minix/commands/swifi/fault_model.c
David van Moolenbroek c8b892d835 swifi: modernize a bit
- ELF support
- update of one example script
- warning fixes
2012-03-05 22:41:49 +01:00

1270 lines
28 KiB
C

/*
* fault-model.c -- fault injection code for drivers
*
* Copyright (C) 2003 Mike Swift
* Copyright (c) 1999 Wee Teck Ng
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. No warranty
* is attached; * we cannot take responsibility for errors or
* fitness for use.
*
*/
/*
* Fault injector for testing the usefulness of NOOKS
*
* Adapted from the SWIFI tools used by Wee Teck Ng to evaluate the RIO
* file cache at the University of Michigan
*
*/
/*
* This tool can inject faults into modules, whether they are loaded into a
* nook or loaded into the kernel (for comparison testing).
*
* There are several classes of faults emulated:
* - Corruption of text
* - corruption
* - simulated programming faults
* - skip initialization (immediate write to EBP-x)
* - remove instruction (replace with NOP)
* - incorrect source/destination (corrupted)
* - remove jmp or rep instruction
* - change address computation for memory access (not stack)
* - change termination condition for loop (change repeat to repeat
* -while equal, change condition to !condition
- remove instructions loading registers from arguments (ebp+x)
*
* - Corruption of stack
* - Corruption of heap
* - copy overruns
* - use after free
*/
#if 0
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
#include <asm/delay.h>
#include <asm/page.h>
#endif
#include "ddb.h"
#include "db_sym.h"
#include "swifi.h"
#include "extra.h"
#include <assert.h>
#define CRASH_INTERVAL 8192
#define FI_MASK 0xfff
#define P50 0x3fffffff /* 50% of max rand */
#define P94 0x7851eb84 /* 94% of max rand */
#define NOP 0x90
unsigned long randomSeed=0; /* random number */
unsigned long injectFault=1; /* inject fault ? */
unsigned long diskTest=0; /* run disk test instead of rio */
unsigned long faultInjected=0; /* has fault been injected? */
unsigned long crashInterval=0; /* interval between injecting fault */
unsigned long crashCount=0; /* number of times fault is injected */
unsigned long faultType;
unsigned long numFaults;
char *crashAddr=0; /* track current malloc */
int crashToggle=1;
int text_fault(char *mod_name, pswifi_result_t res);
int stack_fault(pswifi_result_t res);
int heap_fault(pswifi_result_t res);
int direct_fault(int fault_address, int fault_content, pswifi_result_t res);
int direct_fault1(int fault_address, int fault_content, pswifi_result_t res);
int while1(void);
int *testVA;
#if 0
#define PDEBUG(fmt, args...) \
do { \
printk( KERN_ALERT "SWIFI: " fmt, ## args); \
} while (0)
#else
#include <stdio.h>
#define PDEBUG(args) /* (printf args) */
#endif
#define inline
#ifdef CONFIG_SWIFI
#if 0
static inline long
get_mod_name(const char *user_name, char **buf)
{
unsigned long page;
long retval;
page = __get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE);
if (retval > 0) {
if (retval < PAGE_SIZE) {
*buf = (char *)page;
return retval;
}
retval = -ENAMETOOLONG;
} else if (!retval)
retval = -EINVAL;
free_page(page);
return retval;
}
static inline void
put_mod_name(char *buf)
{
free_page((unsigned long)buf);
}
#endif
long
sys_inject_fault(char * module_name,
unsigned long argFaultType,
unsigned long argRandomSeed,
