581e68433a
some simplification of linear/virtual address translation (less hardcoding and more use of arch_*2* functions)
785 lines
23 KiB
C
785 lines
23 KiB
C
|
|
#define _SYSTEM 1
|
|
|
|
#define VERBOSE 0
|
|
|
|
#include <minix/callnr.h>
|
|
#include <minix/com.h>
|
|
#include <minix/config.h>
|
|
#include <minix/const.h>
|
|
#include <minix/ds.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/keymap.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/type.h>
|
|
#include <minix/ipc.h>
|
|
#include <minix/sysutil.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/safecopies.h>
|
|
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <env.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "../proto.h"
|
|
#include "../glo.h"
|
|
#include "../util.h"
|
|
#include "../vm.h"
|
|
#include "../sanitycheck.h"
|
|
|
|
#include "memory.h"
|
|
|
|
/* Location in our virtual address space where we can map in
|
|
* any physical page we want.
|
|
*/
|
|
static unsigned char *varmap = NULL; /* Our address space. */
|
|
static u32_t varmap_loc; /* Our page table. */
|
|
|
|
/* Our process table entry. */
|
|
struct vmproc *vmp = &vmproc[VM_PROC_NR];
|
|
|
|
/* Spare memory, ready to go after initialization, to avoid a
|
|
* circular dependency on allocating memory and writing it into VM's
|
|
* page table.
|
|
*/
|
|
#define SPAREPAGES 5
|
|
int missing_spares = SPAREPAGES;
|
|
static struct {
|
|
void *page;
|
|
u32_t phys;
|
|
} sparepages[SPAREPAGES];
|
|
|
|
/* Clicks must be pages, as
|
|
* - they must be page aligned to map them
|
|
* - they must be a multiple of the page size
|
|
* - it's inconvenient to have them bigger than pages, because we often want
|
|
* just one page
|
|
* May as well require them to be equal then.
|
|
*/
|
|
#if CLICK_SIZE != I386_PAGE_SIZE
|
|
#error CLICK_SIZE must be page size.
|
|
#endif
|
|
|
|
/* Bytes of virtual address space one pde controls. */
|
|
#define BYTESPERPDE (I386_VM_PT_ENTRIES * I386_PAGE_SIZE)
|
|
|
|
/* Nevertheless, introduce these macros to make the code readable. */
|
|
#define CLICK2PAGE(c) ((c) / CLICKSPERPAGE)
|
|
|
|
#if SANITYCHECKS
|
|
#define PT_SANE(p) { pt_sanitycheck((p), __FILE__, __LINE__); SANITYCHECK(SCL_DETAIL); }
|
|
/*===========================================================================*
|
|
* pt_sanitycheck *
|
|
*===========================================================================*/
|
|
PUBLIC void pt_sanitycheck(pt_t *pt, char *file, int line)
|
|
{
|
|
/* Basic pt sanity check. */
|
|
int i;
|
|
|
|
MYASSERT(pt);
|
|
MYASSERT(pt->pt_dir);
|
|
MYASSERT(pt->pt_dir_phys);
|
|
|
|
for(i = 0; i < I386_VM_DIR_ENTRIES; i++) {
|
|
if(pt->pt_pt[i]) {
|
|
MYASSERT(pt->pt_dir[i] & I386_VM_PRESENT);
|
|
} else {
|
|
MYASSERT(!(pt->pt_dir[i] & I386_VM_PRESENT));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#define PT_SANE(p)
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* aalloc *
|
|
*===========================================================================*/
|
|
PRIVATE void *aalloc(size_t bytes)
|
|
{
|
|
/* Page-aligned malloc(). only used if vm_allocpages can't be used. */
|
|
u32_t b;
|
|
|
|
b = (u32_t) malloc(I386_PAGE_SIZE + bytes);
|
|
if(!b) vm_panic("aalloc: out of memory", bytes);
|
|
b += I386_PAGE_SIZE - (b % I386_PAGE_SIZE);
|
|
|
|
return (void *) b;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* findhole *
|
|
*===========================================================================*/
|
|
PRIVATE u32_t findhole(pt_t *pt, u32_t virbytes, u32_t vmin, u32_t vmax)
|
|
{
|
|
/* Find a space in the virtual address space of pageteble 'pt',
|
|
* between page-aligned BYTE offsets vmin and vmax, to fit
|
|
* 'virbytes' in. Return byte offset.
