50e2064049
This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
783 lines
19 KiB
ArmAsm
783 lines
19 KiB
ArmAsm
/* sections */
|
|
|
|
|
|
#include <minix/config.h>
|
|
#include <minix/const.h>
|
|
#include <machine/asm.h>
|
|
#include <machine/interrupt.h>
|
|
#include <machine/vm.h>
|
|
#include "archconst.h"
|
|
#include "kernel/const.h"
|
|
#include "sconst.h"
|
|
#include <machine/multiboot.h>
|
|
|
|
|
|
/* Easy way to make functions */
|
|
|
|
/* Make a function of the form func(arg) */
|
|
|
|
#define STACKARG 8(%ebp)
|
|
|
|
#define ARG_EAX_ACTION(FUNCTION, ACTION) ;\
|
|
ENTRY(FUNCTION) ;\
|
|
push %ebp ;\
|
|
mov %esp, %ebp ;\
|
|
mov STACKARG, %eax ;\
|
|
ACTION ;\
|
|
pop %ebp ;\
|
|
ret
|
|
|
|
/* Make a function of the form ret = func() */
|
|
#define ARG_EAX_RETURN(FUNCTION, EXPR) ;\
|
|
ENTRY(FUNCTION) ;\
|
|
push %ebp ;\
|
|
mov %esp, %ebp ;\
|
|
mov EXPR, %eax ;\
|
|
pop %ebp ;\
|
|
ret
|
|
|
|
/* Make a function of the form ret = func() */
|
|
#define ARG_EAX_SET(FUNCTION, DEST) ;\
|
|
ENTRY(FUNCTION) ;\
|
|
push %ebp ;\
|
|
mov %esp, %ebp ;\
|
|
mov STACKARG, %eax ;\
|
|
mov %eax, DEST ;\
|
|
jmp 0f /* a jump is required for some sets */ ;\
|
|
0: pop %ebp ;\
|
|
ret
|
|
|
|
/* Make a function of the form ret = func() */
|
|
#define ARG_AX_SET(FUNCTION, DEST) ;\
|
|
ENTRY(FUNCTION) ;\
|
|
push %ebp ;\
|
|
mov %esp, %ebp ;\
|
|
mov STACKARG, %eax ;\
|
|
mov %ax, DEST ;\
|
|
jmp 0f /* a jump is required for some sets */ ;\
|
|
0: pop %ebp ;\
|
|
ret
|
|
|
|
/*
|
|
* This file contains a number of assembly code utility routines needed by the
|
|
* kernel.
|
|
*/
|
|
|
|
ENTRY(__main)
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* phys_insw */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void phys_insw(Port_t port, phys_bytes buf, size_t count);
|
|
* Input an array from an I/O port. Absolute address version of insw().
|
|
*/
|
|
/* transfer data from (disk controller) port to memory */
|
|
ENTRY(phys_insw)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
cld
|
|
push %edi
|
|
|
|
mov 8(%ebp), %edx /* port to read from */
|
|
mov 12(%ebp), %edi /* destination addr */
|
|
mov 16(%ebp), %ecx /* byte count */
|
|
shr $1, %ecx /* word count */
|
|
rep insw /* input many words */
|
|
pop %edi
|
|
pop %ebp
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* phys_insb */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void phys_insb(Port_t port, phys_bytes buf, size_t count);
|
|
* Input an array from an I/O port. Absolute address version of insb().
|
|
*/
|
|
/* transfer data from (disk controller) port to memory byte by byte */
|
|
ENTRY(phys_insb)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
cld
|
|
push %edi
|
|
|
|
mov 8(%ebp), %edx /* port to read from */
|
|
mov 12(%ebp), %edi /* destination addr */
|
|
mov 16(%ebp), %ecx /* byte count */
|
|
rep insb /* input many bytes */
|
|
pop %edi
|
|
pop %ebp
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* phys_outsw */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void phys_outsw(Port_t port, phys_bytes buf, size_t count);
|
|
* Output an array to an I/O port. Absolute address version of outsw().
