minix/servers/pm/forkexit.c
2006-07-25 14:13:09 +00:00

456 lines
17 KiB
C

/* This file deals with creating processes (via FORK) and deleting them (via
* EXIT/WAIT). When a process forks, a new slot in the 'mproc' table is
* allocated for it, and a copy of the parent's core image is made for the
* child. Then the kernel and file system are informed. A process is removed
* from the 'mproc' table when two events have occurred: (1) it has exited or
* been killed by a signal, and (2) the parent has done a WAIT. If the process
* exits first, it continues to occupy a slot until the parent does a WAIT.
*
* The entry points into this file are:
* do_fork: perform the FORK system call
* do_pm_exit: perform the EXIT system call (by calling pm_exit())
* pm_exit: actually do the exiting
* do_wait: perform the WAITPID or WAIT system call
* tell_parent: tell parent about the death of a child
*/
#include "pm.h"
#include <sys/wait.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <sys/resource.h>
#include <signal.h>
#include "mproc.h"
#include "param.h"
#define LAST_FEW 2 /* last few slots reserved for superuser */
FORWARD _PROTOTYPE (void cleanup, (register struct mproc *child) );
/*===========================================================================*
* do_fork *
*===========================================================================*/
PUBLIC int do_fork()
{
/* The process pointed to by 'mp' has forked. Create a child process. */
register struct mproc *rmp; /* pointer to parent */
register struct mproc *rmc; /* pointer to child */
int child_nr, s;
phys_clicks prog_clicks, child_base;
phys_bytes prog_bytes, parent_abs, child_abs; /* Intel only */
pid_t new_pid;
static int next_child;
int n = 0, r;
/* If tables might fill up during FORK, don't even start since recovery half
* way through is such a nuisance.
*/
rmp = mp;
if ((procs_in_use == NR_PROCS) ||
(procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0))
{
printf("PM: warning, process table is full!\n");
return(EAGAIN);
}
/* Determine how much memory to allocate. Only the data and stack need to
* be copied, because the text segment is either shared or of zero length.
*/
prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len;
prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
prog_bytes = (phys_bytes) prog_clicks << CLICK_SHIFT;
if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM);
/* Create a copy of the parent's core image for the child. */
child_abs = (phys_bytes) child_base << CLICK_SHIFT;
parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
s = sys_abscopy(parent_abs, child_abs, prog_bytes);
if (s < 0) panic(__FILE__,"do_fork can't copy", s);
/* Find a slot in 'mproc' for the child process. A slot must exist. */
do {
next_child = (next_child+1) % NR_PROCS;
n++;
} while((mproc[next_child].mp_flags & IN_USE) && n <= NR_PROCS);
if(n > NR_PROCS)
panic(__FILE__,"do_fork can't find child slot", NO_NUM);
if(next_child < 0 || next_child >= NR_PROCS
|| (mproc[next_child].mp_flags & IN_USE))
panic(__FILE__,"do_fork finds wrong child slot", next_child);
rmc = &mproc[next_child];
/* Set up the child and its memory map; copy its 'mproc' slot from parent. */
child_nr = (int)(rmc - mproc); /* slot number of the child */
procs_in_use++;
*rmc = *rmp; /* copy parent's process slot to child's */
rmc->mp_parent = who_p; /* record child's parent */
/* inherit only these flags */
rmc->mp_flags &= (IN_USE|SEPARATE|PRIV_PROC|DONT_SWAP);
rmc->mp_child_utime = 0; /* reset administration */
rmc->mp_child_stime = 0; /* reset administration */
/* A separate I&D child keeps the parents text segment. The data and stack
* segments must refer to the new copy.