|
|
*
|
|
* As a simple way to speed up the search a bit, we start searching
|
|
* after the location we found the previous hole, if that's in range.
|
|
* If that's not in range (or if that doesn't work), search the entire
|
|
* range (as well). try_restart controls whether we have to restart
|
|
* the search if it fails. (Just once of course.)
|
|
*/
|
|
u32_t freeneeded, freefound = 0, freestart = 0, curv;
|
|
int pde = 0, try_restart;
|
|
|
|
/* Input sanity check. */
|
|
vm_assert(vmin + virbytes >= vmin);
|
|
vm_assert(vmax >= vmin + virbytes);
|
|
vm_assert((virbytes % I386_PAGE_SIZE) == 0);
|
|
vm_assert((vmin % I386_PAGE_SIZE) == 0);
|
|
vm_assert((vmax % I386_PAGE_SIZE) == 0);
|
|
|
|
/* How many pages do we need? */
|
|
freeneeded = virbytes / I386_PAGE_SIZE;
|
|
|
|
if(pt->pt_virtop >= vmin && pt->pt_virtop <= vmax - virbytes) {
|
|
curv = pt->pt_virtop;
|
|
try_restart = 1;
|
|
} else {
|
|
curv = vmin;
|
|
try_restart = 0;
|
|
}
|
|
|
|
|
|
/* Start looking for a consecutive block of free pages
|
|
* starting at vmin.
|
|
*/
|
|
for(freestart = curv; curv < vmax; ) {
|
|
int pte;
|
|
pde = I386_VM_PDE(curv);
|
|
pte = I386_VM_PTE(curv);
|
|
|
|
if(!(pt->pt_dir[pde] & I386_VM_PRESENT)) {
|
|
int rempte;
|
|
rempte = I386_VM_PT_ENTRIES - pte;
|
|
freefound += rempte;
|
|
curv += rempte * I386_PAGE_SIZE;
|
|
} else {
|
|
if(pt->pt_pt[pde][pte] & I386_VM_PRESENT) {
|
|
freefound = 0;
|
|
freestart = curv + I386_PAGE_SIZE;
|
|
} else {
|
|
freefound++;
|
|
}
|
|
curv+=I386_PAGE_SIZE;
|
|
}
|
|
|
|
if(freefound >= freeneeded) {
|
|
u32_t v;
|
|
v = freestart;
|
|
vm_assert(v != NO_MEM);
|
|
vm_assert(v >= vmin);
|
|
vm_assert(v < vmax);
|
|
|
|
/* Next time, start looking here. */
|
|
pt->pt_virtop = v + virbytes;
|
|
|
|
return v;
|
|
}
|
|
|
|
if(curv >= vmax && try_restart) {
|
|
curv = vmin;
|
|
try_restart = 0;
|
|
}
|
|
}
|
|
|
|
printf("VM: out of virtual address space in a process\n");
|
|
|
|
return NO_MEM;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_freepages *
|
|
*===========================================================================*/
|
|
PRIVATE void vm_freepages(vir_bytes vir, vir_bytes phys, int pages, int reason)
|
|
{
|
|
vm_assert(reason >= 0 && reason < VMP_CATEGORIES);
|
|
if(vir >= vmp->vm_stacktop) {
|
|
vm_assert(!(vir % I386_PAGE_SIZE));
|
|
vm_assert(!(phys % I386_PAGE_SIZE));
|
|
FREE_MEM(ABS2CLICK(phys), pages);
|
|
if(pt_writemap(&vmp->vm_pt, arch_vir2map(vmp, vir),
|
|
MAP_NONE, pages*I386_PAGE_SIZE, 0, WMF_OVERWRITE) != OK)
|
|
vm_panic("vm_freepages: pt_writemap failed",
|
|
NO_NUM);
|
|
} else {
|
|
printf("VM: vm_freepages not freeing VM heap pages (%d)\n",
|
|
pages);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_getsparepage *
|
|
*===========================================================================*/
|
|
PRIVATE void *vm_getsparepage(u32_t *phys)
|
|
{
|
|
int s;
|
|
vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES);
|
|
for(s = 0; s < SPAREPAGES; s++) {
|
|
if(sparepages[s].page) {
|
|
void *sp;
|
|
sp = sparepages[s].page;
|
|
*phys = sparepages[s].phys;
|
|
sparepages[s].page = NULL;
|
|
missing_spares++;
|
|
vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES);
