1335d5d700
instance numbers, encoded and decoded using macros in <minix/endpoint.h>. proc number -> endpoint migration . proc_nr in the interrupt hook is now an endpoint, proc_nr_e. . m_source for messages and notifies is now an endpoint, instead of proc number. . isokendpt() converts an endpoint to a process number, returns success (but fails if the process number is out of range, the process slot is not a living process, or the given endpoint number does not match the endpoint number in the process slot, indicating an old process). . okendpt() is the same as isokendpt(), but panic()s if the conversion fails. This is mainly used for decoding message.m_source endpoints, and other endpoint numbers in kernel data structures, which should always be correct. . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt() get passed the __FILE__ and __LINE__ of the calling lines, and print messages about what is wrong with the endpoint number (out of range proc, empty proc, or inconsistent endpoint number), with the caller, making finding where the conversion failed easy without having to include code for every call to print where things went wrong. Sometimes this is harmless (wrong arg to a kernel call), sometimes it's a fatal internal inconsistency (bogus m_source). . some process table fields have been appended an _e to indicate it's become and endpoint. . process endpoint is stored in p_endpoint, without generation number. it turns out the kernel never needs the generation number, except when fork()ing, so it's decoded then. . kernel calls all take endpoints as arguments, not proc numbers. the one exception is sys_fork(), which needs to know in which slot to put the child.
65 lines
2.1 KiB
C
65 lines
2.1 KiB
C
/* The kernel call implemented in this file:
|
|
* m_type: SYS_VIRVCOPY, SYS_PHYSVCOPY
|
|
*
|
|
* The parameters for this kernel call are:
|
|
* m1_i3: VCP_VEC_SIZE size of copy request vector
|
|
* m1_p1: VCP_VEC_ADDR address of vector at caller
|
|
* m1_i2: VCP_NR_OK number of successfull copies
|
|
*/
|
|
|
|
#include "../system.h"
|
|
#include <minix/type.h>
|
|
|
|
#if (USE_VIRVCOPY || USE_PHYSVCOPY)
|
|
|
|
/* Buffer to hold copy request vector from user. */
|
|
PRIVATE struct vir_cp_req vir_cp_req[VCOPY_VEC_SIZE];
|
|
|
|
/*===========================================================================*
|
|
* do_vcopy *
|
|
*===========================================================================*/
|
|
PUBLIC int do_vcopy(m_ptr)
|
|
register message *m_ptr; /* pointer to request message */
|
|
{
|
|
/* Handle sys_virvcopy() and sys_physvcopy() that pass a vector with copy
|
|
* requests. Although a single handler function is used, there are two
|
|
* different kernel calls so that permissions can be checked.
|
|
*/
|
|
int nr_req;
|
|
vir_bytes caller_vir;
|
|
phys_bytes caller_phys;
|
|
phys_bytes kernel_phys;
|
|
phys_bytes bytes;
|
|
int i,s;
|
|
struct vir_cp_req *req;
|
|
|
|
/* Check if request vector size is ok. */
|
|
nr_req = (unsigned) m_ptr->VCP_VEC_SIZE;
|
|
if (nr_req > VCOPY_VEC_SIZE) return(EINVAL);
|
|
bytes = nr_req * sizeof(struct vir_cp_req);
|
|
|
|
/* Calculate physical addresses and copy (port,value)-pairs from user. */
|
|
caller_vir = (vir_bytes) m_ptr->VCP_VEC_ADDR;
|
|
caller_phys = umap_local(proc_addr(who_p), D, caller_vir, bytes);
|
|
if (0 == caller_phys) return(EFAULT);
|
|
kernel_phys = vir2phys(vir_cp_req);
|
|
phys_copy(caller_phys, kernel_phys, (phys_bytes) bytes);
|
|
|
|
/* Assume vector with requests is correct. Try to copy everything. */
|
|
m_ptr->VCP_NR_OK = 0;
|
|
for (i=0; i<nr_req; i++) {
|
|
|
|
req = &vir_cp_req[i];
|
|
|
|
/* Check if physical addressing is used without SYS_PHYSVCOPY. */
|
|
if (((req->src.segment | req->dst.segment) & PHYS_SEG) &&
|
|
m_ptr->m_type != SYS_PHYSVCOPY) return(EPERM);
|
|
if ((s=virtual_copy(&req->src, &req->dst, req->count)) != OK)
|
|
return(s);
|
|
m_ptr->VCP_NR_OK ++;
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
#endif /* (USE_VIRVCOPY || USE_PHYSVCOPY) */
|
|
|