|
|
*/
|
|
/* transfer data from memory to (disk controller) port */
|
|
ENTRY(phys_outsw)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
cld
|
|
push %esi
|
|
|
|
mov 8(%ebp), %edx /* port to write to */
|
|
mov 12(%ebp), %esi /* source addr */
|
|
mov 16(%ebp), %ecx /* byte count */
|
|
shr $1, %ecx /* word count */
|
|
rep outsw /* output many words */
|
|
pop %esi
|
|
pop %ebp
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* phys_outsb */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void phys_outsb(Port_t port, phys_bytes buf, size_t count);
|
|
* Output an array to an I/O port. Absolute address version of outsb().
|
|
*/
|
|
/* transfer data from memory to (disk controller) port byte by byte */
|
|
ENTRY(phys_outsb)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
cld
|
|
push %esi
|
|
|
|
mov 8(%ebp), %edx /* port to write to */
|
|
mov 12(%ebp), %esi /* source addr */
|
|
mov 16(%ebp), %ecx /* byte count */
|
|
rep outsb /* output many bytes */
|
|
pop %esi
|
|
pop %ebp
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* phys_copy */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC phys_bytes phys_copy(phys_bytes source, phys_bytes destination,
|
|
* phys_bytes bytecount);
|
|
* Copy a block of data from anywhere to anywhere in physical memory.
|
|
*/
|
|
/* es edi esi eip src dst len */
|
|
ENTRY(phys_copy)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
|
|
cld
|
|
push %esi
|
|
push %edi
|
|
|
|
mov 8(%ebp), %esi
|
|
mov 12(%ebp), %edi
|
|
mov 16(%ebp), %eax
|
|
|
|
cmp $10, %eax /* avoid align overhead for small counts */
|
|
jb pc_small
|
|
mov %esi, %ecx /* align source, hope target is too */
|
|
neg %ecx
|
|
and $3, %ecx /* count for alignment */
|
|
sub %ecx, %eax
|
|
|
|
rep movsb (%esi), (%edi)
|
|
mov %eax, %ecx
|
|
shr $2, %ecx /* count of dwords */
|
|
|
|
rep movsl (%esi), (%edi)
|
|
and $3, %eax
|
|
pc_small:
|
|
xchg %eax, %ecx /* remainder */
|
|
|
|
rep movsb (%esi), (%edi)
|
|
|
|
mov $0, %eax /* 0 means: no fault */
|
|
LABEL(phys_copy_fault) /* kernel can send us here */
|
|
pop %edi
|
|
pop %esi
|
|
pop %ebp
|
|
ret
|
|
|
|
LABEL(phys_copy_fault_in_kernel) /* kernel can send us here */
|
|
pop %edi
|
|
pop %esi
|
|
pop %ebp
|
|
mov %cr2, %eax
|
|
ret
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* copy_msg_from_user */
|
|
/*===========================================================================*/
|
|
/*
|
|
* int copy_msg_from_user(message * user_mbuf, message * dst);
|
|
*
|
|
* Copies a message of 36 bytes from user process space to a kernel buffer. This
|
|
* function assumes that the process address space is installed (cr3 loaded).
|
|
*
|
|
* This function from the callers point of view either succeeds or returns an
|
|
* error which gives the caller a chance to respond accordingly. In fact it
|
|
* either succeeds or if it generates a pagefault, general protection or other
|
|
* exception, the trap handler has to redirect the execution to
|
|
* __user_copy_msg_pointer_failure where the error is reported to the caller
|
|
* without resolving the pagefault. It is not kernel's problem to deal with
|
|
* wrong pointers from userspace and the caller should return an error to
|
|
* userspace as if wrong values or request were passed to the kernel
|
|
*/
|
|
ENTRY(copy_msg_from_user)
|
|
/* load the source pointer */
|
|
mov 4(%esp), %ecx
|
|
/* load the destination pointer */
|
|
mov 8(%esp), %edx
|
|
|
|
/* mov 0*4(%ecx), %eax
|
|
mov %eax, 0*4(%edx) */
|
|
mov 1*4(%ecx), %eax
|
|
mov %eax, 1*4(%edx)
|
|
mov 2*4(%ecx), %eax
|
|
mov %eax, 2*4(%edx)
|
|
mov 3*4(%ecx), %eax
|
|
mov %eax, 3*4(%edx)
|
|
mov 4*4(%ecx), %eax
|
|
mov %eax, 4*4(%edx)
|
|
mov 5*4(%ecx), %eax
|
|
mov %eax, 5*4(%edx)
|
|
mov 6*4(%ecx), %eax
|
|
mov %eax, 6*4(%edx)
|
|
mov 7*4(%ecx), %eax
|
|
mov %eax, 7*4(%edx)
|
|
mov 8*4(%ecx), %eax
|
|
mov %eax, 8*4(%edx)
|
|
|
|
LABEL(__copy_msg_from_user_end)
|
|
movl $0, %eax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* copy_msg_to_user */
|
|
/*===========================================================================*/
|
|
/*
|
|
* void copy_msg_to_user(message * src, message * user_mbuf);
|
|
*
|
|
* Copies a message of 36 bytes to user process space from a kernel buffer.