|
|
return sp;
|
|
}
|
|
}
|
|
vm_panic("VM: out of spare pages", NO_NUM);
|
|
return NULL;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_checkspares *
|
|
*===========================================================================*/
|
|
PRIVATE void *vm_checkspares(void)
|
|
{
|
|
int s, n = 0;
|
|
static int total = 0, worst = 0;
|
|
vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES);
|
|
for(s = 0; s < SPAREPAGES && missing_spares > 0; s++)
|
|
if(!sparepages[s].page) {
|
|
n++;
|
|
sparepages[s].page = vm_allocpages(&sparepages[s].phys, 1,
|
|
VMP_SPARE);
|
|
missing_spares--;
|
|
vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES);
|
|
}
|
|
if(worst < n) worst = n;
|
|
total += n;
|
|
#if 0
|
|
if(n > 0)
|
|
printf("VM: made %d spares, total %d, worst %d\n", n, total, worst);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_allocpages *
|
|
*===========================================================================*/
|
|
PUBLIC void *vm_allocpages(phys_bytes *phys, int pages, int reason)
|
|
{
|
|
/* Allocate a number of pages for use by VM itself. */
|
|
phys_bytes newpage;
|
|
vir_bytes loc;
|
|
pt_t *pt;
|
|
int r;
|
|
vir_bytes bytes = pages * I386_PAGE_SIZE;
|
|
static int level = 0;
|
|
#define MAXDEPTH 10
|
|
static int reasons[MAXDEPTH];
|
|
|
|
pt = &vmp->vm_pt;
|
|
vm_assert(reason >= 0 && reason < VMP_CATEGORIES);
|
|
vm_assert(pages > 0);
|
|
|
|
reasons[level++] = reason;
|
|
|
|
vm_assert(level >= 1);
|
|
vm_assert(level <= 2);
|
|
|
|
if(level > 1 || !(vmp->vm_flags & VMF_HASPT)) {
|
|
int r;
|
|
void *s;
|
|
vm_assert(pages == 1);
|
|
s=vm_getsparepage(phys);
|
|
level--;
|
|
return s;
|
|
}
|
|
|
|
/* VM does have a pagetable, so get a page and map it in there.
|
|
* Where in our virtual address space can we put it?
|
|
*/
|
|
loc = findhole(pt, I386_PAGE_SIZE * pages,
|
|
arch_vir2map(vmp, vmp->vm_stacktop),
|
|
vmp->vm_arch.vm_data_top);
|
|
if(loc == NO_MEM) {
|
|
level--;
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate 'pages' pages of memory for use by VM. As VM
|
|
* is trusted, we don't have to pre-clear it.
|
|
*/
|
|
if((newpage = ALLOC_MEM(CLICKSPERPAGE * pages, 0)) == NO_MEM) {
|
|
level--;
|
|
return NULL;
|
|
}
|
|
|
|
*phys = CLICK2ABS(newpage);
|
|
|
|
/* Map this page into our address space. */
|
|
if((r=pt_writemap(pt, loc, *phys, bytes,
|
|
I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE, 0)) != OK) {
|
|
FREE_MEM(newpage, CLICKSPERPAGE * pages / I386_PAGE_SIZE);
|
|
return NULL;
|
|
}
|
|
|
|
level--;
|
|
|
|
/* Return user-space-ready pointer to it. */
|
|
return (void *) arch_map2vir(vmp, loc);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_ptalloc *
|
|
*===========================================================================*/
|
|
PRIVATE int pt_ptalloc(pt_t *pt, int pde, u32_t flags)
|
|
{
|
|
/* Allocate a page table and write its address into the page directory. */
|
|
int i;
|
|
u32_t pt_phys;
|
|
|
|
/* Argument must make sense. */
|
|
vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
|
|
vm_assert(!(flags & ~(PTF_ALLFLAGS | PTF_MAPALLOC)));
|
|
|
|
/* We don't expect to overwrite page directory entry, nor
|
|
* storage for the page table.
