bd3cde4571
Add primary cache management feature to libminixfs as mfs and ext2 currently do separately, remove cache code from mfs and ext2, and make them use the libminixfs interface. This makes all fields of the buf struct private to libminixfs and FS clients aren't supposed to access them at all. Only the opaque 'void *data' field (the FS block contents, used to be called bp) is to be accessed by the FS client. The main purpose is to implement the interface to the 2ndary vm cache just once, get rid of some code duplication, and add a little abstraction to reduce the code inertia of the whole caching business. Some minor sanity checking and prohibition done by mfs in this code as removed from the generic primary cache code as a result: - checking all inodes are not in use when allocating/resizing the cache - checking readonly filesystems aren't written to - checking the superblock isn't written to on mounted filesystems The minixfslib code relies on fs_blockstats() in the client filesystem to return some FS usage information.
697 lines
19 KiB
C
697 lines
19 KiB
C
|
|
#define _SYSTEM
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/param.h>
|
|
|
|
#include <minix/dmap.h>
|
|
#include <minix/libminixfs.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/sysutil.h>
|
|
#include <minix/u64.h>
|
|
#include <minix/bdev.h>
|
|
|
|
#define BP_CLEAN 0 /* on-disk block and memory copies identical */
|
|
#define BP_DIRTY 1 /* on-disk block and memory copies differ */
|
|
|
|
#define BUFHASH(b) ((b) % nr_bufs)
|
|
#define MARKCLEAN lmfs_markclean
|
|
|
|
#define MINBUFS 6 /* minimal no of bufs for sanity check */
|
|
|
|
static struct buf *front; /* points to least recently used free block */
|
|
static struct buf *rear; /* points to most recently used free block */
|
|
static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
|
|
|
|
static void rm_lru(struct buf *bp);
|
|
static void read_block(struct buf *);
|
|
static void flushall(dev_t dev);
|
|
|
|
static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
|
|
|
|
static struct buf *buf;
|
|
static struct buf **buf_hash; /* the buffer hash table */
|
|
static unsigned int nr_bufs;
|
|
static int may_use_vmcache;
|
|
|
|
static int fs_block_size = 1024; /* raw i/o block size */
|
|
|
|
static int rdwt_err;
|
|
|
|
u32_t fs_bufs_heuristic(int minbufs, u32_t btotal, u32_t bfree,
|
|
int blocksize, dev_t majordev)
|
|
{
|
|
struct vm_stats_info vsi;
|
|
int bufs;
|
|
u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
|
|
u32_t kbytes_remain_mem, bused;
|
|
|
|
bused = btotal-bfree;
|
|
|
|
/* but we simply need minbufs no matter what, and we don't
|
|
* want more than that if we're a memory device
|
|
*/
|
|
if(majordev == MEMORY_MAJOR) {
|
|
return minbufs;
|
|
}
|
|
|
|
/* set a reasonable cache size; cache at most a certain
|
|
* portion of the used FS, and at most a certain %age of remaining
|
|
* memory
|
|
*/
|
|
if((vm_info_stats(&vsi) != OK)) {
|
|
bufs = 1024;
|
|
printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
|
|
return bufs;
|
|
}
|
|
|
|
kbytes_remain_mem = div64u(mul64u(vsi.vsi_free, vsi.vsi_pagesize), 1024);
|
|
|
|
/* check fs usage. */
|
|
kbytes_used_fs = div64u(mul64u(bused, blocksize), 1024);
|
|
kbytes_total_fs = div64u(mul64u(btotal, blocksize), 1024);
|
|
|
|
/* heuristic for a desired cache size based on FS usage;
|
|
* but never bigger than half of the total filesystem
|
|
*/
|
|
kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
|
|
kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
|
|
|
|
/* heuristic for a maximum usage - 10% of remaining memory */
|
|
kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
|
|
bufs = kbcache * 1024 / blocksize;
|
|
|
|
/* but we simply need MINBUFS no matter what */
|
|
if(bufs < minbufs)
|
|
bufs = minbufs;
|
|
|
|
return bufs;
|
|
}
|
|
|
|
void
|
|
lmfs_markdirty(struct buf *bp)
|
|
{
|
|
bp->lmfs_dirt = BP_DIRTY;
|
|
}
|
|
|
|
void
|
|
lmfs_markclean(struct buf *bp)
|
|
{
|
|