|
|
*
|
|
* All the other copy_msg_from_user() comments apply here as well!
|
|
*/
|
|
ENTRY(copy_msg_to_user)
|
|
/* load the source pointer */
|
|
mov 4(%esp), %ecx
|
|
/* load the destination pointer */
|
|
mov 8(%esp), %edx
|
|
|
|
mov 0*4(%ecx), %eax
|
|
mov %eax, 0*4(%edx)
|
|
mov 1*4(%ecx), %eax
|
|
mov %eax, 1*4(%edx)
|
|
mov 2*4(%ecx), %eax
|
|
mov %eax, 2*4(%edx)
|
|
mov 3*4(%ecx), %eax
|
|
mov %eax, 3*4(%edx)
|
|
mov 4*4(%ecx), %eax
|
|
mov %eax, 4*4(%edx)
|
|
mov 5*4(%ecx), %eax
|
|
mov %eax, 5*4(%edx)
|
|
mov 6*4(%ecx), %eax
|
|
mov %eax, 6*4(%edx)
|
|
mov 7*4(%ecx), %eax
|
|
mov %eax, 7*4(%edx)
|
|
mov 8*4(%ecx), %eax
|
|
mov %eax, 8*4(%edx)
|
|
|
|
LABEL(__copy_msg_to_user_end)
|
|
movl $0, %eax
|
|
ret
|
|
|
|
/*
|
|
* if a function from a selected set of copies from or to userspace fails, it is
|
|
* because of a wrong pointer supplied by the userspace. We have to clean up and
|
|
* and return -1 to indicated that something wrong has happend. The place it was
|
|
* called from has to handle this situation. The exception handler redirect us
|
|
* here to continue, clean up and report the error
|
|
*/
|
|
ENTRY(__user_copy_msg_pointer_failure)
|
|
movl $-1, %eax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* phys_memset */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void phys_memset(phys_bytes source, unsigned long pattern,
|
|
* phys_bytes bytecount);
|
|
* Fill a block of physical memory with pattern.
|
|
*/
|
|
ENTRY(phys_memset)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
push %esi
|
|
push %ebx
|
|
|
|
mov 8(%ebp), %esi
|
|
mov 16(%ebp), %eax
|
|
mov 12(%ebp), %ebx
|
|
shr $2, %eax
|
|
fill_start:
|
|
mov %ebx, (%esi)
|
|
add $4, %esi
|
|
dec %eax
|
|
jne fill_start
|
|
/* Any remaining bytes? */
|
|
mov 16(%ebp), %eax
|
|
and $3, %eax
|
|
remain_fill:
|
|
cmp $0, %eax
|
|
je fill_done
|
|
movb 12(%ebp), %bl
|
|
movb %bl, (%esi)
|
|
add $1, %esi
|
|
inc %ebp
|
|
dec %eax
|
|
jmp remain_fill
|
|
|
|
fill_done:
|
|
LABEL(memset_fault) /* kernel can send us here */
|
|
mov $0, %eax /* 0 means: no fault */
|
|
pop %ebx
|
|
pop %esi
|
|
pop %ebp
|
|
ret
|
|
|
|
LABEL(memset_fault_in_kernel) /* kernel can send us here */
|
|
pop %ebx
|
|
pop %esi
|
|
pop %ebp
|
|
mov %cr2, %eax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* x86_triplefault */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void x86_triplefault();
|
|
* Reset the system by loading IDT with offset 0 and interrupting.
