minix/servers/rs/main.c
Cristiano Giuffrida 48c6bb79f4 Driver refactory for live update and crash recovery.
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.

VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.

INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.

DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS. 
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.

DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.

KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
2010-04-08 13:41:35 +00:00

717 lines
24 KiB
C

/* Reincarnation Server. This servers starts new system services and detects
* they are exiting. In case of errors, system services can be restarted.
* The RS server periodically checks the status of all registered services
* services to see whether they are still alive. The system services are
* expected to periodically send a heartbeat message.
*
* Changes:
* Nov 22, 2009: rewrite of boot process (Cristiano Giuffrida)
* Jul 22, 2005: Created (Jorrit N. Herder)
*/
#include "inc.h"
#include <fcntl.h>
#include <a.out.h>
#include <minix/crtso.h>
#include "kernel/const.h"
#include "kernel/type.h"
#include "kernel/proc.h"
#include "../pm/mproc.h"
/* Declare some local functions. */
FORWARD _PROTOTYPE(void exec_image_copy, ( int boot_proc_idx,
struct boot_image *ip, struct rproc *rp) );
FORWARD _PROTOTYPE(void boot_image_info_lookup, ( endpoint_t endpoint,
struct boot_image *image,
struct boot_image **ip, struct boot_image_priv **pp,
struct boot_image_sys **sp, struct boot_image_dev **dp) );
FORWARD _PROTOTYPE(void catch_boot_init_ready, (endpoint_t endpoint) );
FORWARD _PROTOTYPE(void get_work, (message *m_ptr, int *status_ptr) );
/* The buffer where the boot image is copied during initialization. */
PRIVATE int boot_image_buffer_size;
PRIVATE char *boot_image_buffer;
/* Flag set when memory unmapping can be done. */
EXTERN int unmap_ok;
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
FORWARD _PROTOTYPE( void sef_cb_signal_handler, (int signo) );
FORWARD _PROTOTYPE( int sef_cb_signal_manager, (endpoint_t target, int signo) );
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC int main(void)
{
/* This is the main routine of this service. The main loop consists of
* three major activities: getting new work, processing the work, and
* sending the reply. The loop never terminates, unless a panic occurs.
*/
message m; /* request message */
int ipc_status; /* status code */
int call_nr, who_e,who_p; /* call number and caller */
int result; /* result to return */
/* SEF local startup. */
sef_local_startup();
/* Main loop - get work and do it, forever. */
while (TRUE) {
/* Wait for request message. */
get_work(&m, &ipc_status);
who_e = m.m_source;
if(rs_isokendpt(who_e, &who_p) != OK) {
panic("message from bogus source: %d", who_e);
}
call_nr = m.m_type;
/* Now determine what to do. Four types of requests are expected:
* - Heartbeat messages (notifications from registered system services)
* - System notifications (synchronous alarm)
* - User requests (control messages to manage system services)
* - Ready messages (reply messages from registered services)
*/
/* Notification messages are control messages and do not need a reply.
* These include heartbeat messages and system notifications.
*/
if (is_ipc_notify(ipc_status)) {
switch (who_p) {
case CLOCK:
do_period(&m); /* check services status */
continue;
default: /* heartbeat notification */
if (rproc_ptr[who_p] != NULL) { /* mark heartbeat time */
rproc_ptr[who_p]->r_alive_tm = m.NOTIFY_TIMESTAMP;
} else {
printf("RS: warning: got unexpected notify message from %d\n",
m.m_source);
}
}
}
/* If we get this far, this is a normal request.
* Handle the request and send a reply to the caller.