bp->lmfs_dirt = BP_CLEAN;
|
|
}
|
|
|
|
int
|
|
lmfs_isclean(struct buf *bp)
|
|
{
|
|
return bp->lmfs_dirt == BP_CLEAN;
|
|
}
|
|
|
|
dev_t
|
|
lmfs_dev(struct buf *bp)
|
|
{
|
|
return bp->lmfs_dev;
|
|
}
|
|
|
|
int lmfs_bytes(struct buf *bp)
|
|
{
|
|
return bp->lmfs_bytes;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_get_block *
|
|
*===========================================================================*/
|
|
struct buf *lmfs_get_block(
|
|
register dev_t dev, /* on which device is the block? */
|
|
register block_t block, /* which block is wanted? */
|
|
int only_search /* if NO_READ, don't read, else act normal */
|
|
)
|
|
{
|
|
/* Check to see if the requested block is in the block cache. If so, return
|
|
* a pointer to it. If not, evict some other block and fetch it (unless
|
|
* 'only_search' is 1). All the blocks in the cache that are not in use
|
|
* are linked together in a chain, with 'front' pointing to the least recently
|
|
* used block and 'rear' to the most recently used block. If 'only_search' is
|
|
* 1, the block being requested will be overwritten in its entirety, so it is
|
|
* only necessary to see if it is in the cache; if it is not, any free buffer
|
|
* will do. It is not necessary to actually read the block in from disk.
|
|
* If 'only_search' is PREFETCH, the block need not be read from the disk,
|
|
* and the device is not to be marked on the block, so callers can tell if
|
|
* the block returned is valid.
|
|
* In addition to the LRU chain, there is also a hash chain to link together
|
|
* blocks whose block numbers end with the same bit strings, for fast lookup.
|
|
*/
|
|
|
|
int b;
|
|
static struct buf *bp, *prev_ptr;
|
|
u64_t yieldid = VM_BLOCKID_NONE, getid = make64(dev, block);
|
|
|
|
assert(buf_hash);
|
|
assert(buf);
|
|
assert(nr_bufs > 0);
|
|
|
|
ASSERT(fs_block_size > 0);
|
|
|
|
/* Search the hash chain for (dev, block). Do_read() can use
|
|
* lmfs_get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
|
|
* someone wants to read from a hole in a file, in which case this search
|
|
* is skipped
|
|
*/
|
|
if (dev != NO_DEV) {
|
|
b = BUFHASH(block);
|
|
bp = buf_hash[b];
|
|
while (bp != NULL) {
|
|
if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev) {
|
|
/* Block needed has been found. */
|
|
if (bp->lmfs_count == 0) rm_lru(bp);
|
|
bp->lmfs_count++; /* record that block is in use */
|
|
ASSERT(bp->lmfs_bytes == fs_block_size);
|
|
ASSERT(bp->lmfs_dev == dev);
|
|
ASSERT(bp->lmfs_dev != NO_DEV);
|
|
ASSERT(bp->data);
|
|
return(bp);
|
|
} else {
|
|
/* This block is not the one sought. */
|
|
bp = bp->lmfs_hash; /* move to next block on hash chain */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Desired block is not on available chain. Take oldest block ('front'). */
|
|
if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
|
|
|
|
if(bp->lmfs_bytes < fs_block_size) {
|
|
ASSERT(!bp->data);
|
|
ASSERT(bp->lmfs_bytes == 0);
|
|
if(!(bp->data = alloc_contig( (size_t) fs_block_size, 0, NULL))) {
|
|
printf("fs cache: couldn't allocate a new block.\n");
|
|
for(bp = front;
|
|
bp && bp->lmfs_bytes < fs_block_size; bp = bp->lmfs_next)
|
|
;
|
|
if(!bp) {
|
|
panic("no buffer available");
|
|
}
|
|
} else {
|
|
bp->lmfs_bytes = fs_block_size;
|
|
}
|
|
}
|
|
|
|
ASSERT(bp);
|
|
ASSERT(bp->data);
|
|
ASSERT(bp->lmfs_bytes == fs_block_size);
|
|
ASSERT(bp->lmfs_count == 0);
|
|
|
|
rm_lru(bp);
|
|
|
|
/* Remove the block that was just taken from its hash chain. */
|
|
b = BUFHASH(bp->lmfs_blocknr);
|
|
prev_ptr = buf_hash[b];
|
|
if (prev_ptr == bp) {
|
|
buf_hash[b] = bp->lmfs_hash;
|
|
} else {
|
|
/* The block just taken is not on the front of its hash chain. */
|
|
while (prev_ptr->lmfs_hash != NULL)
|
|
if (prev_ptr->lmfs_hash == bp) {
|
|
prev_ptr->lmfs_hash = bp->lmfs_hash; /* found it */
|
|
break;
|
|
} else {
|
|
prev_ptr = prev_ptr->lmfs_hash; /* keep looking */
|
|
}
|
|
}
|
|
|
|
/* If the block taken is dirty, make it clean by writing it to the disk.
