minix/minix/servers/rs/manager.c
Cristiano Giuffrida 48f446ecd5 vm: Extend the vm_memctl() interface.
Change-Id: I87b7c188bd1fc54a3ec943e7ff1d05c6f4c8a56a
2015-09-16 11:04:09 +00:00

2146 lines
62 KiB
C

/*
* Changes:
* Nov 22, 2009: added basic live update support (Cristiano Giuffrida)
* Mar 02, 2009: Extended isolation policies (Jorrit N. Herder)
* Jul 22, 2005: Created (Jorrit N. Herder)
*/
#include <paths.h>
#include <sys/exec_elf.h>
#include "inc.h"
#include "kernel/proc.h"
/*===========================================================================*
* caller_is_root *
*===========================================================================*/
static int caller_is_root(endpoint)
endpoint_t endpoint; /* caller endpoint */
{
uid_t euid;
/* Check if caller has root user ID. */
euid = getnuid(endpoint);
if (rs_verbose && euid != 0)
{
printf("RS: got unauthorized request from endpoint %d\n", endpoint);
}
return euid == 0;
}
/*===========================================================================*
* caller_can_control *
*===========================================================================*/
static int caller_can_control(endpoint, target_rp)
endpoint_t endpoint;
struct rproc *target_rp;
{
int control_allowed = 0;
register struct rproc *rp;
register struct rprocpub *rpub;
char *proc_name;
int c;
proc_name = target_rp->r_pub->proc_name;
/* Check if label is listed in caller's isolation policy. */
for (rp = BEG_RPROC_ADDR; rp < END_RPROC_ADDR; rp++) {
if (!(rp->r_flags & RS_IN_USE))
continue;
rpub = rp->r_pub;
if (rpub->endpoint == endpoint) {
break;
}
}
if (rp == END_RPROC_ADDR) return 0;
for (c = 0; c < rp->r_nr_control; c++) {
if (strcmp(rp->r_control[c], proc_name) == 0) {
control_allowed = 1;
break;
}
}
if (rs_verbose)
printf("RS: allowing %u control over %s via policy: %s\n",
endpoint, target_rp->r_pub->label,
control_allowed ? "yes" : "no");
return control_allowed;
}
/*===========================================================================*
* check_call_permission *
*===========================================================================*/
int check_call_permission(caller, call, rp)
endpoint_t caller;
int call;
struct rproc *rp;
{
/* Check if the caller has permission to execute a particular call. */
struct rprocpub *rpub;
int call_allowed;
/* Caller should be either root or have control privileges. */
call_allowed = caller_is_root(caller);
if(rp) {
call_allowed |= caller_can_control(caller, rp);
}
if(!call_allowed) {
return EPERM;
}
if(rp) {
rpub = rp->r_pub;
/* Only allow RS_EDIT if the target is a user process. */
if(!(rp->r_priv.s_flags & SYS_PROC)) {
if(call != RS_EDIT) return EPERM;
}
/* Disallow the call if another call is in progress for the service. */
if((rp->r_flags & RS_LATEREPLY)
|| (rp->r_flags & RS_INITIALIZING) || (rp->r_flags & RS_UPDATING)) {
return EBUSY;
}
/* Only allow RS_DOWN and RS_RESTART if the service has terminated. */
if(rp->r_flags & RS_TERMINATED) {
if(call != RS_DOWN && call != RS_RESTART) return EPERM;
}
/* Disallow RS_DOWN for core system services. */
if (rpub->sys_flags & SF_CORE_SRV) {
if(call == RS_DOWN) return EPERM;
}
}
return OK;
}
/*===========================================================================*
* copy_rs_start *
*===========================================================================*/
int copy_rs_start(src_e, src_rs_start, dst_rs_start)
endpoint_t src_e;
char *src_rs_start;
struct rs_start *dst_rs_start;
{
int r;
r = sys_datacopy(src_e, (vir_bytes) src_rs_start,
SELF, (vir_bytes) dst_rs_start, sizeof(struct rs_start));
return r;
}
/*===========================================================================*
* copy_label *
*===========================================================================*/
int copy_label(src_e, src_label, src_len, dst_label, dst_len)
endpoint_t src_e;
char *src_label;
size_t src_len;
char *dst_label;
size_t dst_len;
{
int s, len;
len = MIN(dst_len-1, src_len);
s = sys_datacopy(src_e, (vir_bytes) src_label,
SELF, (vir_bytes) dst_label, len);
if (s != OK) return s;
dst_label[len] = 0;
return OK;
}
/*===========================================================================*
* build_cmd_dep *
*===========================================================================*/
void build_cmd_dep(struct rproc *rp)
{
struct rprocpub *rpub;
int arg_count;
int len;
char *cmd_ptr;
rpub = rp->r_pub;
/* Build argument vector to be passed to execute call. The format of the
* arguments vector is: path, arguments, NULL.
*/
strcpy(rp->r_args, rp->r_cmd); /* copy raw command */
arg_count = 0; /* initialize arg count */
rp->r_argv[arg_count++] = rp->r_args; /* start with path */
cmd_ptr = rp->r_args; /* do some parsing */
while(*cmd_ptr != '\0') { /* stop at end of string */
if (*cmd_ptr == ' ') { /* next argument */
*cmd_ptr = '\0'; /* terminate previous */
while (*++cmd_ptr == ' ') ; /* skip spaces */
if (*cmd_ptr == '\0') break; /* no arg following */
/* There are ARGV_ELEMENTS elements; must leave one for null */
if (arg_count>=ARGV_ELEMENTS-1) { /* arg vector full */
printf("RS: build_cmd_dep: too many args\n");
break;
}
assert(arg_count < ARGV_ELEMENTS);
rp->r_argv[arg_count++] = cmd_ptr; /* add to arg vector */
}
cmd_ptr ++; /* continue parsing */
}
assert(arg_count < ARGV_ELEMENTS);
rp->r_argv[arg_count] = NULL; /* end with NULL pointer */
rp->r_argc = arg_count;
/* Build process name. */
cmd_ptr = strrchr(rp->r_argv[0], '/');
if (cmd_ptr)
cmd_ptr++;
else
cmd_ptr= rp->r_argv[0];
len= strlen(cmd_ptr);
if (len > RS_MAX_LABEL_LEN-1)
len= RS_MAX_LABEL_LEN-1; /* truncate name */
memcpy(rpub->proc_name, cmd_ptr, len);
rpub->proc_name[len]= '\0';
}
/*===========================================================================*
* srv_update *
*===========================================================================*/
int srv_update(endpoint_t src_e, endpoint_t dst_e)
{
int r;
int sys_upd_flags = 0;
/* Ask VM to swap the slots of the two processes and tell the kernel to
* do the same. If VM is the service being updated, only perform the kernel
* part of the call. The new instance of VM will do the rest at
* initialization time.
*/
if(src_e != VM_PROC_NR) {
r = vm_update(src_e, dst_e, sys_upd_flags);
}
else {
r = sys_update(src_e, dst_e, sys_upd_flags);
}
return r;
}
/*===========================================================================*
* update_period *
*===========================================================================*/
void update_period(message *m_ptr)
{
clock_t now = m_ptr->m_notify.timestamp;
short has_update_timed_out;
message m;
struct rprocpub *rpub;
rpub = rupdate.rp->r_pub;
/* See if a timeout has occurred. */
has_update_timed_out = (now - rupdate.prepare_tm > rupdate.prepare_maxtime);
/* If an update timed out, end the update process and notify
* the old version that the update has been canceled. From now on, the old
* version will continue executing.
*/
if(has_update_timed_out) {
printf("RS: update failed: maximum prepare time reached\n");
end_update(EINTR, RS_DONTREPLY);
/* Prepare cancel request. */
m.m_type = RS_LU_PREPARE;
m.m_rs_update.state = SEF_LU_STATE_NULL;
if(rpub->endpoint == RS_PROC_NR) {
/* RS can process the request directly. */
do_sef_lu_request(&m);
}
else {
/* Send request message to the system service. */
asynsend(rpub->endpoint, &m);
}
}
}
/*===========================================================================*
* end_update *
*===========================================================================*/
void end_update(int result, int reply_flag)
{
/* End the update process. There are two possibilities:
* 1) the update succeeded. In that case, cleanup the old version and mark the
* new version as no longer under update.