*/
if (!(rmc->mp_flags & SEPARATE)) rmc->mp_seg[T].mem_phys = child_base;
rmc->mp_seg[D].mem_phys = child_base;
rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys +
(rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
rmc->mp_exitstatus = 0;
rmc->mp_sigstatus = 0;
/* Find a free pid for the child and put it in the table. */
new_pid = get_free_pid();
rmc->mp_pid = new_pid; /* assign pid to child */
/* Tell kernel and file system about the (now successful) FORK. */
if((r=sys_fork(who_e, child_nr, &rmc->mp_endpoint, rmc->mp_seg)) != OK) {
panic(__FILE__,"do_fork can't sys_fork", r);
}
if (rmc->mp_fs_call != PM_IDLE)
panic("pm", "do_fork: not idle", rmc->mp_fs_call);
rmc->mp_fs_call= PM_FORK;
r= notify(FS_PROC_NR);
if (r != OK) panic("pm", "do_fork: unable to notify FS", r);
/* Do not reply until FS is ready to process the fork
* request
*/
return SUSPEND;
}
/*===========================================================================*
* do_fork_nb *
*===========================================================================*/
PUBLIC int do_fork_nb()
{
/* The process pointed to by 'mp' has forked. Create a child process. */
register struct mproc *rmp; /* pointer to parent */
register struct mproc *rmc; /* pointer to child */
int child_nr, s;
phys_clicks prog_clicks, child_base;
phys_bytes prog_bytes, parent_abs, child_abs; /* Intel only */
pid_t new_pid;
static int next_child;
int n = 0, r;
/* Only system processes are allowed to use fork_nb */
if (!(mp->mp_flags & PRIV_PROC))
return EPERM;
/* If tables might fill up during FORK, don't even start since recovery half
* way through is such a nuisance.
*/
rmp = mp;
if ((procs_in_use == NR_PROCS) ||
(procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0))
{
printf("PM: warning, process table is full!\n");
return(EAGAIN);
}
/* Determine how much memory to allocate. Only the data and stack need to
* be copied, because the text segment is either shared or of zero length.
*/
prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len;
prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
prog_bytes = (phys_bytes) prog_clicks << CLICK_SHIFT;
if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM);
/* Create a copy of the parent's core image for the child. */
child_abs = (phys_bytes) child_base << CLICK_SHIFT;
parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
s = sys_abscopy(parent_abs, child_abs, prog_bytes);
if (s < 0) panic(__FILE__,"do_fork can't copy", s);
/* Find a slot in 'mproc' for the child process. A slot must exist. */
do {
next_child = (next_child+1) % NR_PROCS;
n++;
} while((mproc[next_child].mp_flags & IN_USE) && n <= NR_PROCS);
if(n > NR_PROCS)
panic(__FILE__,"do_fork can't find child slot", NO_NUM);
if(next_child < 0 || next_child >= NR_PROCS
|| (mproc[next_child].mp_flags & IN_USE))
panic(__FILE__,"do_fork finds wrong child slot", next_child);
rmc = &mproc[next_child];
/* Set up the child and its memory map; copy its 'mproc' slot from parent. */
child_nr = (int)(rmc - mproc); /* slot number of the child */
procs_in_use++;
*rmc = *rmp; /* copy parent's process slot to child's */
rmc->mp_parent = who_p; /* record child's parent */
/* inherit only these flags */
rmc->mp_flags &= (IN_USE|SEPARATE|PRIV_PROC|DONT_SWAP);
rmc->mp_child_utime = 0; /* reset administration */
rmc->mp_child_stime = 0; /* reset administration */
/* A separate I&D child keeps the parents text segment. The data and stack
* segments must refer to the new copy.
*/
if (!(rmc->mp_flags & SEPARATE)) rmc->mp_seg[T].mem_phys = child_base;
rmc->mp_seg[D].mem_phys = child_base;
rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys +
(rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
rmc->mp_exitstatus = 0;
rmc->mp_sigstatus = 0;
/* Find a free pid for the child and put it in the table. */
new_pid = get_free_pid();
rmc->mp_pid = new_pid; /* assign pid to child */
/* Tell kernel and file system about the (now successful) FORK. */
if((r=sys_fork(who_e, child_nr, &rmc->mp_endpoint, rmc->mp_seg)) != OK) {
panic(__FILE__,"do_fork can't sys_fork", r);
}
if (rmc->mp_fs_call != PM_IDLE)
panic("pm", "do_fork: not idle", rmc->mp_fs_call);
rmc->mp_fs_call= PM_FORK_NB;
r= notify(FS_PROC_NR);
if (r != OK) panic("pm", "do_fork: unable to notify FS", r);
/* Wakeup the newly created process */
setreply(rmc-mproc, OK);
return rmc->mp_pid;
}
/*===========================================================================*
* do_pm_exit *
*===========================================================================*/
PUBLIC int do_pm_exit()
{
/* Perform the exit(status) system call. The real work is done by pm_exit(),
* which is also called when a process is killed by a signal.