|
|
* Avoid hysteresis by flushing all other dirty blocks for the same device.
|
|
*/
|
|
if (bp->lmfs_dev != NO_DEV) {
|
|
if (bp->lmfs_dirt == BP_DIRTY) flushall(bp->lmfs_dev);
|
|
|
|
/* Are we throwing out a block that contained something?
|
|
* Give it to VM for the second-layer cache.
|
|
*/
|
|
yieldid = make64(bp->lmfs_dev, bp->lmfs_blocknr);
|
|
assert(bp->lmfs_bytes == fs_block_size);
|
|
bp->lmfs_dev = NO_DEV;
|
|
}
|
|
|
|
/* Fill in block's parameters and add it to the hash chain where it goes. */
|
|
MARKCLEAN(bp); /* NO_DEV blocks may be marked dirty */
|
|
bp->lmfs_dev = dev; /* fill in device number */
|
|
bp->lmfs_blocknr = block; /* fill in block number */
|
|
bp->lmfs_count++; /* record that block is being used */
|
|
b = BUFHASH(bp->lmfs_blocknr);
|
|
bp->lmfs_hash = buf_hash[b];
|
|
|
|
buf_hash[b] = bp; /* add to hash list */
|
|
|
|
if(dev == NO_DEV) {
|
|
if(vmcache && cmp64(yieldid, VM_BLOCKID_NONE) != 0) {
|
|
vm_yield_block_get_block(yieldid, VM_BLOCKID_NONE,
|
|
bp->data, fs_block_size);
|
|
}
|
|
return(bp); /* If the caller wanted a NO_DEV block, work is done. */
|
|
}
|
|
|
|
/* Go get the requested block unless searching or prefetching. */
|
|
if(only_search == PREFETCH || only_search == NORMAL) {
|
|
/* Block is not found in our cache, but we do want it
|
|
* if it's in the vm cache.
|
|
*/
|
|
if(vmcache) {
|
|
/* If we can satisfy the PREFETCH or NORMAL request
|
|
* from the vm cache, work is done.
|
|
*/
|
|
if(vm_yield_block_get_block(yieldid, getid,
|
|
bp->data, fs_block_size) == OK) {
|
|
return bp;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(only_search == PREFETCH) {
|
|
/* PREFETCH: don't do i/o. */
|
|
bp->lmfs_dev = NO_DEV;
|
|
} else if (only_search == NORMAL) {
|
|
read_block(bp);
|
|
} else if(only_search == NO_READ) {
|
|
/* we want this block, but its contents
|
|
* will be overwritten. VM has to forget
|
|
* about it.
|
|
*/
|
|
if(vmcache) {
|
|
vm_forgetblock(getid);
|
|
}
|
|
} else
|
|
panic("unexpected only_search value: %d", only_search);
|
|
|
|
assert(bp->data);
|
|
|
|
return(bp); /* return the newly acquired block */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_put_block *
|
|
*===========================================================================*/
|
|
void lmfs_put_block(bp, block_type)
|
|
register struct buf *bp; /* pointer to the buffer to be released */
|
|
int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
|
|
{
|
|
/* Return a block to the list of available blocks. Depending on 'block_type'
|
|
* it may be put on the front or rear of the LRU chain. Blocks that are
|
|
* expected to be needed again shortly (e.g., partially full data blocks)
|
|
* go on the rear; blocks that are unlikely to be needed again shortly
|
|
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
|
|
* the integrity of the file system (e.g., inode blocks) are written to
|
|
* disk immediately if they are dirty.