*/
else {
if (call_nr != GETSYSINFO &&
(call_nr < RS_RQ_BASE || call_nr >= RS_RQ_BASE+0x100))
{
/* Ignore invalid requests. Do not try to reply. */
printf("RS: warning: got invalid request %d from endpoint %d\n",
call_nr, m.m_source);
continue;
}
/* Handler functions are responsible for permission checking. */
switch(call_nr) {
/* User requests. */
case RS_UP: result = do_up(&m); break;
case RS_DOWN: result = do_down(&m); break;
case RS_REFRESH: result = do_refresh(&m); break;
case RS_RESTART: result = do_restart(&m); break;
case RS_SHUTDOWN: result = do_shutdown(&m); break;
case RS_UPDATE: result = do_update(&m); break;
case GETSYSINFO: result = do_getsysinfo(&m); break;
case RS_LOOKUP: result = do_lookup(&m); break;
/* Ready messages. */
case RS_INIT: result = do_init_ready(&m); break;
case RS_LU_PREPARE: result = do_upd_ready(&m); break;
default:
printf("RS: warning: got unexpected request %d from %d\n",
m.m_type, m.m_source);
result = EINVAL;
}
/* Finally send reply message, unless disabled. */
if (result != EDONTREPLY) {
m.m_type = result;
reply(who_e, &m);
}
}
}
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh); /* RS can only start fresh. */
/* Register signal callbacks. */
sef_setcb_signal_handler(sef_cb_signal_handler);
sef_setcb_signal_manager(sef_cb_signal_manager);
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
{
/* Initialize the reincarnation server. */
struct boot_image *ip;
int s,i,j;
int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs;
struct rproc *rp;
struct rprocpub *rpub;
struct boot_image image[NR_BOOT_PROCS];
struct mproc mproc[NR_PROCS];
struct exec header;
struct boot_image_priv *boot_image_priv;
struct boot_image_sys *boot_image_sys;
struct boot_image_dev *boot_image_dev;
/* See if we run in verbose mode. */
env_parse("rs_verbose", "d", 0, &rs_verbose, 0, 1);
/* Initialize the global init descriptor. */
rinit.rproctab_gid = cpf_grant_direct(ANY, (vir_bytes) rprocpub,
sizeof(rprocpub), CPF_READ);
if(!GRANT_VALID(rinit.rproctab_gid)) {
panic("unable to create rprocpub table grant: %d", rinit.rproctab_gid);
}
/* Initialize some global variables. */
rupdate.flags = 0;
shutting_down = FALSE;
/* Get a copy of the boot image table. */
if ((s = sys_getimage(image)) != OK) {
panic("unable to get copy of boot image table: %d", s);
}
/* Determine the number of system services in the boot image table and
* compute the size required for the boot image buffer.
*/
nr_image_srvs = 0;
boot_image_buffer_size = 0;
for(i=0;i<NR_BOOT_PROCS;i++) {
ip = &image[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(ip->endpoint))) {
continue;
}
nr_image_srvs++;
/* Lookup the corresponding entry in the boot image sys table. */
boot_image_info_lookup(ip->endpoint, image,
NULL, NULL, &boot_image_sys, NULL);
/* If we must keep a copy of this system service, read the header
* and increase the size of the boot image buffer.
*/
if(boot_image_sys->flags & SF_USE_COPY) {
if((s = sys_getaoutheader(&header, i)) != OK) {
panic("unable to get copy of a.out header: %d", s);
}
boot_image_buffer_size += header.a_hdrlen
+ header.a_text + header.a_data;
}
}
/* Determine the number of entries in the boot image priv table and make sure
* it matches the number of system services in the boot image table.
*/
nr_image_priv_srvs = 0;
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
nr_image_priv_srvs++;
}
if(nr_image_srvs != nr_image_priv_srvs) {
panic("boot image table and boot image priv table mismatch");
}
/* Allocate boot image buffer. */
if(boot_image_buffer_size > 0) {
boot_image_buffer = rs_startup_sbrk(boot_image_buffer_size);
if(boot_image_buffer == (char *) -1) {
panic("unable to allocate boot image buffer");
}
}
/* Reset the system process table. */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
rp->r_flags = 0;
rp->r_pub = &rprocpub[rp - rproc];
rp->r_pub->in_use = FALSE;
}
/* Initialize the system process table in 4 steps, each of them following
* the appearance of system services in the boot image priv table.
* - Step 1: get a copy of the executable image of every system service that
* requires it while it is not yet running.
* In addition, set priviliges, sys properties, and dev properties (if any)
* for every system service.
*/
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Lookup the corresponding entries in other tables. */
boot_image_info_lookup(boot_image_priv->endpoint, image,
&ip, NULL, &boot_image_sys, &boot_image_dev);
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/*
* Get a copy of the executable image if required.
*/
rp->r_exec_len = 0;
rp->r_exec = NULL;
if(boot_image_sys->flags & SF_USE_COPY) {
exec_image_copy(ip - image, ip, rp);
}
/*
* Set privileges.