* 2) the update failed. In that case, cleanup the new version and mark the old
* version as no longer under update. Eventual late ready to update
* messages (if any) will simply be ignored and the service can
* continue executing. In addition, reset the check timestamp, so that if the
* service has a period, a status request will be forced in the next period.
*/
struct rproc *old_rp, *new_rp, *exiting_rp, *surviving_rp;
struct rproc **rps;
int nr_rps, i;
old_rp = rupdate.rp;
new_rp = old_rp->r_new_rp;
if(rs_verbose)
printf("RS: ending update from %s to %s with result: %d\n",
srv_to_string(old_rp), srv_to_string(new_rp), result);
/* Decide which version has to die out and which version has to survive. */
surviving_rp = (result == OK ? new_rp : old_rp);
exiting_rp = (result == OK ? old_rp : new_rp);
/* End update. */
rupdate.flags &= ~RS_UPDATING;
rupdate.rp = NULL;
old_rp->r_new_rp = NULL;
new_rp->r_old_rp = NULL;
old_rp->r_check_tm = 0;
/* Send a late reply if necessary. */
late_reply(old_rp, result);
/* Mark the version that has to survive as no longer updating and
* reply when asked to.
*/
surviving_rp->r_flags &= ~RS_UPDATING;
if(reply_flag == RS_REPLY) {
message m;
m.m_type = result;
reply(surviving_rp->r_pub->endpoint, surviving_rp, &m);
}
/* Cleanup the version that has to die out. */
get_service_instances(exiting_rp, &rps, &nr_rps);
for(i=0;i<nr_rps;i++) {
cleanup_service(rps[i]);
}
if(rs_verbose)
printf("RS: %s ended the update\n", srv_to_string(surviving_rp));
}
/*===========================================================================*
* kill_service_debug *
*===========================================================================*/
int kill_service_debug(file, line, rp, errstr, err)
char *file;
int line;
struct rproc *rp;
char *errstr;
int err;
{
/* Crash a system service and don't let it restart. */
if(errstr && !shutting_down) {
printf("RS: %s (error %d)\n", errstr, err);
}
rp->r_flags |= RS_EXITING; /* expect exit */
crash_service_debug(file, line, rp); /* simulate crash */
return err;
}
/*===========================================================================*
* crash_service_debug *
*===========================================================================*/
int crash_service_debug(file, line, rp)
char *file;
int line;
struct rproc *rp;
{
/* Simluate a crash in a system service. */
struct rprocpub *rpub;
rpub = rp->r_pub;
if(rs_verbose)
printf("RS: %s %skilled at %s:%d\n", srv_to_string(rp),
rp->r_flags & RS_EXITING ? "lethally " : "", file, line);
/* RS should simply exit() directly. */
if(rpub->endpoint == RS_PROC_NR) {
exit(1);
}
return sys_kill(rpub->endpoint, SIGKILL);
}
/*===========================================================================*
* cleanup_service_debug *
*===========================================================================*/
void cleanup_service_debug(file, line, rp)
char *file;
int line;
struct rproc *rp;
{
struct rprocpub *rpub;
int s;
rpub = rp->r_pub;
if(rs_verbose)
printf("RS: %s cleaned up at %s:%d\n", srv_to_string(rp),
file, line);
/* Tell scheduler this process is finished */
if ((s = sched_stop(rp->r_scheduler, rpub->endpoint)) != OK) {
printf("RS: warning: scheduler won't give up process: %d\n", s);
}
/* Ask PM to exit the service */
if(rp->r_pid == -1) {
printf("RS: warning: attempt to kill pid -1!\n");
}
else {
srv_kill(rp->r_pid, SIGKILL);
}
/* Free slot, unless we're about to reuse it */
if (!(rp->r_flags & RS_REINCARNATE))
free_slot(rp);
}
/*===========================================================================*
* create_service *
*===========================================================================*/
int create_service(rp)
struct rproc *rp;
{
/* Create the given system service. */
int child_proc_nr_e, child_proc_nr_n; /* child process slot */
pid_t child_pid; /* child's process id */
int s, use_copy, has_replica;
extern char **environ;
struct rprocpub *rpub;
rpub = rp->r_pub;
use_copy= (rpub->sys_flags & SF_USE_COPY);
has_replica= (rp->r_old_rp
|| (rp->r_prev_rp && !(rp->r_prev_rp->r_flags & RS_TERMINATED)));
/* Do we need an existing replica to create the service? */
if(!has_replica && (rpub->sys_flags & SF_NEED_REPL)) {
printf("RS: unable to create service '%s' without a replica\n",
rpub->label);
free_slot(rp);
return(EPERM);
}
/* Do we need an in-memory copy to create the service? */
if(!use_copy && (rpub->sys_flags & SF_NEED_COPY)) {
printf("RS: unable to create service '%s' without an in-memory copy\n",
rpub->label);
free_slot(rp);
return(EPERM);
}
/* Do we have a copy or a command to create the service? */
if(!use_copy && !strcmp(rp->r_cmd, "")) {
printf("RS: unable to create service '%s' without a copy or command\n",
rpub->label);
free_slot(rp);
return(EPERM);
}
/* Now fork and branch for parent and child process (and check for error).
* After fork()ing, we need to pin RS memory again or pagefaults will occur
* on future writes.
*/
if(rs_verbose)
printf("RS: forking child with srv_fork()...\n");
child_pid= srv_fork(rp->r_uid, 0); /* Force group to operator for now */
if(child_pid < 0) {
printf("RS: srv_fork() failed (error %d)\n", child_pid);
free_slot(rp);
return(child_pid);
}
/* Get endpoint of the child. */
if ((s = getprocnr(child_pid, &child_proc_nr_e)) != 0)
panic("unable to get child endpoint: %d", s);
/* There is now a child process. Update the system process table. */
child_proc_nr_n = _ENDPOINT_P(child_proc_nr_e);
rp->r_flags = RS_IN_USE; /* mark slot in use */
rpub->endpoint = child_proc_nr_e; /* set child endpoint */
rp->r_pid = child_pid; /* set child pid */
rp->r_check_tm = 0; /* not checked yet */
getticks(&rp->r_alive_tm); /* currently alive */
rp->r_stop_tm = 0; /* not exiting yet */
rp->r_backoff = 0; /* not to be restarted */
rproc_ptr[child_proc_nr_n] = rp; /* mapping for fast access */
rpub->in_use = TRUE; /* public entry is now in use */
/* Set and synch the privilege structure for the new service. */
if ((s = sys_privctl(child_proc_nr_e, SYS_PRIV_SET_SYS, &rp->r_priv)) != OK
|| (s = sys_getpriv(&rp->r_priv, child_proc_nr_e)) != OK) {
printf("RS: unable to set privilege structure: %d\n", s);
cleanup_service(rp);
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0);
return ENOMEM;
}
/* Set the scheduler for this process */
if ((s = sched_init_proc(rp)) != OK) {
printf("RS: unable to start scheduling: %d\n", s);
cleanup_service(rp);
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN,0,0);
return s;
}
/* Copy the executable image into the child process. If no copy exists,
* allocate one and free it right after exec completes.
