minix/servers/rs/main.c
Ben Gras 50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00

690 lines
23 KiB
C

/* Reincarnation Server. This servers starts new system services and detects
* they are exiting. In case of errors, system services can be restarted.
* The RS server periodically checks the status of all registered services
* services to see whether they are still alive. The system services are
* expected to periodically send a heartbeat message.
*
* Changes:
* Nov 22, 2009: rewrite of boot process (Cristiano Giuffrida)
* Jul 22, 2005: Created (Jorrit N. Herder)
*/
#include "inc.h"
#include <fcntl.h>
#include "kernel/const.h"
#include "kernel/type.h"
#include "kernel/proc.h"
/* Declare some local functions. */
static void boot_image_info_lookup( endpoint_t endpoint, struct
boot_image *image, struct boot_image **ip, struct boot_image_priv **pp,
struct boot_image_sys **sp, struct boot_image_dev **dp);
static void catch_boot_init_ready(endpoint_t endpoint);
static void get_work(message *m_ptr, int *status_ptr);
/* SEF functions and variables. */
static void sef_local_startup(void);
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
static void sef_cb_signal_handler(int signo);
static int sef_cb_signal_manager(endpoint_t target, int signo);
/*===========================================================================*
* main *
*===========================================================================*/
int main(void)
{
/* This is the main routine of this service. The main loop consists of
* three major activities: getting new work, processing the work, and
* sending the reply. The loop never terminates, unless a panic occurs.
*/
message m; /* request message */
int ipc_status; /* status code */
int call_nr, who_e,who_p; /* call number and caller */
int result; /* result to return */
int s;
/* SEF local startup. */
sef_local_startup();
if (OK != (s=sys_getmachine(&machine)))
panic("couldn't get machine info: %d", s);
if (OK != (s=sys_getkinfo(&kinfo)))
panic("couldn't get kernel kinfo: %d", s);
/* Main loop - get work and do it, forever. */
while (TRUE) {
/* Wait for request message. */
get_work(&m, &ipc_status);
who_e = m.m_source;
if(rs_isokendpt(who_e, &who_p) != OK) {
panic("message from bogus source: %d", who_e);
}
call_nr = m.m_type;
/* Now determine what to do. Four types of requests are expected:
* - Heartbeat messages (notifications from registered system services)
* - System notifications (synchronous alarm)
* - User requests (control messages to manage system services)
* - Ready messages (reply messages from registered services)
*/
/* Notification messages are control messages and do not need a reply.
* These include heartbeat messages and system notifications.
*/
if (is_ipc_notify(ipc_status)) {
switch (who_p) {
case CLOCK:
do_period(&m); /* check services status */
continue;
default: /* heartbeat notification */
if (rproc_ptr[who_p] != NULL) { /* mark heartbeat time */
rproc_ptr[who_p]->r_alive_tm = m.NOTIFY_TIMESTAMP;
} else {
printf("RS: warning: got unexpected notify message from %d\n",
m.m_source);
}
}
}
/* If we get this far, this is a normal request.
* Handle the request and send a reply to the caller.