*/
/* Get label. */
strcpy(rpub->label, boot_image_priv->label);
if(boot_image_priv->endpoint != RS_PROC_NR) {
/* Force a static priv id for system services in the boot image. */
rp->r_priv.s_id = static_priv_id(
_ENDPOINT_P(boot_image_priv->endpoint));
/* Initialize privilege bitmaps and signal manager. */
rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */
rp->r_priv.s_trap_mask = boot_image_priv->trap_mask; /* traps */
memcpy(&rp->r_priv.s_ipc_to, &boot_image_priv->ipc_to,
sizeof(rp->r_priv.s_ipc_to)); /* targets */
rp->r_priv.s_sig_mgr = boot_image_priv->sig_mgr; /* sig mgr */
/* Initialize kernel call mask bitmap from unordered set. */
fill_call_mask(boot_image_priv->k_calls, NR_SYS_CALLS,
rp->r_priv.s_k_call_mask, KERNEL_CALL, TRUE);
/* Set the privilege structure. */
if ((s = sys_privctl(ip->endpoint, SYS_PRIV_SET_SYS, &(rp->r_priv)))
!= OK) {
panic("unable to set privilege structure: %d", s);
}
}
/* Synch the privilege structure with the kernel. */
if ((s = sys_getpriv(&(rp->r_priv), ip->endpoint)) != OK) {
panic("unable to synch privilege structure: %d", s);
}
/*
* Set sys properties.
*/
rpub->sys_flags = boot_image_sys->flags; /* sys flags */
/*
* Set dev properties.
*/
rpub->dev_nr = boot_image_dev->dev_nr; /* major device number */
rpub->dev_style = boot_image_dev->dev_style; /* device style */
rpub->period = boot_image_dev->period; /* heartbeat period */
/* Get process name. */
strcpy(rpub->proc_name, ip->proc_name);
/* Get command settings. */
rp->r_cmd[0]= '\0';
rp->r_script[0]= '\0';
build_cmd_dep(rp);
/* Initialize vm call mask bitmap from unordered set. */
fill_call_mask(boot_image_priv->vm_calls, NR_VM_CALLS,
rpub->vm_call_mask, VM_RQ_BASE, TRUE);
/* Get some settings from the boot image table. */
rp->r_nice = ip->priority;
rpub->endpoint = ip->endpoint;
/* Set some defaults. */
rp->r_old_rp = NULL; /* no old version yet */
rp->r_new_rp = NULL; /* no new version yet */
rp->r_prev_rp = NULL; /* no prev replica yet */
rp->r_next_rp = NULL; /* no next replica yet */
rp->r_uid = 0; /* root */
rp->r_check_tm = 0; /* not checked yet */
getuptime(&rp->r_alive_tm); /* currently alive */
rp->r_stop_tm = 0; /* not exiting yet */
rp->r_restarts = 0; /* no restarts so far */
rp->r_set_resources = 0; /* don't set resources */
/* Mark as in use and active. */
rp->r_flags = RS_IN_USE | RS_ACTIVE;
rproc_ptr[_ENDPOINT_P(rpub->endpoint)]= rp;
rpub->in_use = TRUE;
}
/* - Step 2: allow every system service in the boot image to run.
*/
nr_uncaught_init_srvs = 0;
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Ignore RS. */
if(boot_image_priv->endpoint == RS_PROC_NR) {
continue;
}
/* Lookup the corresponding slot in the system process table. */
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/* Allow the service to run. */
if ((s = sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL)) != OK) {
panic("unable to initialize privileges: %d", s);
}
/* Initialize service. We assume every service will always get
* back to us here at boot time.
*/
if(boot_image_priv->flags & SYS_PROC) {
if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) {
panic("unable to initialize service: %d", s);
}
if(rpub->sys_flags & SF_SYNCH_BOOT) {
/* Catch init ready message now to synchronize. */
catch_boot_init_ready(rpub->endpoint);
}
else {
/* Catch init ready message later. */
nr_uncaught_init_srvs++;
}
}
}
/* - Step 3: let every system service complete initialization by
* catching all the init ready messages left.
*/
while(nr_uncaught_init_srvs) {
catch_boot_init_ready(ANY);
nr_uncaught_init_srvs--;
}
/* - Step 4: all the system services in the boot image are now running.
* Complete the initialization of the system process table in collaboration
* with other system services.