*/
pm_exit(mp, m_in.status, FALSE /*!for_trace*/);
return(SUSPEND); /* can't communicate from beyond the grave */
}
/*===========================================================================*
* pm_exit *
*===========================================================================*/
PUBLIC void pm_exit(rmp, exit_status, for_trace)
register struct mproc *rmp; /* pointer to the process to be terminated */
int exit_status; /* the process' exit status (for parent) */
int for_trace;
{
/* A process is done. Release most of the process' possessions. If its
* parent is waiting, release the rest, else keep the process slot and
* become a zombie.
*/
register int proc_nr, proc_nr_e;
int parent_waiting, right_child, r;
pid_t pidarg, procgrp;
struct mproc *p_mp;
clock_t t[5];
proc_nr = (int) (rmp - mproc); /* get process slot number */
proc_nr_e = rmp->mp_endpoint;
/* Remember a session leader's process group. */
procgrp = (rmp->mp_pid == mp->mp_procgrp) ? mp->mp_procgrp : 0;
/* If the exited process has a timer pending, kill it. */
if (rmp->mp_flags & ALARM_ON) set_alarm(proc_nr_e, (unsigned) 0);
/* Do accounting: fetch usage times and accumulate at parent. */
if((r=sys_times(proc_nr_e, t)) != OK)
panic(__FILE__,"pm_exit: sys_times failed", r);
p_mp = &mproc[rmp->mp_parent]; /* process' parent */
p_mp->mp_child_utime += t[0] + rmp->mp_child_utime; /* add user time */
p_mp->mp_child_stime += t[1] + rmp->mp_child_stime; /* add system time */
/* Tell the kernel the process is no longer runnable to prevent it from
* being scheduled in between the following steps. Then tell FS that it
* the process has exited and finally, clean up the process at the kernel.
* This order is important so that FS can tell drivers to cancel requests
* such as copying to/ from the exiting process, before it is gone.
*/
sys_nice(proc_nr_e, PRIO_STOP); /* stop the process */
if (proc_nr_e == INIT_PROC_NR)
{
printf("PM: INIT died\n");
return;
}
else
if(proc_nr_e != FS_PROC_NR) /* if it is not FS that is exiting.. */
{
/* Tell FS about the exiting process. */
if (rmp->mp_fs_call != PM_IDLE)
panic(__FILE__, "pm_exit: not idle", rmp->mp_fs_call);
rmp->mp_fs_call= (for_trace ? PM_EXIT_TR : PM_EXIT);
r= notify(FS_PROC_NR);
if (r != OK) panic(__FILE__, "pm_exit: unable to notify FS", r);
if (rmp->mp_flags & PRIV_PROC)
{
/* destroy system processes without waiting for FS */
if((r= sys_exit(rmp->mp_endpoint)) != OK)
panic(__FILE__, "pm_exit: sys_exit failed", r);
}
}
else
{
printf("PM: FS died\n");
return;
}
/* Pending reply messages for the dead process cannot be delivered. */
rmp->mp_flags &= ~REPLY;
/* Keep the process around until FS is finished with it. */
rmp->mp_exitstatus = (char) exit_status;
pidarg = p_mp->mp_wpid; /* who's being waited for? */
parent_waiting = p_mp->mp_flags & WAITING;
right_child = /* child meets one of the 3 tests? */
(pidarg == -1 || pidarg == rmp->mp_pid || -pidarg == rmp->mp_procgrp);
if (parent_waiting && right_child) {
tell_parent(rmp); /* tell parent */
} else {
rmp->mp_flags &= (IN_USE|PRIV_PROC);
rmp->mp_flags |= ZOMBIE; /* parent not waiting, zombify child */
sig_proc(p_mp, SIGCHLD); /* send parent a "child died" signal */
}
/* If the process has children, disinherit them. INIT is the new parent. */
for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
if (rmp->mp_flags & IN_USE && rmp->mp_parent == proc_nr) {
/* 'rmp' now points to a child to be disinherited. */
rmp->mp_parent = INIT_PROC_NR;
parent_waiting = mproc[INIT_PROC_NR].mp_flags & WAITING;
if (parent_waiting && (rmp->mp_flags & ZOMBIE) &&
rmp->mp_fs_call != PM_EXIT) {
cleanup(rmp);
}
}
}
/* Send a hangup to the process' process group if it was a session leader. */
if (procgrp != 0) check_sig(-procgrp, SIGHUP);
}
/*===========================================================================*
* do_waitpid *
*===========================================================================*/
PUBLIC int do_waitpid()
{
/* A process wants to wait for a child to terminate. If a child is already
* waiting, go clean it up and let this WAIT call terminate. Otherwise,
* really wait.