|
|
*/
|
|
if (bp == NULL) return; /* it is easier to check here than in caller */
|
|
|
|
bp->lmfs_count--; /* there is one use fewer now */
|
|
if (bp->lmfs_count != 0) return; /* block is still in use */
|
|
|
|
bufs_in_use--; /* one fewer block buffers in use */
|
|
|
|
/* Put this block back on the LRU chain. */
|
|
if (bp->lmfs_dev == DEV_RAM || (block_type & ONE_SHOT)) {
|
|
/* Block probably won't be needed quickly. Put it on front of chain.
|
|
* It will be the next block to be evicted from the cache.
|
|
*/
|
|
bp->lmfs_prev = NULL;
|
|
bp->lmfs_next = front;
|
|
if (front == NULL)
|
|
rear = bp; /* LRU chain was empty */
|
|
else
|
|
front->lmfs_prev = bp;
|
|
front = bp;
|
|
}
|
|
else {
|
|
/* Block probably will be needed quickly. Put it on rear of chain.
|
|
* It will not be evicted from the cache for a long time.
|
|
*/
|
|
bp->lmfs_prev = rear;
|
|
bp->lmfs_next = NULL;
|
|
if (rear == NULL)
|
|
front = bp;
|
|
else
|
|
rear->lmfs_next = bp;
|
|
rear = bp;
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* read_block *
|
|
*===========================================================================*/
|
|
static void read_block(bp)
|
|
register struct buf *bp; /* buffer pointer */
|
|
{
|
|
/* Read or write a disk block. This is the only routine in which actual disk
|
|
* I/O is invoked. If an error occurs, a message is printed here, but the error
|
|
* is not reported to the caller. If the error occurred while purging a block
|
|
* from the cache, it is not clear what the caller could do about it anyway.
|
|
*/
|
|
int r, op_failed;
|
|
u64_t pos;
|
|
dev_t dev;
|
|
|
|
op_failed = 0;
|
|
|
|
if ( (dev = bp->lmfs_dev) != NO_DEV) {
|
|
pos = mul64u(bp->lmfs_blocknr, fs_block_size);
|
|
r = bdev_read(dev, pos, bp->data, fs_block_size,
|
|
BDEV_NOFLAGS);
|
|
if (r < 0) {
|
|
printf("fs cache: I/O error on device %d/%d, block %u\n",
|
|
major(dev), minor(dev), bp->lmfs_blocknr);
|
|
op_failed = 1;
|
|
} else if (r != (ssize_t) fs_block_size) {
|
|
r = END_OF_FILE;
|
|
op_failed = 1;
|
|
}
|
|
|
|
if (op_failed) {
|
|
bp->lmfs_dev = NO_DEV; /* invalidate block */
|
|
|
|
/* Report read errors to interested parties. */
|
|
rdwt_err = r;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_invalidate *
|
|
*===========================================================================*/
|
|
void lmfs_invalidate(
|
|
dev_t device /* device whose blocks are to be purged */
|
|
)
|
|
{
|
|
/* Remove all the blocks belonging to some device from the cache. */
|
|
|
|
register struct buf *bp;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if (bp->lmfs_dev == device) bp->lmfs_dev = NO_DEV;
|
|
|
|
vm_forgetblocks();
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* flushall *
|
|
*===========================================================================*/
|
|
static void flushall(dev_t dev)
|
|
{
|
|
/* Flush all dirty blocks for one device. */
|
|
|
|
register struct buf *bp;
|
|
static struct buf **dirty; /* static so it isn't on stack */
|
|
static unsigned int dirtylistsize = 0;
|
|
int ndirty;
|
|
|
|
if(dirtylistsize != nr_bufs) {
|
|
if(dirtylistsize > 0) {
|
|
assert(dirty != NULL);
|
|
free(dirty);
|
|
}
|
|
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