*/
if ((s = getsysinfo(PM_PROC_NR, SI_PROC_TAB, mproc)) != OK) {
panic("unable to get copy of PM process table: %d", s);
}
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
boot_image_priv = &boot_image_priv_table[i];
/* System services only. */
if(iskerneln(_ENDPOINT_P(boot_image_priv->endpoint))) {
continue;
}
/* Lookup the corresponding slot in the system process table. */
rp = &rproc[boot_image_priv - boot_image_priv_table];
rpub = rp->r_pub;
/* Get pid from PM process table. */
rp->r_pid = -1;
for (j = 0; j < NR_PROCS; j++) {
if (mproc[j].mp_endpoint == rpub->endpoint) {
rp->r_pid = mproc[j].mp_pid;
break;
}
}
if(j == NR_PROCS) {
panic("unable to get pid");
}
}
/*
* Now complete RS initialization process in collaboration with other
* system services.
*/
/* Let the rest of the system know about our dynamically allocated buffer. */
if(boot_image_buffer_size > 0) {
boot_image_buffer = rs_startup_sbrk_synch(boot_image_buffer_size);
if(boot_image_buffer == (char *) -1) {
panic("unable to synch boot image buffer");
}
}
/* Set alarm to periodically check service status. */
if (OK != (s=sys_setalarm(RS_DELTA_T, 0)))
panic("couldn't set alarm: %d", s);
/* Map out our own text and data. This is normally done in crtso.o
* but RS is an exception - we don't get to talk to VM so early on.
* That's why we override munmap() and munmap_text() in utility.c.
*
* _minix_unmapzero() is the same code in crtso.o that normally does
* it on startup. It's best that it's there as crtso.o knows exactly
* what the ranges are of the filler data.
*/
unmap_ok = 1;
_minix_unmapzero();
return(OK);
}
/*===========================================================================*
* sef_cb_signal_handler *
*===========================================================================*/
PRIVATE void sef_cb_signal_handler(int signo)
{
/* Check for known signals, ignore anything else. */
switch(signo) {
case SIGCHLD:
do_sigchld();
break;
case SIGTERM:
do_shutdown(NULL);
break;
}
}
/*===========================================================================*
* sef_cb_signal_manager *
*===========================================================================*/
PRIVATE int sef_cb_signal_manager(endpoint_t target, int signo)
{
/* Process system signal on behalf of the kernel. */
int target_p;
struct rproc *rp;
struct rprocpub *rpub;
message m;
/* Lookup slot. */
if(rs_isokendpt(target, &target_p) != OK || rproc_ptr[target_p] == NULL) {
if(rs_verbose)
printf("RS: ignoring spurious signal %d for process %d\n",
signo, target);
return OK; /* Since we're ignoring it, we have handled
* the signal without problem. All is OK.
*/
}
rp = rproc_ptr[target_p];
rpub = rp->r_pub;
/* Don't bother if a termination signal has already been processed. */
if(rp->r_flags & RS_TERMINATED) {
return EDEADSRCDST; /* process is gone */
}
if(rs_verbose)
printf("RS: %s got %s signal %d\n", srv_to_string(rp),
SIGS_IS_TERMINATION(signo) ? "termination" : "non-termination",signo);
/* Print stacktrace if necessary. */
if(SIGS_IS_STACKTRACE(signo)) {
sys_sysctl_stacktrace(target);
}
/* In case of termination signal handle the event. */
if(SIGS_IS_TERMINATION(signo)) {
rp->r_flags |= RS_TERMINATED;
terminate_service(rp);
return EDEADSRCDST; /* process is now gone */
}
/* Translate every non-termination signal into a message. */
m.m_type = SIGS_SIGNAL_RECEIVED;
m.SIGS_SIG_NUM = signo;
asynsend3(rpub->endpoint, &m, AMF_NOREPLY);
return OK; /* signal has been delivered */
}
/*===========================================================================*
* exec_image_copy *
*===========================================================================*/
PRIVATE void exec_image_copy(boot_proc_idx, ip, rp)
int boot_proc_idx;
struct boot_image *ip;
struct rproc *rp;
{
/* Copy the executable image of the given boot process. */
int s;
struct exec header;
static char *boot_image_ptr = NULL;
if(boot_image_ptr == NULL) {
boot_image_ptr = boot_image_buffer;
}
/* Get a.out header. */
if(boot_image_buffer+boot_image_buffer_size - boot_image_ptr < sizeof(header)
|| (s = sys_getaoutheader(&header, boot_proc_idx)) != OK) {
panic("unable to get copy of a.out header: %d", s);
}
memcpy(boot_image_ptr, &header, header.a_hdrlen);
boot_image_ptr += header.a_hdrlen;
/* Get text segment. */
if(boot_image_buffer+boot_image_buffer_size - boot_image_ptr < header.a_text
|| (s = rs_startup_segcopy(ip->endpoint, T, D, (vir_bytes) boot_image_ptr,
header.a_text)) != OK) {
panic("unable to get copy of text segment: %d", s);
}
boot_image_ptr += header.a_text;
/* Get data segment. */
if(boot_image_buffer+boot_image_buffer_size - boot_image_ptr < header.a_data
|| (s = rs_startup_segcopy(ip->endpoint, D, D, (vir_bytes) boot_image_ptr,
header.a_data)) != OK) {
panic("unable to get copy of data segment: %d", s);
}
boot_image_ptr += header.a_data;
/* Set the executable image for the given boot process. */
rp->r_exec_len = header.a_hdrlen + header.a_text + header.a_data;
rp->r_exec = boot_image_ptr - rp->r_exec_len;
}
/*===========================================================================*
* boot_image_info_lookup *
*===========================================================================*/
PRIVATE void boot_image_info_lookup(endpoint, image, ip, pp, sp, dp)
endpoint_t endpoint;
struct boot_image *image;
struct boot_image **ip;
struct boot_image_priv **pp;
struct boot_image_sys **sp;
struct boot_image_dev **dp;
{
/* Lookup entries in boot image tables. */
int i;
/* When requested, locate the corresponding entry in the boot image table
* or panic if not found.