* A process calling WAIT never gets a reply in the usual way at the end
* of the main loop (unless WNOHANG is set or no qualifying child exists).
* If a child has already exited, the routine cleanup() sends the reply
* to awaken the caller.
* Both WAIT and WAITPID are handled by this code.
*/
register struct mproc *rp;
int pidarg, options, children;
/* Set internal variables, depending on whether this is WAIT or WAITPID. */
pidarg = (call_nr == WAIT ? -1 : m_in.pid); /* 1st param of waitpid */
options = (call_nr == WAIT ? 0 : m_in.sig_nr); /* 3rd param of waitpid */
if (pidarg == 0) pidarg = -mp->mp_procgrp; /* pidarg < 0 ==> proc grp */
/* Is there a child waiting to be collected? At this point, pidarg != 0:
* pidarg > 0 means pidarg is pid of a specific process to wait for
* pidarg == -1 means wait for any child
* pidarg < -1 means wait for any child whose process group = -pidarg
*/
children = 0;
for (rp = &mproc[0]; rp < &mproc[NR_PROCS]; rp++) {
if ( (rp->mp_flags & IN_USE) && rp->mp_parent == who_p) {
/* The value of pidarg determines which children qualify. */
if (pidarg > 0 && pidarg != rp->mp_pid) continue;
if (pidarg < -1 && -pidarg != rp->mp_procgrp) continue;
children++; /* this child is acceptable */
if (rp->mp_flags & ZOMBIE) {
/* This child meets the pid test and has exited. */
tell_parent(rp); /* this child has already exited */
if (rp->mp_fs_call == PM_IDLE)
real_cleanup(rp);
return(SUSPEND);
}
if ((rp->mp_flags & STOPPED) && rp->mp_sigstatus) {
/* This child meets the pid test and is being traced.*/
mp->mp_reply.reply_res2 = 0177|(rp->mp_sigstatus << 8);
rp->mp_sigstatus = 0;
return(rp->mp_pid);
}
}
}
/* No qualifying child has exited. Wait for one, unless none exists. */
if (children > 0) {
/* At least 1 child meets the pid test exists, but has not exited. */
if (options & WNOHANG) return(0); /* parent does not want to wait */
mp->mp_flags |= WAITING; /* parent wants to wait */
mp->mp_wpid = (pid_t) pidarg; /* save pid for later */
return(SUSPEND); /* do not reply, let it wait */
} else {
/* No child even meets the pid test. Return error immediately. */
return(ECHILD); /* no - parent has no children */
}
}
/*===========================================================================*
* cleanup *
*===========================================================================*/
PRIVATE void cleanup(child)
register struct mproc *child; /* tells which process is exiting */
{
/* Finish off the exit of a process. The process has exited or been killed
* by a signal, and its parent is waiting.
*/
if (child->mp_fs_call != PM_IDLE)
panic(__FILE__, "cleanup: not idle", child->mp_fs_call);
tell_parent(child);
real_cleanup(child);
}
/*===========================================================================*
* tell_parent *
*===========================================================================*/
PUBLIC void tell_parent(child)
register struct mproc *child; /* tells which process is exiting */
{
int exitstatus, mp_parent;
struct mproc *parent;
mp_parent= child->mp_parent;
if (mp_parent <= 0)
panic(__FILE__, "tell_parent: bad value in mp_parent", mp_parent);
parent = &mproc[mp_parent];
/* Wake up the parent by sending the reply message. */
exitstatus = (child->mp_exitstatus << 8) | (child->mp_sigstatus & 0377);
parent->mp_reply.reply_res2 = exitstatus;
setreply(child->mp_parent, child->mp_pid);
parent->mp_flags &= ~WAITING; /* parent no longer waiting */
child->mp_flags &= ~ZOMBIE; /* avoid informing parent twice */
}
/*===========================================================================*
* real_cleanup *
*===========================================================================*/
PUBLIC void real_cleanup(rmp)
register struct mproc *rmp; /* tells which process is exiting */
{
/* Release the process table entry and reinitialize some field. */
rmp->mp_pid = 0;
rmp->mp_flags = 0;
rmp->mp_child_utime = 0;
rmp->mp_child_stime = 0;
procs_in_use--;
}