*/
if(use_copy) {
if(rs_verbose)
printf("RS: %s uses an in-memory copy\n",
srv_to_string(rp));
}
else {
if ((s = read_exec(rp)) != OK) {
printf("RS: read_exec failed: %d\n", s);
cleanup_service(rp);
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0);
return s;
}
}
if(rs_verbose)
printf("RS: execing child with srv_execve()...\n");
s = srv_execve(child_proc_nr_e, rp->r_exec, rp->r_exec_len, rp->r_argv,
environ);
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0);
if (s != OK) {
printf("RS: srv_execve failed: %d\n", s);
cleanup_service(rp);
return s;
}
if(!use_copy) {
free_exec(rp);
}
/* If this is a VM instance, let VM know now. */
if(rp->r_priv.s_flags & VM_SYS_PROC) {
if(rs_verbose)
printf("RS: informing VM of instance %s\n", srv_to_string(rp));
s = vm_memctl(rpub->endpoint, VM_RS_MEM_MAKE_VM, 0, 0);
if(s != OK) {
printf("vm_memctl failed: %d\n", s);
cleanup_service(rp);
return s;
}
}
/* Tell VM about allowed calls. */
if ((s = vm_set_priv(rpub->endpoint, &rpub->vm_call_mask[0], TRUE)) != OK) {
printf("RS: vm_set_priv failed: %d\n", s);
cleanup_service(rp);
return s;
}
if(rs_verbose)
printf("RS: %s created\n", srv_to_string(rp));
return OK;
}
/*===========================================================================*
* clone_service *
*===========================================================================*/
int clone_service(rp, instance_flag)
struct rproc *rp;
int instance_flag;
{
/* Clone the given system service instance. */
struct rproc *replica_rp;
struct rprocpub *replica_rpub;
struct rproc **rp_link;
struct rproc **replica_link;
struct rproc *rs_rp;
int rs_flags;
int r;
if(rs_verbose)
printf("RS: creating a replica for %s\n", srv_to_string(rp));
/* Clone slot. */
if((r = clone_slot(rp, &replica_rp)) != OK) {
return r;
}
replica_rpub = replica_rp->r_pub;
/* Clone is a live updated or restarted service instance? */
if(instance_flag == LU_SYS_PROC) {
rp_link = &rp->r_new_rp;
replica_link = &replica_rp->r_old_rp;
}
else {
rp_link = &rp->r_next_rp;
replica_link = &replica_rp->r_prev_rp;
}
replica_rp->r_priv.s_flags |= instance_flag;
/* Link the two slots. */
*rp_link = replica_rp;
*replica_link = rp;
/* Create a new replica of the service. */
r = create_service(replica_rp);
if(r != OK) {
*rp_link = NULL;
return r;
}
/* If this instance is for restarting RS, set up a backup signal manager. */
rs_flags = (ROOT_SYS_PROC | RST_SYS_PROC);
if((replica_rp->r_priv.s_flags & rs_flags) == rs_flags) {
rs_rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)];
/* Update signal managers. */
r = update_sig_mgrs(rs_rp, SELF, replica_rpub->endpoint);
if(r == OK) {
r = update_sig_mgrs(replica_rp, SELF, NONE);
}
if(r != OK) {
*rp_link = NULL;
return kill_service(replica_rp, "update_sig_mgrs failed", r);
}
}
return OK;
}
/*===========================================================================*
* publish_service *
*===========================================================================*/
int publish_service(rp)
struct rproc *rp; /* pointer to service slot */
{
/* Publish a service. */
int r;
struct rprocpub *rpub;
struct rs_pci pci_acl;
message m;
endpoint_t ep;
rpub = rp->r_pub;
/* Register label with DS. */
r = ds_publish_label(rpub->label, rpub->endpoint, DSF_OVERWRITE);
if (r != OK) {
return kill_service(rp, "ds_publish_label call failed", r);
}
/* If the service is a driver, map it. */
if (rpub->dev_nr > 0) {
/* The purpose of non-blocking forks is to avoid involving VFS in the
* forking process, because VFS may be blocked on a ipc_sendrec() to a MFS
* that is waiting for a endpoint update for a dead driver. We have just
* published that update, but VFS may still be blocked. As a result, VFS
* may not yet have received PM's fork message. Hence, if we call
* mapdriver() immediately, VFS may not know about the process and thus
* refuse to add the driver entry. The following temporary hack works
* around this by forcing blocking communication from PM to VFS. Once VFS
* has been made non-blocking towards MFS instances, this hack and the
* big part of srv_fork() can go.
*/
setuid(0);
if ((r = mapdriver(rpub->label, rpub->dev_nr)) != OK) {
return kill_service(rp, "couldn't map driver", r);
}
}
#if USE_PCI
/* If PCI properties are set, inform the PCI driver about the new service. */
if(rpub->pci_acl.rsp_nr_device || rpub->pci_acl.rsp_nr_class) {
pci_acl = rpub->pci_acl;
strcpy(pci_acl.rsp_label, rpub->label);
pci_acl.rsp_endpoint= rpub->endpoint;
r = pci_set_acl(&pci_acl);
if (r != OK) {
return kill_service(rp, "pci_set_acl call failed", r);
}
}
#endif /* USE_PCI */
if (rpub->devman_id != 0) {
r = ds_retrieve_label_endpt("devman",&ep);
if (r != OK) {
return kill_service(rp, "devman not running?", r);
}
m.m_type = DEVMAN_BIND;
m.DEVMAN_ENDPOINT = rpub->endpoint;
m.DEVMAN_DEVICE_ID = rpub->devman_id;
r = ipc_sendrec(ep, &m);
if (r != OK || m.DEVMAN_RESULT != OK) {
return kill_service(rp, "devman bind device failed", r);
}
}
if(rs_verbose)
printf("RS: %s published\n", srv_to_string(rp));
return OK;
}
/*===========================================================================*
* unpublish_service *
*===========================================================================*/
int unpublish_service(rp)
struct rproc *rp; /* pointer to service slot */
{
/* Unpublish a service. */
struct rprocpub *rpub;
int r, result;
message m;
endpoint_t ep;
rpub = rp->r_pub;
result = OK;
/* Unregister label with DS. */
r = ds_delete_label(rpub->label);
if (r != OK && !shutting_down) {
printf("RS: ds_delete_label call failed (error %d)\n", r);
result = r;
}
/* No need to inform VFS and VM, cleanup is done on exit automatically. */
#if USE_PCI
/* If PCI properties are set, inform the PCI driver. */
if(rpub->pci_acl.rsp_nr_device || rpub->pci_acl.rsp_nr_class) {
r = pci_del_acl(rpub->endpoint);
if (r != OK && !shutting_down) {
printf("RS: pci_del_acl call failed (error %d)\n", r);
result = r;
}
}
#endif /* USE_PCI */
if (rpub->devman_id != 0) {
r = ds_retrieve_label_endpt("devman",&ep);
if (r != OK) {
printf("RS: devman not running?");
} else {
m.m_type = DEVMAN_UNBIND;
m.DEVMAN_ENDPOINT = rpub->endpoint;
m.DEVMAN_DEVICE_ID = rpub->devman_id;
r = ipc_sendrec(ep, &m);
if (r != OK || m.DEVMAN_RESULT != OK) {
printf("RS: devman unbind device failed");
}
}
}
if(rs_verbose)
printf("RS: %s unpublished\n", srv_to_string(rp));
return result;
}
/*===========================================================================*
* run_service *
*===========================================================================*/
int run_service(rp, init_type)
struct rproc *rp;
int init_type;
{
/* Let a newly created service run. */
struct rprocpub *rpub;
int s;
rpub = rp->r_pub;
/* Allow the service to run. */
if ((s = sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL)) != OK) {
return kill_service(rp, "unable to allow the service to run",s);
}
/* Initialize service. */
if((s = init_service(rp, init_type)) != OK) {
return kill_service(rp, "unable to initialize service", s);
}
if(rs_verbose)
printf("RS: %s allowed to run\n", srv_to_string(rp));
return OK;
}
/*===========================================================================*
* start_service *
*===========================================================================*/
int start_service(rp)
struct rproc *rp;
{
/* Start a system service. */
int r, init_type;
struct rprocpub *rpub;
rpub = rp->r_pub;
/* Create and make active. */
r = create_service(rp);
if(r != OK) {
return r;
}
activate_service(rp, NULL);
/* Publish service properties. */
r = publish_service(rp);
if (r != OK) {
return r;
}
/* Run. */
init_type = SEF_INIT_FRESH;
r = run_service(rp, init_type);
if(r != OK) {
return r;
}
if(rs_verbose)
printf("RS: %s started with major %d\n", srv_to_string(rp),
rpub->dev_nr);
return OK;
}
/*===========================================================================*
* stop_service *
*===========================================================================*/
void stop_service(struct rproc *rp,int how)
{
struct rprocpub *rpub;
int signo;
rpub = rp->r_pub;
/* Try to stop the system service. First send a SIGTERM signal to ask the
* system service to terminate. If the service didn't install a signal
* handler, it will be killed. If it did and ignores the signal, we'll
* find out because we record the time here and send a SIGKILL.