|
|
*/
|
|
vm_assert(!(pt->pt_dir[pde] & I386_VM_PRESENT));
|
|
vm_assert(!pt->pt_pt[pde]);
|
|
PT_SANE(pt);
|
|
|
|
/* Get storage for the page table. */
|
|
if(!(pt->pt_pt[pde] = vm_allocpages(&pt_phys, 1, VMP_PAGETABLE)))
|
|
return ENOMEM;
|
|
|
|
for(i = 0; i < I386_VM_PT_ENTRIES; i++)
|
|
pt->pt_pt[pde][i] = 0; /* Empty entry. */
|
|
|
|
/* Make page directory entry.
|
|
* The PDE is always 'present,' 'writable,' and 'user accessible,'
|
|
* relying on the PTE for protection.
|
|
*/
|
|
pt->pt_dir[pde] = (pt_phys & I386_VM_ADDR_MASK) | flags
|
|
| I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE;
|
|
vm_assert(flags & I386_VM_PRESENT);
|
|
PT_SANE(pt);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_writemap *
|
|
*===========================================================================*/
|
|
PUBLIC int pt_writemap(pt_t *pt, vir_bytes v, phys_bytes physaddr,
|
|
size_t bytes, u32_t flags, u32_t writemapflags)
|
|
{
|
|
/* Write mapping into page table. Allocate a new page table if necessary. */
|
|
/* Page directory and table entries for this virtual address. */
|
|
int p, pages, pde;
|
|
SANITYCHECK(SCL_FUNCTIONS);
|
|
|
|
vm_assert(!(bytes % I386_PAGE_SIZE));
|
|
vm_assert(!(flags & ~(PTF_ALLFLAGS | PTF_MAPALLOC)));
|
|
|
|
pages = bytes / I386_PAGE_SIZE;
|
|
|
|
/* MAP_NONE means to clear the mapping. It doesn't matter
|
|
* what's actually written into the PTE if I386_VM_PRESENT
|
|
* isn't on, so we can just write MAP_NONE into it.
|
|
*/
|
|
#if SANITYCHECKS
|
|
if(physaddr != MAP_NONE && !(flags & I386_VM_PRESENT)) {
|
|
vm_panic("pt_writemap: writing dir with !P\n", NO_NUM);
|
|
}
|
|
if(physaddr == MAP_NONE && flags) {
|
|
vm_panic("pt_writemap: writing 0 with flags\n", NO_NUM);
|
|
}
|
|
#endif
|
|
|
|
PT_SANE(pt);
|
|
|
|
/* First make sure all the necessary page tables are allocated,
|
|
* before we start writing in any of them, because it's a pain
|
|
* to undo our work properly. Walk the range in page-directory-entry
|
|
* sized leaps.
|
|
*/
|
|
for(pde = I386_VM_PDE(v); pde <= I386_VM_PDE(v + I386_PAGE_SIZE * pages); pde++) {
|
|
vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
|
|
if(!(pt->pt_dir[pde] & I386_VM_PRESENT)) {
|
|
int r;
|
|
vm_assert(!pt->pt_dir[pde]);
|
|
if((r=pt_ptalloc(pt, pde, flags)) != OK) {
|
|
/* Couldn't do (complete) mapping.
|
|
* Don't bother freeing any previously
|
|
* allocated page tables, they're
|
|
* still writable, don't point to nonsense,
|
|
* and pt_ptalloc leaves the directory
|
|
* and other data in a consistent state.