unsigned long argNumFaults,
pswifi_result_t result_record,
unsigned long argInjectFault)
{
int result = 0;
unsigned long fault_address = 0;
unsigned long fault_data = 0 ;
char * kern_name = NULL;
#if 0
struct module * mod = NULL;
int found = 0;
#endif
pswifi_result_t res = NULL;
if (argNumFaults > SWIFI_MAX_FAULTS) {
result = -E2BIG;
goto Cleanup;
}
res = (pswifi_result_t) malloc((1+argNumFaults) * sizeof(swifi_result_t));
if (res == NULL) {
result = -ENOMEM;
goto Cleanup;
}
memset(res, 0, (1 + argNumFaults) * sizeof(swifi_result_t));
/*
// Capture the name of the module from usermode
*/
#if 0
result = get_mod_name(module_name, &kern_name);
if (result < 0) {
goto Cleanup;
}
#endif
kern_name= module_name;
#if 0
lock_kernel();
for (mod = module_list; mod ; mod = mod->next) {
if (strcmp(kern_name, mod->name) == 0) {
found = 1;
break;
}
}
unlock_kernel();
if (!found) {
result = -ENOENT;
goto Cleanup;
}
#endif
numFaults = argNumFaults;
faultType = argFaultType;
randomSeed = argRandomSeed;
injectFault = argInjectFault;
if(faultType>=DISK_TEST) {
faultType=faultType-DISK_TEST;
diskTest=1;
}
if(faultType==STATS) {
#if 0
extern long time_vmp, n_vmp;
extern long time_pmp, n_pmp;
PDEBUG("# vm_map_protect=%ld, total cycle=%ld\n", n_vmp, time_vmp);
PDEBUG("# pmap_protect=%ld, total cycle=%ld\n", n_pmp, time_pmp);
n_vmp=0; time_vmp=0;
n_pmp=0; time_pmp=0;
#endif
} else if (faultType == DIRECT_FAULT) {
fault_address = numFaults;
fault_data = randomSeed;
PDEBUG(("sys inject fault, type %ld, addr=%lx, flip bit%lx\n",
faultType, fault_address, fault_data));
} else if (faultType == DIRECT_FAULT1) {
fault_address = numFaults;
fault_data = randomSeed;
PDEBUG(("sys inject fault, type %ld, addr=%lx, zero bytes %lx\n",
faultType, fault_address, fault_data));
} else {
PDEBUG(("sys inject fault, type %ld, seed=%ld, fault=%ld\n",
faultType, randomSeed, numFaults));
}
faultInjected=1;
srandom(randomSeed);
/* set warm reboot, leave RAM unchanged
* 0 : don't inject fault
* 1 : run POST, wipe out memory
* 2 : don't test memory
* 3 : don't change memory (doesn't work)
* 4 : don't sync registry
*/
/* default number of faults is 5 */
if(numFaults<=0 || numFaults>100) numFaults=5;
switch(faultType)
{
case TEXT_FAULT:
result = text_fault(module_name, res);
break;
case STACK_FAULT:
result = stack_fault(res);
break;
case HEAP_FAULT:
result = heap_fault(res);
break;
case INIT_FAULT:
case NOP_FAULT:
case DST_FAULT:
case SRC_FAULT:
case BRANCH_FAULT:
case PTR_FAULT:
case LOOP_FAULT:
case INTERFACE_FAULT:
case IRQ_FAULT:
result = text_fault(module_name, res);
break;
case FREE_FAULT:
case BCOPY_FAULT:
case SYNC_FAULT:
case ALLOC_FAULT:
crashInterval=CRASH_INTERVAL; /* interval between crash */
break;
case MEM_LEAK_FAULT:
crashToggle=0;
crashInterval=CRASH_INTERVAL; /* interval between crash */
break;
case PANIC_FAULT:
panic("testing panic");
result = 0;
break;
/* case WP_FAULT: page_reg_fault(random()); break; */
case DIRECT_FAULT:
{
direct_fault(fault_address, fault_data, res);
break;
}
case DIRECT_FAULT1:
{
result = direct_fault1(fault_address, fault_data, res);
break;
}
/* case PAGE_REG_DUMP: rio_dump(); break; */
case WHILE1_FAULT:
{
result = while1();
break;
}
/* case CPU_RESET_FAULT: cpu_reset(); break; */;
case COW_FAULT:
{
/* test writing to kernel text. freebsd currently do a COW on a
* write to kernel text.