*/
if(rs_verbose)
printf("RS: %s signaled with SIGTERM\n", srv_to_string(rp));
signo = rpub->endpoint != RS_PROC_NR ? SIGTERM : SIGHUP; /* SIGHUP for RS. */
rp->r_flags |= how; /* what to on exit? */
sys_kill(rpub->endpoint, signo); /* first try friendly */
getticks(&rp->r_stop_tm); /* record current time */
}
/*===========================================================================*
* update_service *
*===========================================================================*/
int update_service(src_rpp, dst_rpp, swap_flag)
struct rproc **src_rpp;
struct rproc **dst_rpp;
int swap_flag;
{
/* Update an existing service. */
int r;
struct rproc *src_rp;
struct rproc *dst_rp;
struct rprocpub *src_rpub;
struct rprocpub *dst_rpub;
int pid;
endpoint_t endpoint;
src_rp = *src_rpp;
dst_rp = *dst_rpp;
src_rpub = src_rp->r_pub;
dst_rpub = dst_rp->r_pub;
if(rs_verbose)
printf("RS: %s updating into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
/* Swap the slots of the two processes when asked to. */
if(swap_flag == RS_SWAP) {
if((r = srv_update(src_rpub->endpoint, dst_rpub->endpoint)) != OK) {
return r;
}
}
/* Swap slots here as well. */
pid = src_rp->r_pid;
endpoint = src_rpub->endpoint;
swap_slot(&src_rp, &dst_rp);
/* Reassign pids and endpoints. */
src_rp->r_pid = dst_rp->r_pid;
src_rp->r_pub->endpoint = dst_rp->r_pub->endpoint;
rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)] = src_rp;
dst_rp->r_pid = pid;
dst_rp->r_pub->endpoint = endpoint;
rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)] = dst_rp;
/* Adjust input pointers. */
*src_rpp = src_rp;
*dst_rpp = dst_rp;
/* Make the new version active. */
activate_service(dst_rp, src_rp);
if(rs_verbose)
printf("RS: %s updated into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
return OK;
}
/*===========================================================================*
* activate_service *
*===========================================================================*/
void activate_service(struct rproc *rp, struct rproc *ex_rp)
{
/* Activate a service instance and deactivate another one if requested. */
if(ex_rp && (ex_rp->r_flags & RS_ACTIVE) ) {
ex_rp->r_flags &= ~RS_ACTIVE;
if(rs_verbose)
printf("RS: %s becomes inactive\n", srv_to_string(ex_rp));
}
if(! (rp->r_flags & RS_ACTIVE) ) {
rp->r_flags |= RS_ACTIVE;
if(rs_verbose)
printf("RS: %s becomes active\n", srv_to_string(rp));
}
}
/*===========================================================================*
* reincarnate_service *
*===========================================================================*/
void reincarnate_service(struct rproc *rp)
{
/* Restart a service as if it were never started before. */
struct rprocpub *rpub;
int i;
rpub = rp->r_pub;
rp->r_flags &= RS_IN_USE;
rp->r_pid = -1;
rproc_ptr[_ENDPOINT_P(rpub->endpoint)] = NULL;
/* Restore original IRQ and I/O range tables in the priv struct. This is the
* only part of the privilege structure that can be modified by processes
* other than RS itself.
*/
rp->r_priv.s_nr_irq = rp->r_nr_irq;
for (i = 0; i < rp->r_nr_irq; i++)
rp->r_priv.s_irq_tab[i] = rp->r_irq_tab[i];
rp->r_priv.s_nr_io_range = rp->r_nr_io_range;
for (i = 0; i < rp->r_nr_io_range; i++)
rp->r_priv.s_io_tab[i] = rp->r_io_tab[i];
rp->r_old_rp = NULL;
rp->r_new_rp = NULL;
rp->r_prev_rp = NULL;
rp->r_next_rp = NULL;
start_service(rp);
}
/*===========================================================================*
* terminate_service *
*===========================================================================*/
void terminate_service(struct rproc *rp)
{
/* Handle a termination event for a system service. */
struct rproc **rps;
struct rprocpub *rpub;
int nr_rps;
int i, r;
rpub = rp->r_pub;
if(rs_verbose)
printf("RS: %s terminated\n", srv_to_string(rp));
/* Deal with failures during initialization. */
if(rp->r_flags & RS_INITIALIZING) {
if (rpub->sys_flags & SF_NO_BIN_EXP) {
/* If service was deliberately started with binary exponential offset
* disabled, we're going to assume we want to refresh a service upon
* failure.
*/
if(rs_verbose)
printf("RS: service '%s' exited during initialization; "
"refreshing\n", rpub->label);
rp->r_flags |= RS_REFRESHING; /* restart initialization. */
} else {
if(rs_verbose)
printf("RS: service '%s' exited during initialization; "
"not restarting\n", rpub->label);
rp->r_flags |= RS_EXITING; /* don't restart. */
}
/* If updating, rollback. */
if(rp->r_flags & RS_UPDATING) {
struct rproc *old_rp, *new_rp;
printf("RS: update failed: state transfer failed. Rolling back...\n");
new_rp = rp;
old_rp = new_rp->r_old_rp;
new_rp->r_flags &= ~RS_INITIALIZING;
r = update_service(&new_rp, &old_rp, RS_SWAP);
assert(r == OK); /* can't fail */
end_update(ERESTART, RS_REPLY);
return;
}
}
if (rp->r_flags & RS_EXITING) {
/* If a core system service is exiting, we are in trouble. */
if (rp->r_pub->sys_flags & SF_CORE_SRV && !shutting_down) {
printf("core system service died: %s\n", srv_to_string(rp));
_exit(1);
}
/* See if a late reply has to be sent. */
r = (rp->r_caller_request == RS_DOWN ? OK : EDEADEPT);
late_reply(rp, r);
/* Unpublish the service. */
unpublish_service(rp);
/* Cleanup all the instances of the service. */
get_service_instances(rp, &rps, &nr_rps);
for(i=0;i<nr_rps;i++) {
cleanup_service(rps[i]);
}
/* If the service is reincarnating, its slot has not been cleaned up.
* Check for this flag now, and attempt to start the service again.
* If this fails, start_service() itself will perform cleanup.
*/
if (rp->r_flags & RS_REINCARNATE) {
reincarnate_service(rp);
}
}
else if(rp->r_flags & RS_REFRESHING) {
/* Restart service. */
restart_service(rp);
}
else {
/* If an update is in progress, end it. The old version
* that just exited will continue executing.
*/
if(rp->r_flags & RS_UPDATING) {
end_update(ERESTART, RS_DONTREPLY);
}
/* Determine what to do. If this is the first unexpected
* exit, immediately restart this service. Otherwise use
* a binary exponential backoff.
*/
if (rp->r_restarts > 0) {
if (!(rpub->sys_flags & SF_NO_BIN_EXP)) {
rp->r_backoff = 1 << MIN(rp->r_restarts,(BACKOFF_BITS-2));
rp->r_backoff = MIN(rp->r_backoff,MAX_BACKOFF);
if ((rpub->sys_flags & SF_USE_COPY) && rp->r_backoff > 1)
rp->r_backoff= 1;
}
else {
rp->r_backoff = 1;
}
return;
}
/* Restart service. */
restart_service(rp);
}
}
/*===========================================================================*
* run_script *
*===========================================================================*/
static int run_script(struct rproc *rp)
{
int r, endpoint;
pid_t pid;
char *reason;
char incarnation_str[20]; /* Enough for a counter? */
char *envp[1] = { NULL };
struct rprocpub *rpub;
rpub = rp->r_pub;
if (rp->r_flags & RS_REFRESHING)
reason= "restart";
else if (rp->r_flags & RS_NOPINGREPLY)
reason= "no-heartbeat";
else reason= "terminated";
sprintf(incarnation_str, "%d", rp->r_restarts);
if(rs_verbose) {
printf("RS: %s:\n", srv_to_string(rp));
printf("RS: calling script '%s'\n", rp->r_script);
printf("RS: reason: '%s'\n", reason);
printf("RS: incarnation: '%s'\n", incarnation_str);
}
pid= fork();
switch(pid)
{
case -1:
return kill_service(rp, "unable to fork script", errno);
case 0:
execle(_PATH_BSHELL, "sh", rp->r_script, rpub->label, reason,
incarnation_str, (char*) NULL, envp);
printf("RS: run_script: execl '%s' failed: %s\n",
rp->r_script, strerror(errno));
exit(1);
default:
/* Set the privilege structure for the child process. */
if ((r = getprocnr(pid, &endpoint)) != 0)
panic("unable to get child endpoint: %d", r);
if ((r = sys_privctl(endpoint, SYS_PRIV_SET_USER, NULL))
!= OK) {
return kill_service(rp,"can't set script privileges",r);
}
/* Set the script's privileges on other servers. */
vm_set_priv(endpoint, NULL, FALSE);
if ((r = vm_set_priv(endpoint, NULL, FALSE)) != OK) {
return kill_service(rp,"can't set script VM privs",r);
}
/* Allow the script to run. */
if ((r = sys_privctl(endpoint, SYS_PRIV_ALLOW, NULL)) != OK) {
return kill_service(rp,"can't let the script run",r);
}
/* Pin RS memory again after fork()ing. */
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0);
}
return OK;
}
/*===========================================================================*
* restart_service *
*===========================================================================*/
void restart_service(struct rproc *rp)
{
/* Restart service via a recovery script or directly. */
struct rproc *replica_rp;
int r;
/* See if a late reply has to be sent. */
late_reply(rp, OK);
/* This hack disables restarting of file servers, which at the moment always
* cause VFS to hang indefinitely. As soon as VFS no longer blocks on calls
* to file servers, this exception can be removed again.