*/
else {
if (call_nr != COMMON_GETSYSINFO &&
(call_nr < RS_RQ_BASE || call_nr >= RS_RQ_BASE+0x100))
{
/* Ignore invalid requests. Do not try to reply. */
printf("RS: warning: got invalid request %d from endpoint %d\n",
call_nr, m.m_source);
continue;
}
/* Handler functions are responsible for permission checking. */
switch(call_nr) {
/* User requests. */
case RS_UP: result = do_up(&m); break;
case RS_DOWN: result = do_down(&m); break;
case RS_REFRESH: result = do_refresh(&m); break;
case RS_RESTART: result = do_restart(&m); break;
case RS_SHUTDOWN: result = do_shutdown(&m); break;
case RS_UPDATE: result = do_update(&m); break;
case RS_CLONE: result = do_clone(&m); break;
case RS_EDIT: result = do_edit(&m); break;
case COMMON_GETSYSINFO:
result = do_getsysinfo(&m); break;
case RS_LOOKUP: result = do_lookup(&m); break;
/* Ready messages. */
case RS_INIT: result = do_init_ready(&m); break;
case RS_LU_PREPARE: result = do_upd_ready(&m); break;
default:
printf("RS: warning: got unexpected request %d from %d\n",
m.m_type, m.m_source);
result = EINVAL;
}
/* Finally send reply message, unless disabled. */
if (result != EDONTREPLY) {
m.m_type = result;
reply(who_e, NULL, &m);
}
}
}
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
static void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_response(do_init_ready);
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail);
/* Register live update callbacks. */
sef_setcb_lu_response(do_upd_ready);
/* Register signal callbacks. */
sef_setcb_signal_handler(sef_cb_signal_handler);
sef_setcb_signal_manager(sef_cb_signal_manager);
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
{
/* Initialize the reincarnation server. */
struct boot_image *ip;
int s,i;
int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs;
struct rproc *rp;
struct rprocpub *rpub;
struct boot_image image[NR_BOOT_PROCS];
struct boot_image_priv *boot_image_priv;
struct boot_image_sys *boot_image_sys;
struct boot_image_dev *boot_image_dev;
int ipc_to;
int *calls;
int all_c[] = { ALL_C, NULL_C };
int no_c[] = { NULL_C };
/* See if we run in verbose mode. */
env_parse("rs_verbose", "d", 0, &rs_verbose, 0, 1);
if ((s = sys_getinfo(GET_HZ, &system_hz, sizeof(system_hz), 0, 0)) != OK)
panic("Cannot get system timer frequency\n");
/* Initialize the global init descriptor. */
rinit.rproctab_gid = cpf_grant_direct(ANY, (vir_bytes) rprocpub,
sizeof(rprocpub), CPF_READ);
if(!GRANT_VALID(rinit.rproctab_gid)) {
panic("unable to create rprocpub table grant: %d", rinit.rproctab_gid);
}
/* Initialize some global variables. */
rupdate.flags = 0;
shutting_down = FALSE;
/* Get a copy of the boot image table. */
if ((s = sys_getimage(image)) != OK) {
panic("unable to get copy of boot image table: %d", s);
}
/* Determine the number of system services in the boot image table. */
nr_image_srvs = 0;
for(i=0;i<NR_BOOT_PROCS;i++) {
ip = &image[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(ip->endpoint))) {
continue;
}
nr_image_srvs++;
}
/* Determine the number of entries in the boot image priv table and make sure
* it matches the number of system services in the boot image table.
*/
nr_image_priv_srvs = 0;
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
nr_image_priv_srvs++;
}
if(nr_image_srvs != nr_image_priv_srvs) {
panic("boot image table and boot image priv table mismatch");
}
/* Reset the system process table. */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
rp->r_flags = 0;
rp->r_pub = &rprocpub[rp - rproc];
rp->r_pub->in_use = FALSE;
}
/* Initialize the system process table in 4 steps, each of them following
* the appearance of system services in the boot image priv table.
* - Step 1: set priviliges, sys properties, and dev properties (if any)
* for every system service.
*/
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Lookup the corresponding entries in other tables. */
boot_image_info_lookup(boot_image_priv->endpoint, image,
&ip, NULL, &boot_image_sys, &boot_image_dev);
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/*
* Set privileges.
*/
/* Get label. */
strcpy(rpub->label, boot_image_priv->label);
/* Force a static priv id for system services in the boot image. */
rp->r_priv.s_id = static_priv_id(
_ENDPOINT_P(boot_image_priv->endpoint));
/* Initialize privilege bitmaps and signal manager. */
rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */
rp->r_priv.s_trap_mask= SRV_OR_USR(rp, SRV_T, USR_T); /* traps */
ipc_to = SRV_OR_USR(rp, SRV_M, USR_M); /* targets */
fill_send_mask(&rp->r_priv.s_ipc_to, ipc_to == ALL_M);
rp->r_priv.s_sig_mgr= SRV_OR_USR(rp, SRV_SM, USR_SM); /* sig mgr */
rp->r_priv.s_bak_sig_mgr = NONE; /* backup sig mgr */
/* Initialize kernel call mask bitmap. */
calls = SRV_OR_USR(rp, SRV_KC, USR_KC) == ALL_C ? all_c : no_c;
fill_call_mask(calls, NR_SYS_CALLS,
rp->r_priv.s_k_call_mask, KERNEL_CALL, TRUE);
/* Set the privilege structure. RS and VM are exceptions and are already
* running.