*/
unsigned long *addr1, *addr2;
addr1 = (unsigned long *) 0xf0212000;
addr2 = (unsigned long *) 0xf0212010;
PDEBUG(("%p=%lx, %p=%lx\n", addr1, *addr1, addr2, *addr2));
/*
__asm__ ("movl $0xf0212000, %eax\n\t" \
"movl $6, 0(%eax)\n\t" \
"movl $6, 4(%eax)\n\t");
*/
/* Not implemented on MINIX */
assert(0);
addr1 = (unsigned long *) 0xf0212000;
addr2 = (unsigned long *) 0xf0212010;
PDEBUG(("after injecting fault\n"));
PDEBUG(("%p=%lx, %p=%lx\n", addr1, *addr1, addr2, *addr2));
result = 0;
break;
}
case DEBUGGER_FAULT:
PDEBUG(("Debugger fault"));
/*
__asm__ ("movl %cr4, %ecx\n\t" \
"movl $42, %ecx; .byte 0x0f, 0x32\n\t" \
"movl $377, %ecx; .byte 0x0f, 0x32\n\t");
*/
/* Not implemented on MINIX */
assert(0);
result = 0;
break;
default: PDEBUG(("unknown fault type %ld\n", faultType)); break;
}
if (copy_to_user(result_record, res, argNumFaults * sizeof(swifi_result_t))) {
result = -EFAULT;
}
Cleanup:
#if 0
if (kern_name != NULL) {
put_mod_name(kern_name);
}
#endif
if (res != NULL) {
free(res);
}
return (result);
}
int while1(void)
{
int i=0;
PDEBUG(("entering into while 1 loop\n"));
while(1) {
udelay(20000);
PDEBUG(("delay %4d secs, cpl=0x%x, ipend=0x%x\n", i+=5, 20, 30));
if(i>(100 * 2500))
break;
}
return(0);
}
int direct_fault(int fault_address, int fault_content, pswifi_result_t res)
{
unsigned long *addr;
int flip_bit=0;
addr = (unsigned long *) (PAGE_OFFSET + fault_address);
PDEBUG(("%p:0x%lx => ", addr, *addr));
flip_bit = 1 << fault_content;
res[0].address = (unsigned long) addr;
res[0].old = *addr;
res[0].new = (*addr) ^ flip_bit;
if (injectFault) {
*addr = (*addr) ^ flip_bit;
}
PDEBUG(("%lx\n", *addr));
return(0);
}
int direct_fault1(int fault_address, int fault_content, pswifi_result_t res)
{
unsigned long *addr, data;
addr = (unsigned long *) (PAGE_OFFSET + fault_address);
PDEBUG(("%p:%lx => ", addr, *addr));
data = *addr;
if(fault_content==1) {
data = data & 0xffffff00;
data = data | 0x00000090;
} else if(fault_content==2) {
data = data & 0xffff0000;
data = data | 0x00009090;
} else if(fault_content==3) {
data = data & 0xff000000;
data = data | 0x00909090;
} else if(fault_content==4) {
data = 0x90909090;
}
res[0].address = (unsigned long) addr;
res[0].old = *addr;
res[0].new = data;
if (injectFault) {
*addr = data;
}
PDEBUG(("%lx\n", *addr));
return(0);
}
/*
#include <linux/sched.h>
*/
#define MAX_NUM_TASKS 20
struct task_struct *
find_task(void)
{
struct task_struct * task = NULL, *result = NULL ;
int i,j;
i = 1 + (random() % MAX_NUM_TASKS);
j = i;
do {
#if 0
read_lock(&tasklist_lock);
#endif
for_each_task(task) {
if (--i == 0) {
result = task;
break;
}
}
#if 0
read_unlock(&tasklist_lock);
#endif
} while ((i > 0) && (i != j));
return(result);
}
int
stack_fault(pswifi_result_t res)
{
unsigned long *addr, size, taddr;
int flip_bit=0;
int count=0;
struct task_struct *task = NULL;
while(count < numFaults) {
task = find_task();
if (task == NULL) {
return(-1);
}
size = (unsigned long) task + TASK_SIZE - task->thread.esp;
PDEBUG(("stack range=%lx-%lx\n",
(unsigned long) task->thread.esp,
(unsigned long) task + TASK_SIZE));
addr = (unsigned long *) ((long) task->thread.esp +
(random()&~0x3)%size);
taddr=(unsigned long) addr;
flip_bit = random() & 0x1f;
PDEBUG(("%lx:%lx flip bit %d => ", taddr, *addr, flip_bit));
flip_bit = 1 << flip_bit;
res[count].address = taddr;
res[count].old = *addr;
res[count].new = (*addr) ^ flip_bit;
if (injectFault) {
*addr = ((*addr)^flip_bit);
}
PDEBUG(("%lx\n", *addr));
count++;
}
return(0);
}
/*
// Instead of dealing with heaps directly, we look at the area cache of pages
// and vm pages and find an address there.