*/
if (!strncmp(rp->r_pub->label, "fs_", 3)) {
kill_service(rp, "file servers cannot be restarted yet", ENOSYS);
return;
}
/* Run a recovery script if available. */
if (rp->r_script[0] != '\0') {
run_script(rp);
return;
}
/* Restart directly. We need a replica if not already available. */
if(rp->r_next_rp == NULL) {
/* Create the replica. */
r = clone_service(rp, RST_SYS_PROC);
if(r != OK) {
kill_service(rp, "unable to clone service", r);
return;
}
}
replica_rp = rp->r_next_rp;
/* Update the service into the replica. */
r = update_service(&rp, &replica_rp, RS_SWAP);
if(r != OK) {
kill_service(rp, "unable to update into new replica", r);
return;
}
/* Let the new replica run. */
r = run_service(replica_rp, SEF_INIT_RESTART);
if(r != OK) {
kill_service(rp, "unable to let the replica run", r);
return;
}
if(rs_verbose)
printf("RS: %s restarted into %s\n",
srv_to_string(rp), srv_to_string(replica_rp));
}
/*===========================================================================*
* inherit_service_defaults *
*===========================================================================*/
void inherit_service_defaults(def_rp, rp)
struct rproc *def_rp;
struct rproc *rp;
{
struct rprocpub *def_rpub;
struct rprocpub *rpub;
def_rpub = def_rp->r_pub;
rpub = rp->r_pub;
/* Device and PCI settings. These properties cannot change. */
rpub->dev_nr = def_rpub->dev_nr;
rpub->pci_acl = def_rpub->pci_acl;
/* Immutable system and privilege flags. */
rpub->sys_flags &= ~IMM_SF;
rpub->sys_flags |= (def_rpub->sys_flags & IMM_SF);
rp->r_priv.s_flags &= ~IMM_F;
rp->r_priv.s_flags |= (def_rp->r_priv.s_flags & IMM_F);
/* Allowed traps. They cannot change. */
rp->r_priv.s_trap_mask = def_rp->r_priv.s_trap_mask;
}
/*===========================================================================*
* get_service_instances *
*===========================================================================*/
void get_service_instances(rp, rps, length)
struct rproc *rp;
struct rproc ***rps;
int *length;
{
/* Retrieve all the service instances of a given service. */
static struct rproc *instances[5];
int nr_instances;
nr_instances = 0;
instances[nr_instances++] = rp;
if(rp->r_prev_rp) instances[nr_instances++] = rp->r_prev_rp;
if(rp->r_next_rp) instances[nr_instances++] = rp->r_next_rp;
if(rp->r_old_rp) instances[nr_instances++] = rp->r_old_rp;
if(rp->r_new_rp) instances[nr_instances++] = rp->r_new_rp;
*rps = instances;
*length = nr_instances;
}
/*===========================================================================*
* share_exec *
*===========================================================================*/
void share_exec(rp_dst, rp_src)
struct rproc *rp_dst, *rp_src;
{
if(rs_verbose)
printf("RS: %s shares exec image with %s\n",
srv_to_string(rp_dst), srv_to_string(rp_src));
/* Share exec image from rp_src to rp_dst. */
rp_dst->r_exec_len = rp_src->r_exec_len;
rp_dst->r_exec = rp_src->r_exec;
}
/*===========================================================================*
* read_exec *
*===========================================================================*/
int read_exec(rp)
struct rproc *rp;
{
int e, r, fd;
char *e_name;
struct stat sb;
e_name= rp->r_argv[0];
if(rs_verbose)
printf("RS: service '%s' reads exec image from: %s\n", rp->r_pub->label,
e_name);
r= stat(e_name, &sb);
if (r != 0)
return -errno;
if (sb.st_size < sizeof(Elf_Ehdr))
return ENOEXEC;
fd= open(e_name, O_RDONLY);
if (fd == -1)
return -errno;
rp->r_exec_len= sb.st_size;
rp->r_exec= malloc(rp->r_exec_len);
if (rp->r_exec == NULL)
{
printf("RS: read_exec: unable to allocate %zu bytes\n",
rp->r_exec_len);
close(fd);
return ENOMEM;
}
r= read(fd, rp->r_exec, rp->r_exec_len);
e= errno;
close(fd);
if (r == rp->r_exec_len)
return OK;
printf("RS: read_exec: read failed %d, errno %d\n", r, e);
free_exec(rp);
if (r >= 0)
return EIO;
else
return -e;
}
/*===========================================================================*
* free_exec *
*===========================================================================*/
void free_exec(rp)
struct rproc *rp;
{
/* Free an exec image. */
int slot_nr, has_shared_exec;
struct rproc *other_rp;
/* Search for some other slot sharing the same exec image. */
has_shared_exec = FALSE;
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
other_rp = &rproc[slot_nr]; /* get pointer to slot */
if (other_rp->r_flags & RS_IN_USE && other_rp != rp
&& other_rp->r_exec == rp->r_exec) { /* found! */
has_shared_exec = TRUE;
break;
}
}
/* If nobody uses our copy of the exec image, we can try to get rid of it. */
if(!has_shared_exec) {
if(rs_verbose)
printf("RS: %s frees exec image\n", srv_to_string(rp));
free(rp->r_exec);
}
else {
if(rs_verbose)
printf("RS: %s no longer sharing exec image with %s\n",
srv_to_string(rp), srv_to_string(other_rp));
}
rp->r_exec = NULL;
rp->r_exec_len = 0;
}
/*===========================================================================*
* edit_slot *
*===========================================================================*/
int edit_slot(rp, rs_start, source)
struct rproc *rp;
struct rs_start *rs_start;
endpoint_t source;
{
/* Edit a given slot to override existing settings. */
struct rprocpub *rpub;
char *label;
int len;
int s, i;
int basic_kc[] = { SYS_BASIC_CALLS, NULL_C };
int basic_vmc[] = { VM_BASIC_CALLS, NULL_C };
rpub = rp->r_pub;
/* Update IPC target list. */
if (rs_start->rss_ipclen==0 || rs_start->rss_ipclen+1>sizeof(rp->r_ipc_list)){
printf("RS: edit_slot: ipc list empty or long for '%s'\n", rpub->label);
return EINVAL;
}
s=sys_datacopy(source, (vir_bytes) rs_start->rss_ipc,
SELF, (vir_bytes) rp->r_ipc_list, rs_start->rss_ipclen);
if (s != OK) return(s);