*/
if(ip) {
for (i=0; i < NR_BOOT_PROCS; i++) {
if(image[i].endpoint == endpoint) {
*ip = &image[i];
break;
}
}
if(i == NR_BOOT_PROCS) {
panic("boot image table lookup failed");
}
}
/* When requested, locate the corresponding entry in the boot image priv table
* or panic if not found.
*/
if(pp) {
for (i=0; boot_image_priv_table[i].endpoint != NULL_BOOT_NR; i++) {
if(boot_image_priv_table[i].endpoint == endpoint) {
*pp = &boot_image_priv_table[i];
break;
}
}
if(i == NULL_BOOT_NR) {
panic("boot image priv table lookup failed");
}
}
/* When requested, locate the corresponding entry in the boot image sys table
* or resort to the default entry if not found.
*/
if(sp) {
for (i=0; boot_image_sys_table[i].endpoint != DEFAULT_BOOT_NR; i++) {
if(boot_image_sys_table[i].endpoint == endpoint) {
*sp = &boot_image_sys_table[i];
break;
}
}
if(boot_image_sys_table[i].endpoint == DEFAULT_BOOT_NR) {
*sp = &boot_image_sys_table[i]; /* accept the default entry */
}
}
/* When requested, locate the corresponding entry in the boot image dev table
* or resort to the default entry if not found.
*/
if(dp) {
for (i=0; boot_image_dev_table[i].endpoint != DEFAULT_BOOT_NR; i++) {
if(boot_image_dev_table[i].endpoint == endpoint) {
*dp = &boot_image_dev_table[i];
break;
}
}
if(boot_image_dev_table[i].endpoint == DEFAULT_BOOT_NR) {
*dp = &boot_image_dev_table[i]; /* accept the default entry */
}
}
}
/*===========================================================================*
* catch_boot_init_ready *
*===========================================================================*/
PRIVATE void catch_boot_init_ready(endpoint)
endpoint_t endpoint;
{
/* Block and catch an init ready message from the given source. */
int r;
int ipc_status;
message m;
struct rproc *rp;
int result;
/* Receive init ready message. */
if ((r = sef_receive_status(endpoint, &m, &ipc_status)) != OK) {
panic("unable to receive init reply: %d", r);
}
if(m.m_type != RS_INIT) {
panic("unexpected reply from service: %d", m.m_source);
}
result = m.RS_INIT_RESULT;
rp = rproc_ptr[_ENDPOINT_P(m.m_source)];
/* Check result. */
if(result != OK) {
panic("unable to complete init for service: %d", m.m_source);
}
/* Send a reply to unblock the service. */
m.m_type = OK;
reply(m.m_source, &m);
/* Mark the slot as no longer initializing. */
rp->r_flags &= ~RS_INITIALIZING;
rp->r_check_tm = 0;
getuptime(&rp->r_alive_tm);
}
/*===========================================================================*
* get_work *
*===========================================================================*/
PRIVATE void get_work(m_ptr, status_ptr)
message *m_ptr; /* pointer to message */
int *status_ptr; /* pointer to status */
{
int r;
if (OK != (r=sef_receive_status(ANY, m_ptr, status_ptr)))
panic("sef_receive_status failed: %d", r);
}