*/
int heap_fault(pswifi_result_t res)
{
#ifdef notdef
unsigned long *addr, taddr;
int flip_bit=0;
int count=0;
unsigned long flags;
struct list_head *next;
addr = (unsigned long *) (map->address + (random()&~0xf)%map->size);
taddr=(unsigned long) addr;
flip_bit = random() & 0x1f;
PDEBUG("heap range=%lx-%lx ", map->address, map->address + map->size);
PDEBUG("%lx:%lx flip bit %d => ", taddr, *addr, flip_bit);
flip_bit = 1 << flip_bit;
res[count].address = taddr;
res[count].old = *addr;
res[count].new = (*addr) ^ flip_bit;
if (injectFault) {
*addr = ((*addr)^flip_bit);
}
PDEBUG("%lx\n", *addr);
count++;
} while (count < numFaults);
#endif
return(-1);
}
unsigned long
do_fault_copy_from_user (void *kaddr, const void *udaddr, unsigned long len,
unsigned long (* copy_fn) (void *, const void *, unsigned long))
{
unsigned int prob, i=0;
if ( faultInjected && (faultType==BCOPY_FAULT) ) {
if (++crashCount == crashInterval) {
crashCount=0;
prob = random();
crashInterval = CRASH_INTERVAL + (random() & FI_MASK);
if (prob < P50) { /* corrupt 1 QW */
i=1;
} else if (prob < P94) { /* corrupt 2 - 1024 QW */
i = prob & 0x3fe;
while(!i) {
i = random() & 0x3fe;
}
} else { /* corrupt 2-4 pages */
i= prob & 0xc00;
while(!i) {
i = random() & 0xc00;
}
}
PDEBUG(("copyin: %p to %p, len=%ld overrun=%d, Intvl=%ld, inj=%ld\n",
udaddr, kaddr, len, i, crashInterval, faultInjected));
if (faultInjected++ <numFaults) {
len += i;
} else {
faultInjected = 0;
}
i = 1;
}
return(copy_fn(kaddr, udaddr, len));
} else {
return(copy_fn(kaddr, udaddr, len));
}
}
unsigned long
do_fault_copy_to_user(void *udaddr, const void *kaddr, unsigned long len,
unsigned long (* copy_fn) (void *,
const void *,
unsigned long))
{
unsigned int prob, i=0;
if( faultInjected && (faultType==BCOPY_FAULT) ){
crashCount++;
if (crashCount == crashInterval) {
crashCount=0;
prob = random();
crashInterval = CRASH_INTERVAL + (random() & FI_MASK);
if ( prob < P50) { /* corrupt 1 QW */
i=1;
} else if(prob < P94) { /* corrupt 2 - 1024 QW */
i = prob & 0x3fe;
while (!i) {
i = random() & 0x3fe;
}
} else {
i = prob & 0xc00;
while(!i) {
i = random() & 0xc00;
}
}
PDEBUG(("copyout: %p to %p, len=%ld overrun=%d, Intvl=%ld, inj=%ld\n",
kaddr, udaddr, len, i, crashInterval, faultInjected));
if (faultInjected++ <numFaults) {
len+=i;
} else {
faultInjected = 0;
}
i=1;
}
return(copy_fn(udaddr, kaddr, len));
} else
return(copy_fn(udaddr, kaddr, len));
}
unsigned long
swifi___generic_copy_from_user (void *kaddr, void *udaddr, unsigned long len)
{
return(do_fault_copy_from_user(kaddr,
udaddr,
len,
__generic_copy_from_user));
}
unsigned long
swifi___generic_copy_to_user(void *udaddr, void *kaddr, unsigned long len)
{
return(do_fault_copy_to_user(udaddr,
kaddr,
len,
__generic_copy_to_user));
}
void *
swifi_memcpy_fn (void *to, void *from, size_t len)
{
unsigned int prob, i=0;
if( faultInjected && (faultType==BCOPY_FAULT) ) {
crashCount++;
if (crashCount == crashInterval) {