rp->r_ipc_list[rs_start->rss_ipclen]= '\0';
/* Update IRQs. */
if(rs_start->rss_nr_irq == RSS_IRQ_ALL) {
rs_start->rss_nr_irq = 0;
}
else {
rp->r_priv.s_flags |= CHECK_IRQ;
}
if (rs_start->rss_nr_irq > NR_IRQ) {
printf("RS: edit_slot: too many IRQs requested\n");
return EINVAL;
}
rp->r_nr_irq= rp->r_priv.s_nr_irq= rs_start->rss_nr_irq;
for (i= 0; i<rp->r_priv.s_nr_irq; i++) {
rp->r_irq_tab[i]= rp->r_priv.s_irq_tab[i]= rs_start->rss_irq[i];
if(rs_verbose)
printf("RS: edit_slot: IRQ %d\n", rp->r_priv.s_irq_tab[i]);
}
/* Update I/O ranges. */
if(rs_start->rss_nr_io == RSS_IO_ALL) {
rs_start->rss_nr_io = 0;
}
else {
rp->r_priv.s_flags |= CHECK_IO_PORT;
}
if (rs_start->rss_nr_io > NR_IO_RANGE) {
printf("RS: edit_slot: too many I/O ranges requested\n");
return EINVAL;
}
rp->r_nr_io_range= rp->r_priv.s_nr_io_range= rs_start->rss_nr_io;
for (i= 0; i<rp->r_priv.s_nr_io_range; i++) {
rp->r_priv.s_io_tab[i].ior_base= rs_start->rss_io[i].base;
rp->r_priv.s_io_tab[i].ior_limit=
rs_start->rss_io[i].base+rs_start->rss_io[i].len-1;
rp->r_io_tab[i] = rp->r_priv.s_io_tab[i];
if(rs_verbose)
printf("RS: edit_slot: I/O [%x..%x]\n",
rp->r_priv.s_io_tab[i].ior_base,
rp->r_priv.s_io_tab[i].ior_limit);
}
/* Update kernel call mask. Inherit basic kernel calls when asked to. */
memcpy(rp->r_priv.s_k_call_mask, rs_start->rss_system,
sizeof(rp->r_priv.s_k_call_mask));
if(rs_start->rss_flags & RSS_SYS_BASIC_CALLS) {
fill_call_mask(basic_kc, NR_SYS_CALLS,
rp->r_priv.s_k_call_mask, KERNEL_CALL, FALSE);
}
/* Update VM call mask. Inherit basic VM calls. */
memcpy(rpub->vm_call_mask, rs_start->rss_vm,
sizeof(rpub->vm_call_mask));
if(rs_start->rss_flags & RSS_VM_BASIC_CALLS) {
fill_call_mask(basic_vmc, NR_VM_CALLS,
rpub->vm_call_mask, VM_RQ_BASE, FALSE);
}
/* Update control labels. */
if(rs_start->rss_nr_control > 0) {
int i, s;
if (rs_start->rss_nr_control > RS_NR_CONTROL) {
printf("RS: edit_slot: too many control labels\n");
return EINVAL;
}
for (i=0; i<rs_start->rss_nr_control; i++) {
s = copy_label(source, rs_start->rss_control[i].l_addr,
rs_start->rss_control[i].l_len, rp->r_control[i],
sizeof(rp->r_control[i]));
if(s != OK)
return s;
}
rp->r_nr_control = rs_start->rss_nr_control;
if (rs_verbose) {
printf("RS: edit_slot: control labels:");
for (i=0; i<rp->r_nr_control; i++)
printf(" %s", rp->r_control[i]);
printf("\n");
}
}
/* Update signal manager. */
rp->r_priv.s_sig_mgr = rs_start->rss_sigmgr;
/* Update scheduling properties if possible. */
if(rp->r_scheduler != NONE) {
rp->r_scheduler = rs_start->rss_scheduler;
rp->r_priority = rs_start->rss_priority;
rp->r_quantum = rs_start->rss_quantum;
rp->r_cpu = rs_start->rss_cpu;
}
/* Update command and arguments. */
if (rs_start->rss_cmdlen > MAX_COMMAND_LEN-1) return(E2BIG);
s=sys_datacopy(source, (vir_bytes) rs_start->rss_cmd,
SELF, (vir_bytes) rp->r_cmd, rs_start->rss_cmdlen);
if (s != OK) return(s);
rp->r_cmd[rs_start->rss_cmdlen] = '\0'; /* ensure it is terminated */
if (rp->r_cmd[0] != '/') return(EINVAL); /* insist on absolute path */
/* Build cmd dependencies: argv and program name. */
build_cmd_dep(rp);
/* Update label if not already set. */
if(!strcmp(rpub->label, "")) {
if(rs_start->rss_label.l_len > 0) {
/* RS_UP caller has supplied a custom label for this service. */
int s = copy_label(source, rs_start->rss_label.l_addr,
rs_start->rss_label.l_len, rpub->label, sizeof(rpub->label));
if(s != OK)
return s;
if(rs_verbose)
printf("RS: edit_slot: using label (custom) '%s'\n", rpub->label);
} else {
/* Default label for the service. */
label = rpub->proc_name;
len= strlen(label);
memcpy(rpub->label, label, len);
rpub->label[len]= '\0';
if(rs_verbose)
printf("RS: edit_slot: using label (from proc_name) '%s'\n",
rpub->label);
}
}
/* Update recovery script. */
if (rs_start->rss_scriptlen > MAX_SCRIPT_LEN-1) return(E2BIG);
if (rs_start->rss_script != NULL && !(rpub->sys_flags & SF_CORE_SRV)) {
s=sys_datacopy(source, (vir_bytes) rs_start->rss_script,
SELF, (vir_bytes) rp->r_script, rs_start->rss_scriptlen);
if (s != OK) return(s);
rp->r_script[rs_start->rss_scriptlen] = '\0';
}
/* Update system flags and in-memory copy. */
if ((rs_start->rss_flags & RSS_COPY) && !(rpub->sys_flags & SF_USE_COPY)) {
int exst_cpy;
struct rproc *rp2;
struct rprocpub *rpub2;
exst_cpy = 0;
if(rs_start->rss_flags & RSS_REUSE) {
int i;
for(i = 0; i < NR_SYS_PROCS; i++) {
rp2 = &rproc[i];
if (!(rp2->r_flags & RS_IN_USE)) {
continue;
}
rpub2 = rproc[i].r_pub;
if(strcmp(rpub->proc_name, rpub2->proc_name) == 0 &&
(rpub2->sys_flags & SF_USE_COPY)) {
/* We have found the same binary that's
* already been copied */
exst_cpy = 1;
break;
}
}
}
s = OK;
if(!exst_cpy)
s = read_exec(rp);
else
share_exec(rp, rp2);
if (s != OK)
return s;
rpub->sys_flags |= SF_USE_COPY;
}
if (rs_start->rss_flags & RSS_REPLICA) {
rpub->sys_flags |= SF_USE_REPL;
}
if (rs_start->rss_flags & RSS_NO_BIN_EXP) {
rpub->sys_flags |= SF_NO_BIN_EXP;
}
/* Update period. */
if(rpub->endpoint != RS_PROC_NR) {
rp->r_period = rs_start->rss_period;
}
/* (Re)initialize privilege settings. */
init_privs(rp, &rp->r_priv);
return OK;
}
/*===========================================================================*
* init_slot *
*===========================================================================*/
int init_slot(rp, rs_start, source)
struct rproc *rp;
struct rs_start *rs_start;
endpoint_t source;
{
/* Initialize a slot as requested by the client. */
struct rprocpub *rpub;
int i;
rpub = rp->r_pub;
/* All dynamically created services get the same sys and privilege flags, and
* allowed traps. Other privilege settings can be specified at runtime. The
* privilege id is dynamically allocated by the kernel.