*/
if(boot_image_priv->endpoint != RS_PROC_NR &&
boot_image_priv->endpoint != VM_PROC_NR) {
if ((s = sys_privctl(ip->endpoint, SYS_PRIV_SET_SYS, &(rp->r_priv)))
!= OK) {
panic("unable to set privilege structure: %d", s);
}
}
/* Synch the privilege structure with the kernel. */
if ((s = sys_getpriv(&(rp->r_priv), ip->endpoint)) != OK) {
panic("unable to synch privilege structure: %d", s);
}
/*
* Set sys properties.
*/
rpub->sys_flags = boot_image_sys->flags; /* sys flags */
/*
* Set dev properties.
*/
rpub->dev_flags = boot_image_dev->flags; /* device flags */
rpub->dev_nr = boot_image_dev->dev_nr; /* major device number */
rpub->dev_style = boot_image_dev->dev_style; /* device style */
rpub->dev_style2 = boot_image_dev->dev_style2; /* device style 2 */
/* Get process name. */
strcpy(rpub->proc_name, ip->proc_name);
/* Build command settings. */
rp->r_cmd[0]= '\0';
rp->r_script[0]= '\0';
build_cmd_dep(rp);
/* Initialize vm call mask bitmap. */
calls = SRV_OR_USR(rp, SRV_VC, USR_VC) == ALL_C ? all_c : no_c;
fill_call_mask(calls, NR_VM_CALLS, rpub->vm_call_mask, VM_RQ_BASE, TRUE);
/* Scheduling parameters. */
rp->r_scheduler = SRV_OR_USR(rp, SRV_SCH, USR_SCH);
rp->r_priority = SRV_OR_USR(rp, SRV_Q, USR_Q);
rp->r_quantum = SRV_OR_USR(rp, SRV_QT, USR_QT);
/* Get some settings from the boot image table. */
rpub->endpoint = ip->endpoint;
/* Set some defaults. */
rp->r_old_rp = NULL; /* no old version yet */
rp->r_new_rp = NULL; /* no new version yet */
rp->r_prev_rp = NULL; /* no prev replica yet */
rp->r_next_rp = NULL; /* no next replica yet */
rp->r_uid = 0; /* root */
rp->r_check_tm = 0; /* not checked yet */
getuptime(&rp->r_alive_tm); /* currently alive */
rp->r_stop_tm = 0; /* not exiting yet */
rp->r_restarts = 0; /* no restarts so far */
rp->r_period = 0; /* no period yet */
rp->r_exec = NULL; /* no in-memory copy yet */
rp->r_exec_len = 0;
/* Mark as in use and active. */
rp->r_flags = RS_IN_USE | RS_ACTIVE;
rproc_ptr[_ENDPOINT_P(rpub->endpoint)]= rp;
rpub->in_use = TRUE;
}
/* - Step 2: allow every system service in the boot image to run. */
nr_uncaught_init_srvs = 0;
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Lookup the corresponding slot in the system process table. */
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/* RS/VM are already running as we speak. */
if(boot_image_priv->endpoint == RS_PROC_NR ||
boot_image_priv->endpoint == VM_PROC_NR) {
if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) {
panic("unable to initialize %d: %d", boot_image_priv->endpoint, s);
}
continue;
}
/* Allow the service to run. */
if ((s = sched_init_proc(rp)) != OK) {
panic("unable to initialize scheduling: %d", s);
}
if ((s = sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL)) != OK) {
panic("unable to initialize privileges: %d", s);
}
/* Initialize service. We assume every service will always get
* back to us here at boot time.
*/
if(boot_image_priv->flags & SYS_PROC) {
if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) {
panic("unable to initialize service: %d", s);
}
if(rpub->sys_flags & SF_SYNCH_BOOT) {
/* Catch init ready message now to synchronize. */
catch_boot_init_ready(rpub->endpoint);
}
else {
/* Catch init ready message later. */
nr_uncaught_init_srvs++;
}
}
}
/* - Step 3: let every system service complete initialization by
* catching all the init ready messages left.