crashCount=0;
prob = random();
crashInterval = CRASH_INTERVAL + (random() & FI_MASK);
if (prob < P50) { /* corrupt 1 QW */
i=1;
} else if (prob < P94) { /* corrupt 2 - 1024 QW */
i= prob & 0x3fe;
while(!i) {
i = random() & 0x3fe;
}
} else { /* corrupt 2-4 pages */
i=prob&0xc00;
while(!i) {
i = random() & 0xc00;
}
}
PDEBUG(("memcpy: %p to %p, len=%d overrun=%d, Intvl=%ld, inj=%ld\n",
from, to, len, i, crashInterval, faultInjected));
if(faultInjected++ <numFaults) len+=i;
else faultInjected=0;
i=1;
}
return(memcpy(to, from, len));
} else
return(memcpy(to, from, len));
}
void *
swifi_memmove_fn (void *to, void *from, size_t len)
{
unsigned int prob, i=0;
if( faultInjected && (faultType==BCOPY_FAULT) ) {
crashCount++;
if (crashCount == crashInterval) {
crashCount=0;
prob = random();
crashInterval = CRASH_INTERVAL + (random() & FI_MASK);
if (prob < P50) { /* corrupt 1 QW */
i=1;
} else if (prob < P94) { /* corrupt 2 - 1024 QW */
i= prob & 0x3fe;
while(!i) {
i = random() & 0x3fe;
}
} else { /* corrupt 2-4 pages */
i=prob&0xc00;
while(!i) {
i = random() & 0xc00;
}
}
PDEBUG(("memmove: %p to %p, len=%d overrun=%d, Intvl=%ld, inj=%ld\n",
from, to, len, i, crashInterval, faultInjected));
if(faultInjected++ <numFaults) len+=i;
else faultInjected=0;
i=1;
}
return(memmove(to, from, len));
} else
return(memmove(to, from, len));
}
void *
memmove_fn(void *to, void *from, size_t len)
{
return(memmove(to, from, len));
}
void *
memcpy_fn(void *to, void *from, size_t len)
{
return(memcpy(to, from, len));
}
void
do_fault_kfree(void *addr, void (* kfree_fn)(const void *))
{
if(addr == crashAddr) {
crashAddr=0;
}
if (faultInjected && (faultType==FREE_FAULT ||
faultType==MEM_LEAK_FAULT)) {
crashCount++;
if(crashCount>=crashInterval) {
/* alternate between premature freeing and non-free */
if(crashToggle) {
if(crashAddr) {
PDEBUG(("malloc : freeing %p prematurely\n",
crashAddr));
kfree_fn(crashAddr);
kfree_fn(addr);
crashAddr=0;
crashToggle=0;
crashCount=0;
crashInterval = CRASH_INTERVAL + (random()&FI_MASK);
if (faultInjected++ > numFaults) {
faultInjected=0;
}
}
} else {
PDEBUG(("free: don't free %p\n", addr));
if(faultInjected++ > numFaults) {
faultInjected=0;
}
if(faultType==FREE_FAULT) {
crashToggle=1;
}
crashCount=0;
crashInterval = CRASH_INTERVAL + (random()&FI_MASK);
}
}
} else {
kfree_fn(addr);
}
}
#if 0
void
swifi_kfree(const void *addr)
{
do_fault_kfree((void *) addr, kfree);
}
#endif
void do_vfree(const void * addr)
{
vfree((void *) addr);
}
void
swifi_vfree(void *addr)
{
do_fault_kfree(addr, do_vfree);
}
void *
do_fault_kmalloc(size_t size,
int flags,
void * (* kmalloc_fn)(size_t size, int flags))
{
if (faultInjected && (faultType==ALLOC_FAULT)) {
crashCount++;
if(crashCount>=crashInterval) {
PDEBUG(("kmalloc : returning null\n"));
crashCount=0;
crashInterval = CRASH_INTERVAL + (random()&FI_MASK);
if (faultInjected++ > numFaults) {
faultInjected=0;
return(NULL);
}
}
}
return(kmalloc_fn(size, flags));