*/
rpub->sys_flags = DSRV_SF; /* system flags */
rp->r_priv.s_flags = DSRV_F; /* privilege flags */
rp->r_priv.s_trap_mask = DSRV_T; /* allowed traps */
rp->r_priv.s_bak_sig_mgr = NONE; /* backup signal manager */
/* Initialize uid. */
rp->r_uid= rs_start->rss_uid;
/* Initialize device driver settings. */
rpub->dev_nr = rs_start->rss_major;
rpub->devman_id = rs_start->devman_id;
/* Initialize pci settings. */
if (rs_start->rss_nr_pci_id > RS_NR_PCI_DEVICE) {
printf("RS: init_slot: too many PCI device IDs\n");
return EINVAL;
}
rpub->pci_acl.rsp_nr_device = rs_start->rss_nr_pci_id;
for (i= 0; i<rpub->pci_acl.rsp_nr_device; i++) {
rpub->pci_acl.rsp_device[i].vid= rs_start->rss_pci_id[i].vid;
rpub->pci_acl.rsp_device[i].did= rs_start->rss_pci_id[i].did;
rpub->pci_acl.rsp_device[i].sub_vid= rs_start->rss_pci_id[i].sub_vid;
rpub->pci_acl.rsp_device[i].sub_did= rs_start->rss_pci_id[i].sub_did;
if(rs_verbose)
printf("RS: init_slot: PCI %04x/%04x (sub %04x:%04x)\n",
rpub->pci_acl.rsp_device[i].vid,
rpub->pci_acl.rsp_device[i].did,
rpub->pci_acl.rsp_device[i].sub_vid,
rpub->pci_acl.rsp_device[i].sub_did);
}
if (rs_start->rss_nr_pci_class > RS_NR_PCI_CLASS) {
printf("RS: init_slot: too many PCI class IDs\n");
return EINVAL;
}
rpub->pci_acl.rsp_nr_class= rs_start->rss_nr_pci_class;
for (i= 0; i<rpub->pci_acl.rsp_nr_class; i++) {
rpub->pci_acl.rsp_class[i].pciclass=rs_start->rss_pci_class[i].pciclass;
rpub->pci_acl.rsp_class[i].mask= rs_start->rss_pci_class[i].mask;
if(rs_verbose)
printf("RS: init_slot: PCI class %06x mask %06x\n",
(unsigned int) rpub->pci_acl.rsp_class[i].pciclass,
(unsigned int) rpub->pci_acl.rsp_class[i].mask);
}
/* Initialize some fields. */
rp->r_restarts = 0; /* no restarts yet */
rp->r_old_rp = NULL; /* no old version yet */
rp->r_new_rp = NULL; /* no new version yet */
rp->r_prev_rp = NULL; /* no prev replica yet */
rp->r_next_rp = NULL; /* no next replica yet */
rp->r_exec = NULL; /* no in-memory copy yet */
rp->r_exec_len = 0;
rp->r_script[0]= '\0'; /* no recovery script yet */
rpub->label[0]= '\0'; /* no label yet */
rp->r_scheduler = -1; /* no scheduler yet */
rp->r_priv.s_sig_mgr = -1; /* no signal manager yet */
/* Initialize editable slot settings. */
return edit_slot(rp, rs_start, source);
}
/*===========================================================================*
* clone_slot *
*===========================================================================*/
int clone_slot(rp, clone_rpp)
struct rproc *rp;
struct rproc **clone_rpp;
{
int r;
struct rproc *clone_rp;
struct rprocpub *rpub, *clone_rpub;
/* Allocate a system service slot for the clone. */
r = alloc_slot(&clone_rp);
if(r != OK) {
printf("RS: clone_slot: unable to allocate a new slot: %d\n", r);
return r;
}
rpub = rp->r_pub;
clone_rpub = clone_rp->r_pub;
/* Synch the privilege structure of the source with the kernel. */
if ((r = sys_getpriv(&(rp->r_priv), rpub->endpoint)) != OK) {
panic("unable to synch privilege structure: %d", r);
}
/* Shallow copy. */
*clone_rp = *rp;
*clone_rpub = *rpub;
/* Deep copy. */
clone_rp->r_flags &= ~RS_ACTIVE; /* the clone is not active yet */
clone_rp->r_pid = -1; /* no pid yet */
clone_rpub->endpoint = -1; /* no endpoint yet */
clone_rp->r_pub = clone_rpub; /* restore pointer to public entry */
build_cmd_dep(clone_rp); /* rebuild cmd dependencies */
if(clone_rpub->sys_flags & SF_USE_COPY) {
share_exec(clone_rp, rp); /* share exec image */
}
clone_rp->r_old_rp = NULL; /* no old version yet */
clone_rp->r_new_rp = NULL; /* no new version yet */
clone_rp->r_prev_rp = NULL; /* no prev replica yet */
clone_rp->r_next_rp = NULL; /* no next replica yet */
/* Force dynamic privilege id. */
clone_rp->r_priv.s_flags |= DYN_PRIV_ID;
/* Clear instance flags. */
clone_rp->r_priv.s_flags &= ~(LU_SYS_PROC | RST_SYS_PROC);
*clone_rpp = clone_rp;
return OK;
}
/*===========================================================================*
* swap_slot_pointer *
*===========================================================================*/
static void swap_slot_pointer(struct rproc **rpp, struct rproc *src_rp,
struct rproc *dst_rp)
{
if(*rpp == src_rp) {
*rpp = dst_rp;
}
else if(*rpp == dst_rp) {
*rpp = src_rp;
}
}
/*===========================================================================*
* swap_slot *
*===========================================================================*/
void swap_slot(src_rpp, dst_rpp)
struct rproc **src_rpp;
struct rproc **dst_rpp;
{
/* Swap two service slots. */
struct rproc *src_rp;
struct rproc *dst_rp;
struct rprocpub *src_rpub;
struct rprocpub *dst_rpub;
struct rproc orig_src_rproc, orig_dst_rproc;
struct rprocpub orig_src_rprocpub, orig_dst_rprocpub;
src_rp = *src_rpp;
dst_rp = *dst_rpp;
src_rpub = src_rp->r_pub;
dst_rpub = dst_rp->r_pub;
/* Save existing data first. */
orig_src_rproc = *src_rp;
orig_src_rprocpub = *src_rpub;
orig_dst_rproc = *dst_rp;
orig_dst_rprocpub = *dst_rpub;
/* Swap slots. */
*src_rp = orig_dst_rproc;
*src_rpub = orig_dst_rprocpub;
*dst_rp = orig_src_rproc;
*dst_rpub = orig_src_rprocpub;
/* Restore public entries. */
src_rp->r_pub = orig_src_rproc.r_pub;
dst_rp->r_pub = orig_dst_rproc.r_pub;
/* Rebuild command dependencies. */
build_cmd_dep(src_rp);
build_cmd_dep(dst_rp);
/* Swap local slot pointers. */
swap_slot_pointer(&src_rp->r_prev_rp, src_rp, dst_rp);
swap_slot_pointer(&src_rp->r_next_rp, src_rp, dst_rp);
swap_slot_pointer(&src_rp->r_old_rp, src_rp, dst_rp);
swap_slot_pointer(&src_rp->r_new_rp, src_rp, dst_rp);
swap_slot_pointer(&dst_rp->r_prev_rp, src_rp, dst_rp);
swap_slot_pointer(&dst_rp->r_next_rp, src_rp, dst_rp);
swap_slot_pointer(&dst_rp->r_old_rp, src_rp, dst_rp);
swap_slot_pointer(&dst_rp->r_new_rp, src_rp, dst_rp);
/* Swap global slot pointers. */
swap_slot_pointer(&rupdate.rp, src_rp, dst_rp);
swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)],
src_rp, dst_rp);
swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)],
src_rp, dst_rp);
/* Adjust input pointers. */
*src_rpp = dst_rp;
*dst_rpp = src_rp;
}
/*===========================================================================*
* lookup_slot_by_label *
*===========================================================================*/
struct rproc* lookup_slot_by_label(char *label)
{
/* Lookup a service slot matching the given label. */
int slot_nr;
struct rproc *rp;
struct rprocpub *rpub;
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
if (!(rp->r_flags & RS_ACTIVE)) {
continue;
}
rpub = rp->r_pub;
if (strcmp(rpub->label, label) == 0) {
return rp;
}
}
return NULL;
}
/*===========================================================================*
* lookup_slot_by_pid *
*===========================================================================*/
struct rproc* lookup_slot_by_pid(pid_t pid)
{
/* Lookup a service slot matching the given pid. */
int slot_nr;
struct rproc *rp;
if(pid < 0) {
return NULL;
}
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
if (!(rp->r_flags & RS_IN_USE)) {
continue;
}
if (rp->r_pid == pid) {
return rp;
}
}
return NULL;
}
/*===========================================================================*
* lookup_slot_by_dev_nr *
*===========================================================================*/
struct rproc* lookup_slot_by_dev_nr(dev_t dev_nr)
{
/* Lookup a service slot matching the given device number. */
int slot_nr;
struct rproc *rp;
struct rprocpub *rpub;
if(dev_nr <= 0) {
return NULL;
}
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
rpub = rp->r_pub;
if (!(rp->r_flags & RS_IN_USE)) {
continue;
}
if (rpub->dev_nr == dev_nr) {
return rp;
}
}
return NULL;
}
/*===========================================================================*
* lookup_slot_by_flags *
*===========================================================================*/
struct rproc* lookup_slot_by_flags(int flags)
{
/* Lookup a service slot matching the given flags. */
int slot_nr;
struct rproc *rp;
if(!flags) {
return NULL;
}
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
if (!(rp->r_flags & RS_IN_USE)) {
continue;
}
if (rp->r_flags & flags) {
return rp;
}
}
return NULL;
}
/*===========================================================================*
* alloc_slot *
*===========================================================================*/
int alloc_slot(rpp)
struct rproc **rpp;
{
/* Alloc a new system service slot. */
int slot_nr;
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
*rpp = &rproc[slot_nr]; /* get pointer to slot */
if (!((*rpp)->r_flags & RS_IN_USE)) /* check if available */
break;
}
if (slot_nr >= NR_SYS_PROCS) {
return ENOMEM;
}
return OK;
}
/*===========================================================================*
* free_slot *
*===========================================================================*/
void free_slot(rp)
struct rproc *rp;
{
/* Free a system service slot. */
struct rprocpub *rpub;
rpub = rp->r_pub;
/* Send a late reply if there is any pending. */
late_reply(rp, OK);
/* Free memory if necessary. */
if(rpub->sys_flags & SF_USE_COPY) {
free_exec(rp);
}
/* Mark slot as no longer in use.. */
rp->r_flags = 0;
rp->r_pid = -1;
rpub->in_use = FALSE;
rproc_ptr[_ENDPOINT_P(rpub->endpoint)] = NULL;
}
/*===========================================================================*
* get_next_name *
*===========================================================================*/
static char *get_next_name(ptr, name, caller_label)
char *ptr;
char *name;
char *caller_label;
{
/* Get the next name from the list of (IPC) program names.