*/
while(nr_uncaught_init_srvs) {
catch_boot_init_ready(ANY);
nr_uncaught_init_srvs--;
}
/* - Step 4: all the system services in the boot image are now running.
* Complete the initialization of the system process table in collaboration
* with other system services.
*/
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Lookup the corresponding slot in the system process table. */
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/* Get pid from PM. */
rp->r_pid = getnpid(rpub->endpoint);
if(rp->r_pid == -1) {
panic("unable to get pid");
}
}
/* Set alarm to periodically check service status. */
if (OK != (s=sys_setalarm(RS_DELTA_T, 0)))
panic("couldn't set alarm: %d", s);
#if USE_LIVEUPDATE
/* Now create a new RS instance and let the current
* instance live update into the replica. Clone RS' own slot first.
*/
rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)];
if((s = clone_slot(rp, &replica_rp)) != OK) {
panic("unable to clone current RS instance: %d", s);
}
/* Fork a new RS instance with root:operator. */
pid = srv_fork(0, 0);
if(pid == -1) {
panic("unable to fork a new RS instance");
}
replica_pid = pid ? pid : getpid();
replica_endpoint = getnprocnr(replica_pid);
replica_rp->r_pid = replica_pid;
replica_rp->r_pub->endpoint = replica_endpoint;
if(pid == 0) {
/* New RS instance running. */
/* Live update the old instance into the new one. */
s = update_service(&rp, &replica_rp, RS_SWAP);
if(s != OK) {
panic("unable to live update RS: %d", s);
}
cpf_reload();
/* Clean up the old RS instance, the new instance will take over. */
cleanup_service(rp);
/* Ask VM to pin memory for the new RS instance. */
if((s = vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN)) != OK) {
panic("unable to pin memory for the new RS instance: %d", s);
}
}
else {
/* Old RS instance running. */
/* Set up privileges for the new instance and let it run. */
s = sys_privctl(replica_endpoint, SYS_PRIV_SET_SYS, &(replica_rp->r_priv));
if(s != OK) {
panic("unable to set privileges for the new RS instance: %d", s);
}
if ((s = sched_init_proc(replica_rp)) != OK) {
panic("unable to initialize RS replica scheduling: %d", s);
}
s = sys_privctl(replica_endpoint, SYS_PRIV_YIELD, NULL);
if(s != OK) {
panic("unable to yield control to the new RS instance: %d", s);
}
NOT_REACHABLE;
}
#endif /* USE_LIVEUPDATE */
return(OK);
}
/*===========================================================================*
* sef_cb_signal_handler *
*===========================================================================*/
static void sef_cb_signal_handler(int signo)
{
/* Check for known signals, ignore anything else. */
switch(signo) {
case SIGCHLD:
do_sigchld();
break;
case SIGTERM:
do_shutdown(NULL);
break;
}
}
/*===========================================================================*
* sef_cb_signal_manager *
*===========================================================================*/
static int sef_cb_signal_manager(endpoint_t target, int signo)
{
/* Process system signal on behalf of the kernel. */
int target_p;
struct rproc *rp;
struct rprocpub *rpub;
message m;
/* Lookup slot. */
if(rs_isokendpt(target, &target_p) != OK || rproc_ptr[target_p] == NULL) {
if(rs_verbose)
printf("RS: ignoring spurious signal %d for process %d\n",
signo, target);
return OK; /* clear the signal */
}
rp = rproc_ptr[target_p];
rpub = rp->r_pub;
/* Don't bother if a termination signal has already been processed. */
if((rp->r_flags & RS_TERMINATED) && !(rp->r_flags & RS_EXITING)) {
return EDEADEPT; /* process is gone */
}
/* Ignore external signals for inactive service instances. */
if( !(rp->r_flags & RS_ACTIVE) && !(rp->r_flags & RS_EXITING)) {
if(rs_verbose)
printf("RS: ignoring signal %d for inactive %s\n",
signo, srv_to_string(rp));
return OK; /* clear the signal */
}
if(rs_verbose)
printf("RS: %s got %s signal %d\n", srv_to_string(rp),
SIGS_IS_TERMINATION(signo) ? "termination" : "non-termination",signo);
/* Print stacktrace if necessary. */
if(SIGS_IS_STACKTRACE(signo)) {
sys_sysctl_stacktrace(target);
}
/* In case of termination signal handle the event. */
if(SIGS_IS_TERMINATION(signo)) {
rp->r_flags |= RS_TERMINATED;
terminate_service(rp);
return EDEADEPT; /* process is now gone */
}
/* Translate every non-termination signal into a message. */
m.m_type = SIGS_SIGNAL_RECEIVED;
m.SIGS_SIG_NUM = signo;
asynsend3(rpub->endpoint, &m, AMF_NOREPLY);
return OK; /* signal has been delivered */
}
/*===========================================================================*
* boot_image_info_lookup *
*===========================================================================*/
static void boot_image_info_lookup(endpoint, image, ip, pp, sp, dp)
endpoint_t endpoint;
struct boot_image *image;
struct boot_image **ip;
struct boot_image_priv **pp;
struct boot_image_sys **sp;
struct boot_image_dev **dp;
{
/* Lookup entries in boot image tables. */
int i;
/* When requested, locate the corresponding entry in the boot image table
* or panic if not found.