|
|
*/
|
|
return r;
|
|
}
|
|
}
|
|
vm_assert(pt->pt_dir[pde] & I386_VM_PRESENT);
|
|
}
|
|
|
|
PT_SANE(pt);
|
|
|
|
/* Now write in them. */
|
|
for(p = 0; p < pages; p++) {
|
|
int pde = I386_VM_PDE(v);
|
|
int pte = I386_VM_PTE(v);
|
|
PT_SANE(pt);
|
|
|
|
vm_assert(!(v % I386_PAGE_SIZE));
|
|
vm_assert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
|
|
vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
|
|
|
|
/* Page table has to be there. */
|
|
vm_assert(pt->pt_dir[pde] & I386_VM_PRESENT);
|
|
|
|
/* Make sure page directory entry for this page table
|
|
* is marked present and page table entry is available.
|
|
*/
|
|
vm_assert((pt->pt_dir[pde] & I386_VM_PRESENT) && pt->pt_pt[pde]);
|
|
|
|
PT_SANE(pt);
|
|
#if SANITYCHECKS
|
|
/* We don't expect to overwrite a page. */
|
|
if(!(writemapflags & WMF_OVERWRITE))
|
|
vm_assert(!(pt->pt_pt[pde][pte] & I386_VM_PRESENT));
|
|
#endif
|
|
|
|
/* Write pagetable entry. */
|
|
pt->pt_pt[pde][pte] = (physaddr & I386_VM_ADDR_MASK) | flags;
|
|
|
|
physaddr += I386_PAGE_SIZE;
|
|
v += I386_PAGE_SIZE;
|
|
PT_SANE(pt);
|
|
}
|
|
SANITYCHECK(SCL_FUNCTIONS);
|
|
PT_SANE(pt);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_new *
|
|
*===========================================================================*/
|
|
PUBLIC int pt_new(pt_t *pt)
|
|
{
|
|
/* Allocate a pagetable root. On i386, allocate a page-aligned page directory
|
|
* and set them to 0 (indicating no page tables are allocated). Lookup
|
|
* its physical address as we'll need that in the future. Verify it's
|
|
* page-aligned.
|
|
*/
|
|
int i;
|
|
|
|
if(!(pt->pt_dir = vm_allocpages(&pt->pt_dir_phys, 1, VMP_PAGEDIR))) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
for(i = 0; i < I386_VM_DIR_ENTRIES; i++) {
|
|
pt->pt_dir[i] = 0; /* invalid entry (I386_VM_PRESENT bit = 0) */
|
|
pt->pt_pt[i] = NULL;
|
|
}
|
|
|
|
/* Where to start looking for free virtual address space? */
|
|
pt->pt_virtop = 0;
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_init *
|
|
*===========================================================================*/
|
|
PUBLIC void pt_init(void)
|
|
{
|
|
/* By default, the kernel gives us a data segment with pre-allocated
|
|
* memory that then can't grow. We want to be able to allocate memory
|
|
* dynamically, however. So here we copy the part of the page table
|
|
* that's ours, so we get a private page table. Then we increase the
|
|
* hardware segment size so we can allocate memory above our stack.
|
|
*/
|
|
pt_t *newpt;
|
|
int s, r;
|
|
vir_bytes v;
|
|
phys_bytes lo, hi;
|
|
vir_bytes extra_clicks;
|
|
u32_t moveup = 0;
|
|
|
|
/* Shorthand. */
|
|
newpt = &vmp->vm_pt;
|
|
|
|
/* Get ourselves a spare page. */
|
|
for(s = 0; s < SPAREPAGES; s++) {
|
|
if(!(sparepages[s].page = aalloc(I386_PAGE_SIZE)))
|
|
vm_panic("pt_init: aalloc for spare failed", NO_NUM);
|
|
if((r=sys_umap(SELF, VM_D, (vir_bytes) sparepages[s].page,
|
|
I386_PAGE_SIZE, &sparepages[s].phys)) != OK)
|
|
vm_panic("pt_init: sys_umap failed", r);
|
|
}
|
|
|
|
missing_spares = 0;
|
|
|
|
/* Make new page table for ourselves, partly copied
|
|
* from the current one.