*/
char *p, *q;
size_t len;
for (p= ptr; p[0] != '\0'; p= q)
{
/* Skip leading space */
while (p[0] != '\0' && isspace((unsigned char)p[0]))
p++;
/* Find start of next word */
q= p;
while (q[0] != '\0' && !isspace((unsigned char)q[0]))
q++;
if (q == p)
continue;
len= q-p;
if (len > RS_MAX_LABEL_LEN)
{
printf(
"rs:get_next_name: bad ipc list entry '%.*s' for %s: too long\n",
(int) len, p, caller_label);
continue;
}
memcpy(name, p, len);
name[len]= '\0';
return q; /* found another */
}
return NULL; /* done */
}
/*===========================================================================*
* add_forward_ipc *
*===========================================================================*/
void add_forward_ipc(rp, privp)
struct rproc *rp;
struct priv *privp;
{
/* Add IPC send permissions to a process based on that process's IPC
* list.
*/
char name[RS_MAX_LABEL_LEN+1], *p;
struct rproc *rrp;
endpoint_t endpoint;
int r;
int priv_id;
struct priv priv;
struct rprocpub *rpub;
rpub = rp->r_pub;
p = rp->r_ipc_list;
while ((p = get_next_name(p, name, rpub->label)) != NULL) {
if (strcmp(name, "SYSTEM") == 0)
endpoint= SYSTEM;
else if (strcmp(name, "USER") == 0)
endpoint= INIT_PROC_NR; /* all user procs */
else
{
/* Set a privilege bit for every process matching the
* given process name. It is perfectly fine if this
* loop does not find any matches, as the target
* process(es) may not have been started yet. See
* add_backward_ipc() below.
*/
for (rrp=BEG_RPROC_ADDR; rrp<END_RPROC_ADDR; rrp++) {
if (!(rrp->r_flags & RS_IN_USE))
continue;
if (!strcmp(rrp->r_pub->proc_name, name)) {
#if PRIV_DEBUG
printf(" RS: add_forward_ipc: setting"
" sendto bit for %d...\n",
rrp->r_pub->endpoint);
#endif
priv_id= rrp->r_priv.s_id;
set_sys_bit(privp->s_ipc_to, priv_id);
}
}
continue;
}
/* This code only applies to the exception cases. */
if ((r = sys_getpriv(&priv, endpoint)) < 0)
{
printf(
"add_forward_ipc: unable to get priv_id for '%s': %d\n",
name, r);
continue;
}
#if PRIV_DEBUG
printf(" RS: add_forward_ipc: setting sendto bit for %d...\n",
endpoint);
#endif
priv_id= priv.s_id;
set_sys_bit(privp->s_ipc_to, priv_id);
}
}
/*===========================================================================*
* add_backward_ipc *
*===========================================================================*/
void add_backward_ipc(rp, privp)
struct rproc *rp;
struct priv *privp;
{
/* Add IPC send permissions to a process based on other processes' IPC
* lists. This is enough to allow each such two processes to talk to
* each other, as the kernel guarantees send mask symmetry. We need to
* add these permissions now because the current process may not yet
* have existed at the time that the other process was initialized.
*/
char name[RS_MAX_LABEL_LEN+1], *p;
struct rproc *rrp;
struct rprocpub *rrpub;
char *proc_name;
int priv_id, is_ipc_all, is_ipc_all_sys;
proc_name = rp->r_pub->proc_name;
for (rrp=BEG_RPROC_ADDR; rrp<END_RPROC_ADDR; rrp++) {
if (!(rrp->r_flags & RS_IN_USE))
continue;
if (!rrp->r_ipc_list[0])
continue;
/* If the process being checked is set to allow IPC to all
* other processes, or for all other system processes and the
* target process is a system process, add a permission bit.
*/
rrpub = rrp->r_pub;
is_ipc_all = !strcmp(rrp->r_ipc_list, RSS_IPC_ALL);
is_ipc_all_sys = !strcmp(rrp->r_ipc_list, RSS_IPC_ALL_SYS);
if (is_ipc_all ||
(is_ipc_all_sys && (privp->s_flags & SYS_PROC))) {
#if PRIV_DEBUG
printf(" RS: add_backward_ipc: setting sendto bit "
"for %d...\n", rrpub->endpoint);
#endif
priv_id= rrp->r_priv.s_id;
set_sys_bit(privp->s_ipc_to, priv_id);
continue;
}
/* An IPC target list was provided for the process being
* checked here. Make sure that the name of the new process
* is in that process's list. There may be multiple matches.
*/
p = rrp->r_ipc_list;
while ((p = get_next_name(p, name, rrpub->label)) != NULL) {
if (!strcmp(proc_name, name)) {
#if PRIV_DEBUG
printf(" RS: add_backward_ipc: setting sendto"
" bit for %d...\n",
rrpub->endpoint);
#endif
priv_id= rrp->r_priv.s_id;
set_sys_bit(privp->s_ipc_to, priv_id);
}
}
}
}
/*===========================================================================*
* init_privs *
*===========================================================================*/
void init_privs(rp, privp)
struct rproc *rp;
struct priv *privp;
{
int i;
int is_ipc_all, is_ipc_all_sys;
/* Clear s_ipc_to */
fill_send_mask(&privp->s_ipc_to, FALSE);
is_ipc_all = !strcmp(rp->r_ipc_list, RSS_IPC_ALL);
is_ipc_all_sys = !strcmp(rp->r_ipc_list, RSS_IPC_ALL_SYS);
#if PRIV_DEBUG
printf(" RS: init_privs: ipc list is '%s'...\n", rp->r_ipc_list);
#endif
if (!is_ipc_all && !is_ipc_all_sys)
{
add_forward_ipc(rp, privp);
add_backward_ipc(rp, privp);
}
else
{
for (i= 0; i<NR_SYS_PROCS; i++)
{
if (is_ipc_all || i != USER_PRIV_ID)
set_sys_bit(privp->s_ipc_to, i);
}
}
}