*/
if(ip) {
for (i=0; i < NR_BOOT_PROCS; i++) {
if(image[i].endpoint == endpoint) {
*ip = &image[i];
break;
}
}
if(i == NR_BOOT_PROCS) {
panic("boot image table lookup failed");
}
}
/* When requested, locate the corresponding entry in the boot image priv table
* or panic if not found.
*/
if(pp) {
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
if(boot_image_priv_table[i].endpoint == endpoint) {
*pp = &boot_image_priv_table[i];
break;
}
}
if(i == NULL_BOOT_NR) {
panic("boot image priv table lookup failed");
}
}
/* When requested, locate the corresponding entry in the boot image sys table
* or resort to the default entry if not found.
*/
if(sp) {
for (i=0; boot_image_sys_table[i].endpoint != DEFAULT_BOOT_NR; i++) {
if(boot_image_sys_table[i].endpoint == endpoint) {
*sp = &boot_image_sys_table[i];
break;
}
}
if(boot_image_sys_table[i].endpoint == DEFAULT_BOOT_NR) {
*sp = &boot_image_sys_table[i]; /* accept the default entry */
}
}
/* When requested, locate the corresponding entry in the boot image dev table
* or resort to the default entry if not found.
*/
if(dp) {
for (i=0; boot_image_dev_table[i].endpoint != DEFAULT_BOOT_NR; i++) {
if(boot_image_dev_table[i].endpoint == endpoint) {
*dp = &boot_image_dev_table[i];
break;
}
}
if(boot_image_dev_table[i].endpoint == DEFAULT_BOOT_NR) {
*dp = &boot_image_dev_table[i]; /* accept the default entry */
}
}
}
/*===========================================================================*
* catch_boot_init_ready *
*===========================================================================*/
static void catch_boot_init_ready(endpoint)
endpoint_t endpoint;
{
/* Block and catch an init ready message from the given source. */
int r;
int ipc_status;
message m;
struct rproc *rp;
int result;
/* Receive init ready message. */
if ((r = sef_receive_status(endpoint, &m, &ipc_status)) != OK) {
panic("unable to receive init reply: %d", r);
}
if(m.m_type != RS_INIT) {
panic("unexpected reply from service: %d", m.m_source);
}
result = m.RS_INIT_RESULT;
rp = rproc_ptr[_ENDPOINT_P(m.m_source)];
/* Check result. */
if(result != OK) {
panic("unable to complete init for service: %d", m.m_source);
}
/* Send a reply to unblock the service. */
m.m_type = OK;
reply(m.m_source, rp, &m);
/* Mark the slot as no longer initializing. */
rp->r_flags &= ~RS_INITIALIZING;
rp->r_check_tm = 0;
getuptime(&rp->r_alive_tm);
}
/*===========================================================================*
* get_work *
*===========================================================================*/
static void get_work(m_ptr, status_ptr)
message *m_ptr; /* pointer to message */
int *status_ptr; /* pointer to status */
{
int r;
if (OK != (r=sef_receive_status(ANY, m_ptr, status_ptr)))
panic("sef_receive_status failed: %d", r);
}