|
|
panic("couldn't allocate dirty buf list");
|
|
dirtylistsize = nr_bufs;
|
|
}
|
|
|
|
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
|
|
if (bp->lmfs_dirt == BP_DIRTY && bp->lmfs_dev == dev) {
|
|
dirty[ndirty++] = bp;
|
|
}
|
|
}
|
|
|
|
lmfs_rw_scattered(dev, dirty, ndirty, WRITING);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_rw_scattered *
|
|
*===========================================================================*/
|
|
void lmfs_rw_scattered(
|
|
dev_t dev, /* major-minor device number */
|
|
struct buf **bufq, /* pointer to array of buffers */
|
|
int bufqsize, /* number of buffers */
|
|
int rw_flag /* READING or WRITING */
|
|
)
|
|
{
|
|
/* Read or write scattered data from a device. */
|
|
|
|
register struct buf *bp;
|
|
int gap;
|
|
register int i;
|
|
register iovec_t *iop;
|
|
static iovec_t *iovec = NULL;
|
|
u64_t pos;
|
|
int j, r;
|
|
|
|
STATICINIT(iovec, NR_IOREQS);
|
|
|
|
/* (Shell) sort buffers on lmfs_blocknr. */
|
|
gap = 1;
|
|
do
|
|
gap = 3 * gap + 1;
|
|
while (gap <= bufqsize);
|
|
while (gap != 1) {
|
|
gap /= 3;
|
|
for (j = gap; j < bufqsize; j++) {
|
|
for (i = j - gap;
|
|
i >= 0 && bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
|
|
i -= gap) {
|
|
bp = bufq[i];
|
|
bufq[i] = bufq[i + gap];
|
|
bufq[i + gap] = bp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set up I/O vector and do I/O. The result of bdev I/O is OK if everything
|
|
* went fine, otherwise the error code for the first failed transfer.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
|
|
bp = bufq[j];
|
|
if (bp->lmfs_blocknr != (block_t) bufq[0]->lmfs_blocknr + j) break;
|
|
iop->iov_addr = (vir_bytes) bp->data;
|
|
iop->iov_size = (vir_bytes) fs_block_size;
|
|
}
|
|
pos = mul64u(bufq[0]->lmfs_blocknr, fs_block_size);
|
|
if (rw_flag == READING)
|
|
r = bdev_gather(dev, pos, iovec, j, BDEV_NOFLAGS);
|
|
else
|
|
r = bdev_scatter(dev, pos, iovec, j, BDEV_NOFLAGS);
|
|
|
|
/* Harvest the results. The driver may have returned an error, or it
|
|
* may have done less than what we asked for.
|
|
*/
|
|
if (r < 0) {
|
|
printf("fs cache: I/O error %d on device %d/%d, block %u\n",
|
|
r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
|
|
}
|
|
for (i = 0; i < j; i++) {
|
|
bp = bufq[i];
|
|
if (r < (ssize_t) fs_block_size) {
|
|
/* Transfer failed. */
|
|
if (i == 0) {
|
|
bp->lmfs_dev = NO_DEV; /* Invalidate block */
|
|
vm_forgetblocks();
|
|
}
|
|
break;
|
|
}
|
|
if (rw_flag == READING) {
|
|
bp->lmfs_dev = dev; /* validate block */
|
|
lmfs_put_block(bp, PARTIAL_DATA_BLOCK);
|
|
} else {
|
|
MARKCLEAN(bp);
|
|
}
|
|
r -= fs_block_size;
|
|
}
|
|
bufq += i;
|
|
bufqsize -= i;
|
|
if (rw_flag == READING) {
|
|
/* Don't bother reading more than the device is willing to
|
|
* give at this time. Don't forget to release those extras.
|
|
*/
|
|
while (bufqsize > 0) {
|
|
lmfs_put_block(*bufq++, PARTIAL_DATA_BLOCK);
|
|
bufqsize--;
|
|
}
|
|
}
|
|
if (rw_flag == WRITING && i == 0) {
|
|
/* We're not making progress, this means we might keep
|
|
* looping. Buffers remain dirty if un-written. Buffers are
|
|
* lost if invalidate()d or LRU-removed while dirty. This
|
|
* is better than keeping unwritable blocks around forever..