|
|
*/
|
|
ENTRY(x86_triplefault)
|
|
lidt idt_zero
|
|
int $3 /* anything goes, the 386 will not like it */
|
|
.data
|
|
idt_zero:
|
|
.long 0, 0
|
|
.text
|
|
|
|
|
|
/*===========================================================================*/
|
|
/* halt_cpu */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC void halt_cpu(void);
|
|
* reanables interrupts and puts the cpu in the halts state. Once an interrupt
|
|
* is handled the execution resumes by disabling interrupts and continues
|
|
*/
|
|
ENTRY(halt_cpu)
|
|
sti
|
|
hlt /* interrupts enabled only after this instruction is executed! */
|
|
/*
|
|
* interrupt handlers make sure that the interrupts are disabled when we
|
|
* get here so we take only _one_ interrupt after halting the CPU
|
|
*/
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* read_flags */
|
|
/*===========================================================================*/
|
|
/*
|
|
* PUBLIC unsigned long read_cpu_flags(void);
|
|
* Read CPU status flags from C.
|
|
*/
|
|
ENTRY(read_cpu_flags)
|
|
pushf
|
|
mov (%esp), %eax
|
|
add $4, %esp
|
|
ret
|
|
|
|
ENTRY(read_ds)
|
|
mov $0, %eax
|
|
mov %ds, %ax
|
|
ret
|
|
|
|
ENTRY(read_cs)
|
|
mov $0, %eax
|
|
mov %cs, %ax
|
|
ret
|
|
|
|
ENTRY(read_ss)
|
|
mov $0, %eax
|
|
mov %ss, %ax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* fpu_routines */
|
|
/*===========================================================================*/
|
|
|
|
/* non-waiting FPU initialization */
|
|
ENTRY(fninit)
|
|
fninit
|
|
ret
|
|
|
|
ENTRY(clts)
|
|
clts
|
|
ret
|
|
|
|
/* store status word (non-waiting) */
|
|
ENTRY(fnstsw)
|
|
xor %eax, %eax
|
|
|
|
/* DO NOT CHANGE THE OPERAND!!! gas2ack does not handle it yet */
|
|
fnstsw %ax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* fxrstor */
|
|
/*===========================================================================*/
|
|
ENTRY(fxrstor)
|
|
mov 4(%esp), %eax
|
|
fxrstor (%eax)
|
|
ENTRY(__fxrstor_end)
|
|
xor %eax, %eax
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* frstor */
|
|
/*===========================================================================*/
|
|
ENTRY(frstor)
|
|
mov 4(%esp), %eax
|
|
frstor (%eax)
|
|
ENTRY(__frstor_end)
|
|
xor %eax, %eax
|
|
ret
|
|
|
|
/* Shared exception handler for both fxrstor and frstor. */
|
|
ENTRY(__frstor_failure)
|
|
mov $1, %eax
|
|
ret
|
|
|
|
/* Read/write control registers */
|
|
ARG_EAX_RETURN(read_cr0, %cr0);
|
|
ARG_EAX_RETURN(read_cr2, %cr2);
|
|
ARG_EAX_RETURN(read_cr3, %cr3);
|
|
ARG_EAX_RETURN(read_cr4, %cr4);
|
|
ARG_EAX_SET(write_cr4, %cr4);
|
|
ARG_EAX_SET(write_cr0, %cr0);
|
|
ARG_EAX_SET(write_cr3, %cr3);
|
|
|
|
/* Read/write various descriptor tables */
|
|
ARG_EAX_ACTION(x86_ltr, ltr STACKARG );
|
|
ARG_EAX_ACTION(x86_lidt, lidtl (%eax));
|
|
ARG_EAX_ACTION(x86_lgdt, lgdt (%eax));
|
|
ARG_EAX_ACTION(x86_lldt, lldt STACKARG);
|
|
ARG_EAX_ACTION(x86_sgdt, sgdt (%eax));
|
|
ARG_EAX_ACTION(x86_sidt, sidt (%eax));
|
|
|
|
/* Load segments */
|
|
ARG_AX_SET(x86_load_ds, %ds)
|
|
ARG_AX_SET(x86_load_es, %es)
|
|
ARG_AX_SET(x86_load_fs, %fs)
|
|
ARG_AX_SET(x86_load_gs, %gs)
|
|
ARG_AX_SET(x86_load_ss, %ss)
|
|
|
|
/* FPU */
|
|
ARG_EAX_ACTION(fnsave, fnsave (%eax) ; fwait);
|
|
ARG_EAX_ACTION(fxsave, fxsave (%eax));
|
|
ARG_EAX_ACTION(fnstcw, fnstcw (%eax));
|
|
|
|
/* invlpg */
|
|