|
|
*/
|
|
if(pt_new(newpt) != OK)
|
|
vm_panic("pt_init: pt_new failed", NO_NUM);
|
|
|
|
/* Initial (current) range of our virtual address space. */
|
|
lo = CLICK2ABS(vmp->vm_arch.vm_seg[T].mem_phys);
|
|
hi = CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_phys +
|
|
vmp->vm_arch.vm_seg[S].mem_len);
|
|
|
|
vm_assert(!(lo % I386_PAGE_SIZE));
|
|
vm_assert(!(hi % I386_PAGE_SIZE));
|
|
|
|
if(lo < VM_PROCSTART) {
|
|
moveup = VM_PROCSTART - lo;
|
|
vm_assert(!(VM_PROCSTART % I386_PAGE_SIZE));
|
|
vm_assert(!(lo % I386_PAGE_SIZE));
|
|
vm_assert(!(moveup % I386_PAGE_SIZE));
|
|
}
|
|
|
|
/* Set up mappings for VM process. */
|
|
for(v = lo; v < hi; v += I386_PAGE_SIZE) {
|
|
phys_bytes addr;
|
|
u32_t flags;
|
|
|
|
/* We have to write the old and new position in the PT,
|
|
* so we can move our segments.
|
|
*/
|
|
if(pt_writemap(newpt, v+moveup, v, I386_PAGE_SIZE,
|
|
I386_VM_PRESENT|I386_VM_WRITE|I386_VM_USER, 0) != OK)
|
|
vm_panic("pt_init: pt_writemap failed", NO_NUM);
|
|
if(pt_writemap(newpt, v, v, I386_PAGE_SIZE,
|
|
I386_VM_PRESENT|I386_VM_WRITE|I386_VM_USER, 0) != OK)
|
|
vm_panic("pt_init: pt_writemap failed", NO_NUM);
|
|
}
|
|
|
|
/* Move segments up too. */
|
|
vmp->vm_arch.vm_seg[T].mem_phys += ABS2CLICK(moveup);
|
|
vmp->vm_arch.vm_seg[D].mem_phys += ABS2CLICK(moveup);
|
|
vmp->vm_arch.vm_seg[S].mem_phys += ABS2CLICK(moveup);
|
|
|
|
/* Map in kernel. */
|
|
if(pt_mapkernel(newpt) != OK)
|
|
vm_panic("pt_init: pt_mapkernel failed", NO_NUM);
|
|
|
|
/* Give our process the new, copied, private page table. */
|
|
pt_bind(newpt, vmp);
|
|
|
|
/* Increase our hardware data segment to create virtual address
|
|
* space above our stack. We want to increase it to VM_DATATOP,
|
|
* like regular processes have.
|
|
*/
|
|
extra_clicks = ABS2CLICK(VM_DATATOP - hi);
|
|
vmp->vm_arch.vm_seg[S].mem_len += extra_clicks;
|
|
|
|
/* We pretend to the kernel we have a huge stack segment to
|
|
* increase our data segment.
|
|
*/
|
|
vmp->vm_arch.vm_data_top =
|
|
(vmp->vm_arch.vm_seg[S].mem_vir +
|
|
vmp->vm_arch.vm_seg[S].mem_len) << CLICK_SHIFT;
|
|
|
|
if((s=sys_newmap(VM_PROC_NR, vmp->vm_arch.vm_seg)) != OK)
|
|
vm_panic("VM: pt_init: sys_newmap failed", s);
|
|
|
|
/* Back to reality - this is where the stack actually is. */
|
|
vmp->vm_arch.vm_seg[S].mem_len -= extra_clicks;
|
|
|
|
/* Wipe old mappings from VM. */
|
|
for(v = lo; v < hi; v += I386_PAGE_SIZE) {
|
|
if(pt_writemap(newpt, v, MAP_NONE, I386_PAGE_SIZE,
|
|
0, WMF_OVERWRITE) != OK)
|
|
vm_panic("pt_init: pt_writemap failed", NO_NUM);
|
|
}
|
|
|
|
/* Where our free virtual address space starts.