}
#if 0
void *
swifi_kmalloc(size_t size, int flags)
{
return(do_fault_kmalloc(size, flags, kmalloc));
}
#endif
void * do_fault_vmalloc(unsigned long size,
int gfp_mask,
pgprot_t prot,
void * (*vmalloc_fn)(unsigned long size,
int gfp_mask,
pgprot_t prot))
{
if (faultInjected && (faultType==ALLOC_FAULT)) {
crashCount++;
if(crashCount>=crashInterval) {
PDEBUG(("vmalloc : returning null\n"));
crashCount=0;
crashInterval = CRASH_INTERVAL + (random()&FI_MASK);
if (faultInjected++ > numFaults) {
faultInjected=0;
return(NULL);
}
}
}
return(vmalloc_fn(size, gfp_mask, prot));
}
void *
swifi___vmalloc(unsigned long size, int gfp_mask, pgprot_t prot)
{
return(do_fault_vmalloc(size, gfp_mask, prot, __vmalloc));
}
#if 0
typedef struct section_callback {
const char * module_name;
const char * section_name;
unsigned long sec_start;
unsigned long sec_end;
} section_callback_t;
static int
text_section_callback(void *token,
const char *modname,
const char *secname,
ElfW(Addr) secstart,
ElfW(Addr) secend,
ElfW(Word) secflags)
{
section_callback_t * info = (section_callback_t *) token;
if ((strcmp(modname, info->module_name) == 0) &&
(strcmp(secname, info->section_name) == 0)) {
info->sec_start = secstart;
info->sec_end = secend;
return(1);
}
return(0);
}
#endif
int text_fault(char *mod_name, pswifi_result_t res)
{
unsigned long *addr, text_size, offset, page, taddr;
unsigned long btext, etext;
int count, flip_bit=0, len, rc;
unsigned char *c;
#if 0
struct module * module;
section_callback_t info;
#endif
#define MAX_NUM_MODULES 10
/* inject faults into text space */
for(count=0; count<numFaults; count++) {
int i = 1 + (random() % MAX_NUM_MODULES);
int j = i;
#if 0
module = mod;
#endif
#if 0
info.module_name = module->name;
info.module_name = "<module-name>";
info.section_name = ".text";
kallsyms_sections(&info, text_section_callback);
if (info.sec_start == 0 ) {
return(-1);
}
#endif
load_nlist(mod_name, &btext, &etext);
#if 0
btext = info.sec_start;
etext = info.sec_end;
#endif
text_size = etext - btext;
PDEBUG(("text=%lx-%lx, size=%lx\n", btext, etext, text_size));
addr = (unsigned long *)
(btext + ((unsigned long) (random()&~0xf) % text_size));
/* now the tricky part */
taddr=(unsigned long) addr;
if( faultType==INIT_FAULT ||
faultType==NOP_FAULT ||
faultType==DST_FAULT ||
faultType==SRC_FAULT ||
faultType==BRANCH_FAULT ||
faultType==PTR_FAULT ||
faultType==LOOP_FAULT ||
faultType==INTERFACE_FAULT ||
faultType==IRQ_FAULT ) {
addr = (unsigned long *) find_faulty_instr(taddr, faultType, &len);
/* do it over again if we can't find the right instruction */
if(!addr || !len ) {
i--;
continue;
}
}
printf("len = %d\n", len);
PDEBUG(("target addr=%lx, instr addr=%p, %lx=>", taddr, addr,
text_read_ul(addr)));
offset = (unsigned long) addr&PAGE_MASK;
page = (unsigned long) addr&~PAGE_MASK;
/* it doesn't matter what we used here to unprotect page,
* as this routine will not be in production code.