ARG_EAX_ACTION(i386_invlpg, invlpg (%eax));
|
|
|
|
ENTRY(x86_load_kerncs)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
mov 8(%ebp), %eax
|
|
jmp $KERN_CS_SELECTOR, $newcs
|
|
newcs:
|
|
pop %ebp
|
|
ret
|
|
|
|
/*
|
|
* Read the Model Specific Register (MSR) of IA32 architecture
|
|
*
|
|
* void ia32_msr_read(u32_t reg, u32_t * hi, u32_t * lo)
|
|
*/
|
|
ENTRY(ia32_msr_read)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
|
|
mov 8(%ebp), %ecx
|
|
rdmsr
|
|
mov 12(%ebp), %ecx
|
|
mov %edx, (%ecx)
|
|
mov 16(%ebp), %ecx
|
|
mov %eax, (%ecx)
|
|
|
|
pop %ebp
|
|
ret
|
|
|
|
/*
|
|
* Write the Model Specific Register (MSR) of IA32 architecture
|
|
*
|
|
* void ia32_msr_write(u32_t reg, u32_t hi, u32_t lo)
|
|
*/
|
|
ENTRY(ia32_msr_write)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
|
|
mov 12(%ebp), %edx
|
|
mov 16(%ebp), %eax
|
|
mov 8(%ebp), %ecx
|
|
wrmsr
|
|
|
|
pop %ebp
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* __switch_address_space */
|
|
/*===========================================================================*/
|
|
/* PUBLIC void __switch_address_space(struct proc *p, struct ** ptproc)
|
|
*
|
|
* sets the %cr3 register to the supplied value if it is not already set to the
|
|
* same value in which case it would only result in an extra TLB flush which is
|
|
* not desirable
|
|
*/
|
|
ENTRY(__switch_address_space)
|
|
/* read the process pointer */
|
|
mov 4(%esp), %edx
|
|
/* get the new cr3 value */
|
|
movl P_CR3(%edx), %eax
|
|
/* test if the new cr3 != NULL */
|
|
cmpl $0, %eax
|
|
je 0f
|
|
|
|
/*
|
|
* test if the cr3 is loaded with the current value to avoid unnecessary
|
|
* TLB flushes
|
|
*/
|
|
mov %cr3, %ecx
|
|
cmp %ecx, %eax
|
|
je 0f
|
|
mov %eax, %cr3
|
|
/* get ptproc */
|
|
mov 8(%esp), %eax
|
|
mov %edx, (%eax)
|
|
0:
|
|
ret
|
|
|
|
/* acknowledge just the master PIC */
|
|
ENTRY(eoi_8259_master)
|
|
movb $END_OF_INT, %al
|
|
outb $INT_CTL
|
|
ret
|
|
|
|
/* we have to acknowledge both PICs */
|
|
ENTRY(eoi_8259_slave)
|
|
movb $END_OF_INT, %al
|
|
outb $INT_CTL
|
|
outb $INT2_CTL
|
|
ret
|
|
|
|
/* in some cases we need to force TLB update, reloading cr3 does the trick */
|
|
ENTRY(refresh_tlb)
|
|
mov %cr3, %eax
|
|
mov %eax, %cr3
|
|
ret
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*===========================================================================*/
|
|
/* smp_get_htt */
|
|
/*===========================================================================*/
|
|
/* PUBLIC int smp_get_htt(void); */
|
|
/* return true if the processor is hyper-threaded. */
|
|
ENTRY(smp_get_htt)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
pushf
|
|
pop %eax
|
|
mov %eax, %ebx
|
|
and $0x200000, %eax
|
|
je 0f
|
|
mov $0x1, %eax
|
|
/* FIXME don't use the byte code */
|
|
.byte 0x0f, 0xa2 /* opcode for cpuid */
|
|
mov %edx, %eax
|
|
pop %ebp
|
|
ret
|
|
0:
|
|
xor %eax, %eax
|
|
pop %ebp
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* smp_get_num_htt */
|
|
/*===========================================================================*/
|
|
/* PUBLIC int smp_get_num_htt(void); */
|
|
/* Get the number of hyper-threaded processor cores */
|
|
ENTRY(smp_get_num_htt)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
pushf
|
|
pop %eax
|
|
mov %eax, %ebx
|
|
and $0x200000, %eax
|
|
je 0f
|
|
mov $0x1, %eax
|
|