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* rm_lru *
|
|
*===========================================================================*/
|
|
static void rm_lru(bp)
|
|
struct buf *bp;
|
|
{
|
|
/* Remove a block from its LRU chain. */
|
|
struct buf *next_ptr, *prev_ptr;
|
|
|
|
bufs_in_use++;
|
|
next_ptr = bp->lmfs_next; /* successor on LRU chain */
|
|
prev_ptr = bp->lmfs_prev; /* predecessor on LRU chain */
|
|
if (prev_ptr != NULL)
|
|
prev_ptr->lmfs_next = next_ptr;
|
|
else
|
|
front = next_ptr; /* this block was at front of chain */
|
|
|
|
if (next_ptr != NULL)
|
|
next_ptr->lmfs_prev = prev_ptr;
|
|
else
|
|
rear = prev_ptr; /* this block was at rear of chain */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* cache_resize *
|
|
*===========================================================================*/
|
|
static void cache_resize(unsigned int blocksize, unsigned int bufs)
|
|
{
|
|
struct buf *bp;
|
|
|
|
assert(blocksize > 0);
|
|
assert(bufs >= MINBUFS);
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
|
|
|
|
lmfs_buf_pool(bufs);
|
|
|
|
fs_block_size = blocksize;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_set_blocksize *
|
|
*===========================================================================*/
|
|
void lmfs_set_blocksize(int new_block_size, int major)
|
|
{
|
|
int bufs;
|
|
u32_t btotal, bfree, bused;
|
|
|
|
cache_resize(new_block_size, MINBUFS);
|
|
|
|
fs_blockstats(&btotal, &bfree, &bused);
|
|
|
|
bufs = fs_bufs_heuristic(10, btotal, bfree,
|
|
new_block_size, major);
|
|
|
|
cache_resize(new_block_size, bufs);
|
|
|
|
/* Decide whether to use seconday cache or not.
|
|
* Only do this if
|
|
* - it's available, and
|
|
* - use of it hasn't been disabled for this fs, and
|
|
* - our main FS device isn't a memory device
|
|
*/
|
|
|
|
vmcache = 0;
|
|
if(vm_forgetblock(VM_BLOCKID_NONE) != ENOSYS &&
|
|
may_use_vmcache && major != MEMORY_MAJOR) {
|
|
vmcache = 1;
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lmfs_buf_pool *
|
|
*===========================================================================*/
|
|
void lmfs_buf_pool(int new_nr_bufs)
|
|
{
|
|
/* Initialize the buffer pool. */
|
|
register struct buf *bp;
|
|
|
|
assert(new_nr_bufs >= MINBUFS);
|
|
|
|
if(nr_bufs > 0) {
|
|
assert(buf);
|
|
(void) fs_sync();
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
if(bp->data) {
|
|
assert(bp->lmfs_bytes > 0);
|
|
free_contig(bp->data, bp->lmfs_bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(buf)
|
|
free(buf);
|
|
|
|
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf list (%d)", new_nr_bufs);
|
|
|
|
if(buf_hash)
|
|
free(buf_hash);
|
|
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
|
|
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
|
|
|
|
nr_bufs = new_nr_bufs;
|
|
|
|
bufs_in_use = 0;
|
|
front = &buf[0];
|
|
rear = &buf[nr_bufs - 1];
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
|
bp->lmfs_blocknr = NO_BLOCK;
|
|
bp->lmfs_dev = NO_DEV;
|
|
bp->lmfs_next = bp + 1;
|
|
bp->lmfs_prev = bp - 1;
|
|
bp->data = NULL;
|
|
bp->lmfs_bytes = 0;
|
|
}
|
|
front->lmfs_prev = NULL;
|
|
rear->lmfs_next = NULL;
|
|
|
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
|
|
buf_hash[0] = front;
|
|
|
|
vm_forgetblocks();
|
|
}
|
|
|
|
int lmfs_bufs_in_use(void)
|
|
{
|
|
return bufs_in_use;
|
|
}
|
|
|
|
int lmfs_nr_bufs(void)
|
|
{
|
|
return nr_bufs;
|
|
}
|
|
|
|
void lmfs_flushall(void)
|
|
{
|
|
struct buf *bp;
|
|
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
|
if(bp->lmfs_dev != NO_DEV && bp->lmfs_dirt == BP_DIRTY)
|
|
flushall(bp->lmfs_dev);
|
|
}
|
|
|
|
int lmfs_fs_block_size(void)
|
|
{
|
|
return fs_block_size;
|
|
}
|
|
|
|
void lmfs_may_use_vmcache(int ok)
|
|
{
|
|
may_use_vmcache = ok;
|
|
}
|
|
|
|
void lmfs_reset_rdwt_err(void)
|
|
{
|
|
rdwt_err = OK;
|
|
}
|
|
|
|
int lmfs_rdwt_err(void)
|
|
{
|
|
return rdwt_err;
|
|
}
|