*/
res[count].address = taddr;
res[count].old = text_read_ul(addr);
res[count].new = text_read_ul(addr);
if (faultType==TEXT_FAULT) {
flip_bit = random() & 0x1f;
PDEBUG(("flip bit %d => ", flip_bit));
flip_bit = 1 << flip_bit;
res[count].new = text_read_ul(addr) ^ flip_bit;
if (injectFault) {
text_write_ul(addr, text_read_ul(addr)^flip_bit);
}
} else if (faultType==NOP_FAULT ||
faultType==INIT_FAULT ||
faultType==BRANCH_FAULT ||
faultType==INTERFACE_FAULT ||
faultType==IRQ_FAULT) {
c = (unsigned char *) addr;
for (j = 0; j < len; j++) {
/* replace these bytes with NOP (*c=NOP) */
if (j < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[j] = NOP;
}
if (injectFault) {
text_write_ub(c, NOP);
}
c++;
}
} else if (faultType==DST_FAULT || faultType==SRC_FAULT) {
/* skip thru the prefix and opcode, and flip bits in following bytes */
int prefix;
c=(unsigned char *) addr;
do {
switch (text_read_ub(c)) {
case 0x66: case 0x67: case 0x26: case 0x36:
case 0x2e: case 0x3e: case 0x64: case 0x65:
case 0xf0: case 0xf2: case 0xf3:
prefix = 1;
break;
default:
prefix = 0;
break;
}
if (prefix) {
c++;
}
} while (prefix);
if(text_read_ub(c)>=0xd8 && text_read_ub(c)<=0xdf) {
/* don't mess with fp instruction, yet.
* but there shouldn't be any fp instr in kernel.
*/
PDEBUG(("floating point instruction, bailing out\n"));
i--;
continue;
} else if(text_read_ub(c)==0x0f) {
c++;
}
if(text_read_ub(c)==0x0f) {
c++;
}
c++;
len = len-((long) c - (long) addr);
if (len == 0)
{
printf("tex_fault: len = %d\n", len);
count--;
continue;
}
if (len == 0)
{
int i;
printf(
"text_fault: bad length at address %p, c = %p, fault type %ld\n",
addr, c, faultType);
printf("bytes:");
for (i= 0; i<16; i++)
printf(" 0x%02x", text_read_ub((char *)addr+i));
printf("\n");
abort();
*(int *)-4 = 0;
}
flip_bit = random() % (len*8);
PDEBUG(("flip bit %d (len=%d) => ", flip_bit, len));
for(j=0; j<len; j++) {
/* go to the right byte */
if(flip_bit<8) {
flip_bit = 1 << flip_bit;
if (j < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[j] =
(text_read_ub(c) ^ flip_bit);
}
if (injectFault) {
text_write_ub(c, (text_read_ub(c)^flip_bit));
}
j=len;
}
c++;
flip_bit = flip_bit-8;
}
} else if(faultType==PTR_FAULT) {
/* 5f) ptr: if instruction has regmodrm byte (i_has_modrm),
* flip 1 bit in lower byte (0x0f) or any bit in following
* bytes (sib, imm or disp).