/* FIXME don't use the byte code */
|
|
.byte 0x0f, 0xa2 /* opcode for cpuid */
|
|
mov %ebx, %eax
|
|
pop %ebp
|
|
ret
|
|
0:
|
|
xor %eax, %eax
|
|
pop %ebp
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* smp_get_cores */
|
|
/*===========================================================================*/
|
|
/* PUBLIC int smp_get_cores(void); */
|
|
/* Get the number of cores. */
|
|
ENTRY(smp_get_cores)
|
|
push %ebp
|
|
mov %esp, %ebp
|
|
pushf
|
|
pop %eax
|
|
mov %eax, %ebx
|
|
and $0x200000, %eax
|
|
je 0f
|
|
push %ecx
|
|
xor %ecx, %ecx
|
|
mov $0x4, %eax
|
|
/* FIXME don't use the byte code */
|
|
.byte 0x0f, 0xa2 /* opcode for cpuid */
|
|
pop %ebp
|
|
ret
|
|
0:
|
|
xor %eax, %eax
|
|
pop %ebp
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* arch_spinlock_lock */
|
|
/*===========================================================================*/
|
|
/* void arch_spinlock_lock (u32_t *lock_data)
|
|
* {
|
|
* while (test_and_set(lock_data) == 1)
|
|
* while (*lock_data == 1)
|
|
* ;
|
|
* }
|
|
* eax register is clobbered.
|
|
*/
|
|
ENTRY(arch_spinlock_lock)
|
|
mov 4(%esp), %eax
|
|
mov $1, %edx
|
|
2:
|
|
mov $1, %ecx
|
|
xchg %ecx, (%eax)
|
|
test %ecx, %ecx
|
|
je 0f
|
|
|
|
cmp $(1<< 16), %edx
|
|
je 1f
|
|
shl %edx
|
|
1:
|
|
mov %edx, %ecx
|
|
3:
|
|
pause
|
|
sub $1, %ecx
|
|
test %ecx, %ecx
|
|
jz 2b
|
|
jmp 3b
|
|
0:
|
|
mfence
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* arch_spinlock_unlock */
|
|
/*===========================================================================*/
|
|
/* * void arch_spinlock_unlock (unsigned int *lockp) */
|
|
/* spin lock release routine. */
|
|
ENTRY(arch_spinlock_unlock)
|
|
mov 4(%esp), %eax
|
|
mov $0, %ecx
|
|
xchg %ecx, (%eax)
|
|
mfence
|
|
ret
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*===========================================================================*/
|
|
/* mfence */
|
|
/*===========================================================================*/
|
|
/* PUBLIC void mfence (void); */
|
|
/* architecture specific memory barrier routine. */
|
|
ENTRY(mfence)
|
|
mfence
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* arch_pause */
|
|
/*===========================================================================*/
|
|
/* PUBLIC void arch_pause (void); */
|
|
/* architecture specific pause routine. */
|
|
ENTRY(arch_pause)
|
|
pause
|
|
ret
|
|
|
|
/*===========================================================================*/
|
|
/* read_ebp */
|
|
/*===========================================================================*/
|
|
/* PUBLIC u16_t cpuid(void) */
|
|
ENTRY(read_ebp)
|
|
mov %ebp, %eax
|
|
ret
|
|
|
|
ENTRY(interrupts_enable)
|
|
sti
|
|
ret
|
|
|
|
ENTRY(interrupts_disable)
|
|
cli
|
|
ret
|
|
|
|
|
|
/*
|
|
* void switch_k_stack(void * esp, void (* continuation)(void));
|
|
*
|
|
* sets the current stack pointer to the given value and continues execution at
|
|
* the given address
|
|
*/
|
|
ENTRY(switch_k_stack)
|
|
/* get the arguments from the stack */
|
|
mov 8(%esp), %eax
|
|
mov 4(%esp), %ecx
|
|
mov $0, %ebp /* reset %ebp for stack trace */
|
|
mov %ecx, %esp /* set the new stack */
|
|
jmp *%eax /* and jump to the continuation */
|
|
|
|
/* NOT_REACHABLE */
|
|
0: jmp 0b
|
|
|
|
.data
|
|
idt_ptr:
|
|
.short 0x3ff
|
|
.long 0x0
|
|
|
|
ldtsel:
|
|
.long LDT_SELECTOR
|