|
|
* This is only a hint to the VM system.
|
|
*/
|
|
newpt->pt_virtop = 0;
|
|
|
|
/* Let other functions know VM now has a private page table. */
|
|
vmp->vm_flags |= VMF_HASPT;
|
|
|
|
/* Reserve a page in our virtual address space that we
|
|
* can use to map in arbitrary physical pages.
|
|
*/
|
|
varmap_loc = findhole(newpt, I386_PAGE_SIZE,
|
|
arch_vir2map(vmp, vmp->vm_stacktop),
|
|
vmp->vm_arch.vm_data_top);
|
|
if(varmap_loc == NO_MEM) {
|
|
vm_panic("no virt addr for vm mappings", NO_NUM);
|
|
}
|
|
varmap = (unsigned char *) arch_map2vir(vmp, varmap_loc);
|
|
|
|
/* All OK. */
|
|
return;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* pt_bind *
|
|
*===========================================================================*/
|
|
PUBLIC int pt_bind(pt_t *pt, struct vmproc *who)
|
|
{
|
|
/* Basic sanity checks. */
|
|
vm_assert(who);
|
|
vm_assert(who->vm_flags & VMF_INUSE);
|
|
if(pt) PT_SANE(pt);
|
|
|
|
/* Tell kernel about new page table root. */
|
|
return sys_vmctl(who->vm_endpoint, VMCTL_I386_SETCR3,
|
|
pt ? pt->pt_dir_phys : 0);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_free *
|
|
*===========================================================================*/
|
|
PUBLIC void pt_free(pt_t *pt)
|
|
{
|
|
/* Free memory associated with this pagetable. */
|
|
int i;
|
|
|
|
PT_SANE(pt);
|
|
|
|
for(i = 0; i < I386_VM_DIR_ENTRIES; i++) {
|
|
int p;
|
|
if(pt->pt_pt[i]) {
|
|
for(p = 0; p < I386_VM_PT_ENTRIES; p++) {
|
|
if((pt->pt_pt[i][p] & (PTF_MAPALLOC | I386_VM_PRESENT))
|
|
== (PTF_MAPALLOC | I386_VM_PRESENT)) {
|
|
u32_t pa = I386_VM_PFA(pt->pt_pt[i][p]);
|
|
FREE_MEM(ABS2CLICK(pa), CLICKSPERPAGE);
|
|
}
|
|
}
|
|
vm_freepages((vir_bytes) pt->pt_pt[i],
|
|
I386_VM_PFA(pt->pt_dir[i]), 1, VMP_PAGETABLE);
|
|
}
|
|
}
|
|
|
|
vm_freepages((vir_bytes) pt->pt_dir, pt->pt_dir_phys, 1, VMP_PAGEDIR);
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_mapkernel *
|
|
*===========================================================================*/
|
|
PUBLIC int pt_mapkernel(pt_t *pt)
|
|
{
|
|
int r;
|
|
|
|
/* Any i386 page table needs to map in the kernel address space. */
|
|
vm_assert(vmproc[VMP_SYSTEM].vm_flags & VMF_INUSE);
|
|
|
|
/* Map in text. flags: don't write, supervisor only */
|
|
if((r=pt_writemap(pt, KERNEL_TEXT, KERNEL_TEXT, KERNEL_TEXT_LEN,
|
|
I386_VM_PRESENT|I386_VM_GLOBAL, 0)) != OK)
|
|
return r;
|
|
|
|
/* Map in data. flags: read-write, supervisor only */
|
|
if((r=pt_writemap(pt, KERNEL_DATA, KERNEL_DATA, KERNEL_DATA_LEN,
|
|
I386_VM_PRESENT|I386_VM_WRITE|I386_VM_GLOBAL, 0)) != OK)
|
|
return r;
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_freerange *
|
|
