_size;
|
|
phys_bytes vm_dir_base, vm_pt_base, phys_mem;
|
|
u32_t entry;
|
|
unsigned pages;
|
|
|
|
if (!vm_size)
|
|
panic("i386_vm_init: no space for page tables", NO_NUM);
|
|
|
|
/* Align page directory */
|
|
o= (vm_base % PAGE_SIZE);
|
|
if (o != 0)
|
|
o= PAGE_SIZE-o;
|
|
vm_dir_base= vm_base+o;
|
|
|
|
/* Page tables start after the page directory */
|
|
vm_pt_base= vm_dir_base+PAGE_SIZE;
|
|
|
|
pt_size= (vm_base+vm_size)-vm_pt_base;
|
|
pt_size -= (pt_size % PAGE_SIZE);
|
|
|
|
/* Compute the number of pages based on vm_mem_high */
|
|
pages= (vm_mem_high-1)/PAGE_SIZE + 1;
|
|
|
|
if (pages * I386_VM_PT_ENT_SIZE > pt_size)
|
|
panic("i386_vm_init: page table too small", NO_NUM);
|
|
|
|
for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++)
|
|
{
|
|
phys_mem= p*PAGE_SIZE;
|
|
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
|
|
I386_VM_PRESENT;
|
|
if (phys_mem >= vm_mem_high)
|
|
entry= 0;
|
|
phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry);
|
|
}
|
|
|
|
for (p= 0; p < I386_VM_DIR_ENTRIES; p++)
|
|
{
|
|
phys_mem= vm_pt_base + p*PAGE_SIZE;
|
|
entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
|
|
I386_VM_PRESENT;
|
|
if (phys_mem >= vm_pt_base + pt_size)
|
|
entry= 0;
|
|
phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry);
|
|
}
|
|
vm_set_cr3(vm_dir_base);
|
|
level0(vm_enable_paging);
|
|
}
|
|
|
|
PRIVATE void phys_put32(addr, value)
|
|
phys_bytes addr;
|
|
u32_t value;
|
|
{
|
|
phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));
|
|
}
|
|
|
|
PRIVATE u32_t phys_get32(addr)
|
|
phys_bytes addr;
|
|
{
|
|
u32_t value;
|
|
|
|
phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value));
|
|
|
|
return value;
|
|
}
|
|
|
|
PRIVATE void vm_set_cr3(value)
|
|
u32_t value;
|
|
{
|
|
vm_cr3= value;
|
|
level0(set_cr3);
|
|
}
|
|
|
|
PRIVATE void set_cr3()
|
|
{
|
|
write_cr3(vm_cr3);
|
|
}
|
|
|
|
PRIVATE void vm_enable_paging(void)
|
|
{
|
|
u32_t cr0;
|
|
|
|
cr0= read_cr0();
|
|
write_cr0(cr0 | I386_CR0_PG);
|
|
}
|
|
|
|
PUBLIC void vm_map_range(base, size, offset)
|
|
u32_t base;
|
|
u32_t size;
|
|
u32_t offset;
|
|
{
|
|
u32_t curr_pt, curr_pt_addr, entry;
|
|
int dir_ent, pt_ent;
|
|
|
|
if (base % PAGE_SIZE != 0)
|
|
panic("map_range: bad base", base);
|
|
if (size % PAGE_SIZE != 0)
|
|
panic("map_range: bad size", size);
|
|
if (offset % PAGE_SIZE != 0)
|
|
panic("map_range: bad offset", offset);
|
|
|
|
curr_pt= -1;
|
|
curr_pt_addr= 0;
|
|
while (size != 0)
|
|
{
|
|
dir_ent= (base >> I386_VM_DIR_ENT_SHIFT);
|
|
pt_ent= (base >> I386_VM_PT_ENT_SHIFT) & I386_VM_PT_ENT_MASK;
|
|
if (dir_ent != curr_pt)
|
|
{
|
|
/* Get address of page table */
|
|
curr_pt= dir_ent;
|
|
curr_pt_addr= phys_get32(vm_cr3 +
|
|
dir_ent * I386_VM_PT_ENT_SIZE);
|
|
curr_pt_addr &= I386_VM_ADDR_MASK;
|
|
}
|
|
entry= offset | I386_VM_USER | I386_VM_WRITE |
|
|
I386_VM_PRESENT;
|
|
#if 0 /* Do we need this for memory mapped I/O? */
|
|
entry |= I386_VM_PCD | I386_VM_PWT;
|
|
#endif
|
|
phys_put32(curr_pt_addr + pt_ent * I386_VM_PT_ENT_SIZE, entry);
|
|
offset += PAGE_SIZE;
|
|
base += PAGE_SIZE;
|
|
size -= PAGE_SIZE;
|
|
}
|
|
|
|
/* reload root of page table. */
|
|
vm_set_cr3(vm_cr3);
|
|
}
|
|
|
|
PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
|
|
segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
|
|
int priv)
|
|
{
|
|
phys_bytes offset = 0;
|
|
/* Check if the segment size can be recorded in bytes, that is, check
|
|
* if descriptor's limit field can delimited the allowed memory region
|
|
* precisely. This works up to 1MB. If the size is larger, 4K pages
|
|
* instead of bytes are used.
|
|
*/
|
|
if (size < BYTE_GRAN_MAX) {
|
|
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
|
|
phys, size, priv);
|
|
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
|
|
offset = 0;
|
|
} else {
|
|
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
|
|
phys & ~0xFFFF, 0, priv);
|
|
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
|
|
offset = phys & 0xFFFF;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
|
|
vir_bytes vir_addr, vir_bytes bytes)
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
struct far_mem *fm;
|
|
|
|
if (bytes <= 0) return( (phys_bytes) 0);
|
|
if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
|
|
|
|
fm = &rp->p_priv->s_farmem[seg];
|
|
if (! fm->in_use) return( (phys_bytes) 0);
|
|
if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
|
|
|
|
return(fm->mem_phys + (phys_bytes) vir_addr);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_local *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
vir_clicks vc; /* the virtual address in clicks */
|
|
phys_bytes pa; /* intermediate variables as phys_bytes */
|
|
phys_bytes seg_base;
|
|
|
|
if (bytes <= 0) return( (phys_bytes) 0);
|
|
if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
|
|
vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
|
|
|
if (seg != T)
|
|
seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
|
|
|
if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
|
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
|
|
|
if (vc >= rp->p_memmap[seg].mem_vir +
|
|
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
|
|
|
seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
|
seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
|
pa = (phys_bytes) vir_addr;
|
|
pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
|
return(seg_base + pa);
|
|
}
|
|
|