*/
int prefix;
c=(unsigned char *) addr;
do {
switch (text_read_ub(c)) {
case 0x66: case 0x67: case 0x26: case 0x36:
case 0x2e: case 0x3e: case 0x64: case 0x65:
case 0xf0: case 0xf2: case 0xf3:
prefix = 1;
break;
default:
prefix = 0;
break;
}
if (prefix) {
c++;
}
} while (prefix);
if(text_read_ub(c)>=0xd8 && text_read_ub(c)<=0xdf) {
/* don't mess with fp instruction, yet */
PDEBUG(("floating point instruction, bailing out\n"));
i--;
continue;
} else if(text_read_ub(c)==0x0f) {
c++;
}
if(text_read_ub(c)==0x0f) {
c++;
}
c++;
len = len-((long) c - (long) addr);
flip_bit = random() % (len*8-4);
PDEBUG(("flip bit %d (len=%d) => ", flip_bit, len));
/* mod/rm byte is special */
if (flip_bit < 4) {
flip_bit = 1 << flip_bit;
rc = c - (unsigned char *) addr;
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = text_read_ub(c) ^ flip_bit;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)^flip_bit);
}
}
c++;
flip_bit=flip_bit-4;
for(j=1; j<len; j++) {
/* go to the right byte */
if (flip_bit<8) {
flip_bit = 1 << flip_bit;
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] =
text_read_ub(c) ^ flip_bit;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)^flip_bit);
}
j=len;
}
c++;
flip_bit = flip_bit-8;
}
} else if(faultType==LOOP_FAULT) {
c=(unsigned char *) addr;
/* replace rep with repe, and vice versa */
if(text_read_ub(c)==0xf3) {
if (j < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[j] = NOP;
}
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = 0xf2;
}
if (injectFault) {
text_write_ub(c, 0xf2);
}
} else if(text_read_ub(c)==0xf2) {
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = 0xf3;
}
if (injectFault) {
text_write_ub(c, 0xf3);
}
} else if( (text_read_ub(c)&0xf0)==0x70 ) {
/* if we've jxx imm8 instruction,
* incl even byte instruction, eg jo (70) to jno (71)
* decl odd byte instruction, eg jnle (7f) to jle (7e)
*/
if(text_read_ub(c)%2 == 0) {
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = text_read_ub(c) + 1;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)+1);
}
} else {
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = text_read_ub(c) - 1;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)-1);
}
}
} else if(text_read_ub(c)==0x66 || text_read_ub(c)==0x67) {
/* override prefix */
c++;
} else if(text_read_ub(c++)==0xf && (text_read_ub(c)&0xf0)==0x80 ) {
/* if we've jxx imm16/32 instruction,
* incl even byte instruction, eg jo (80) to jno (81)
* decl odd byte instruction, eg jnle (8f) to jle (8e)
*/
if(text_read_ub(c)%2 == 0) {
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = text_read_ub(c) + 1;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)+1);
}
} else {
rc = (c - (unsigned char *) addr);
if (rc < sizeof(unsigned long)) {
((unsigned char *) &res[count].new)[rc] = text_read_ub(c) -1;
}
if (injectFault) {
text_write_ub(c, text_read_ub(c)-1);
}
}
}
}
PDEBUG(("%lx\n", text_read_ul(addr)));
}
return(0);
}
#else /* CONFIG_SWIFI */
long
sys_inject_fault(char * module_name,
unsigned long argFaultType,
unsigned long argRandomSeed,
unsigned long argNumFaults,
pswifi_result_t result_record,
unsigned long do_inject)
{
return(0);
}
#endif /* CONFIG_SWIFI */