*===========================================================================*/
|
|
PUBLIC void pt_freerange(pt_t *pt, vir_bytes low, vir_bytes high)
|
|
{
|
|
/* Free memory allocated by pagetable functions in this range. */
|
|
int pde;
|
|
u32_t v;
|
|
|
|
PT_SANE(pt);
|
|
|
|
for(v = low; v < high; v += I386_PAGE_SIZE) {
|
|
int pte;
|
|
pde = I386_VM_PDE(v);
|
|
pte = I386_VM_PTE(v);
|
|
if(!(pt->pt_dir[pde] & I386_VM_PRESENT))
|
|
continue;
|
|
if((pt->pt_pt[pde][pte] & (PTF_MAPALLOC | I386_VM_PRESENT))
|
|
== (PTF_MAPALLOC | I386_VM_PRESENT)) {
|
|
u32_t pa = I386_VM_PFA(pt->pt_pt[pde][pte]);
|
|
FREE_MEM(ABS2CLICK(pa), CLICKSPERPAGE);
|
|
pt->pt_pt[pde][pte] = 0;
|
|
}
|
|
}
|
|
|
|
PT_SANE(pt);
|
|
|
|
return;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pt_cycle *
|
|
*===========================================================================*/
|
|
PUBLIC void pt_cycle(void)
|
|
{
|
|
vm_checkspares();
|
|
}
|
|
|
|
#define PHYS_MAP(a, o) \
|
|
{ int r; \
|
|
vm_assert(varmap); \
|
|
(o) = (a) % I386_PAGE_SIZE; \
|
|
r = pt_writemap(&vmp->vm_pt, varmap_loc, (a) - (o), I386_PAGE_SIZE, \
|
|
I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE, 0); \
|
|
if(r != OK) \
|
|
vm_panic("PHYS_MAP: pt_writemap failed", NO_NUM); \
|
|
/* pt_bind() flushes TLB. */ \
|
|
pt_bind(&vmp->vm_pt, vmp); \
|
|
}
|
|
|
|
#define PHYSMAGIC 0x7b9a0590
|
|
|
|
#define PHYS_UNMAP if(OK != pt_writemap(&vmp->vm_pt, varmap_loc, MAP_NONE,\
|
|
I386_PAGE_SIZE, 0, WMF_OVERWRITE)) { \
|
|
vm_panic("PHYS_UNMAP: pt_writemap failed", NO_NUM); }
|
|
|
|
#define PHYS_VAL(o) (* (phys_bytes *) (varmap + (o)))
|
|
|
|
/*===========================================================================*
|
|
* phys_writeaddr *
|
|
*===========================================================================*/
|
|
PUBLIC void phys_writeaddr(phys_bytes addr, phys_bytes v1, phys_bytes v2)
|
|
{
|
|
phys_bytes offset;
|
|
|
|
SANITYCHECK(SCL_DETAIL);
|
|
PHYS_MAP(addr, offset);
|
|
PHYS_VAL(offset) = v1;
|
|
PHYS_VAL(offset + sizeof(phys_bytes)) = v2;
|
|
#if SANITYCHECKS
|
|
PHYS_VAL(offset + 2*sizeof(phys_bytes)) = PHYSMAGIC;
|
|
#endif
|
|
PHYS_UNMAP;
|
|
SANITYCHECK(SCL_DETAIL);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* phys_readaddr *
|
|
*===========================================================================*/
|
|
PUBLIC void phys_readaddr(phys_bytes addr, phys_bytes *v1, phys_bytes *v2)
|
|
{
|
|
phys_bytes offset;
|
|
|
|
SANITYCHECK(SCL_DETAIL);
|
|
PHYS_MAP(addr, offset);
|
|
*v1 = PHYS_VAL(offset);
|
|
*v2 = PHYS_VAL(offset + sizeof(phys_bytes));
|
|
#if SANITYCHECKS
|
|
vm_assert(PHYS_VAL(offset + 2*sizeof(phys_bytes)) == PHYSMAGIC);
|
|
#endif
|
|
PHYS_UNMAP;
|
|
SANITYCHECK(SCL_DETAIL);
|
|
}
|