bd2ddd5fd4
process is not PREEMPTIBLE (or it's not ready, or there isn't a current process yet). This fixes a case where a process that isn't PREEMPTIBLE actually gets preempted. (This solves a race condition between CLOCK and SYSTEM.)
788 lines
29 KiB
C
Executable file
788 lines
29 KiB
C
Executable file
/* This file contains essentially all of the process and message handling.
|
|
* Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
|
|
* There is one entry point from the outside:
|
|
*
|
|
* sys_call: a system call, i.e., the kernel is trapped with an INT
|
|
*
|
|
* As well as several entry points used from the interrupt and task level:
|
|
*
|
|
* lock_notify: notify a process of a system event
|
|
* lock_send: send a message to a process
|
|
* lock_enqueue: put a process on one of the scheduling queues
|
|
* lock_dequeue: remove a process from the scheduling queues
|
|
*
|
|
* Changes:
|
|
* Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
|
|
* Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
|
|
* May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
|
|
* May 24, 2005 new notification system call (Jorrit N. Herder)
|
|
* Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
|
|
*
|
|
* The code here is critical to make everything work and is important for the
|
|
* overall performance of the system. A large fraction of the code deals with
|
|
* list manipulation. To make this both easy to understand and fast to execute
|
|
* pointer pointers are used throughout the code. Pointer pointers prevent
|
|
* exceptions for the head or tail of a linked list.
|
|
*
|
|
* node_t *queue, *new_node; // assume these as global variables
|
|
* node_t **xpp = &queue; // get pointer pointer to head of queue
|
|
* while (*xpp != NULL) // find last pointer of the linked list
|
|
* xpp = &(*xpp)->next; // get pointer to next pointer
|
|
* *xpp = new_node; // now replace the end (the NULL pointer)
|
|
* new_node->next = NULL; // and mark the new end of the list
|
|
*
|
|
* For example, when adding a new node to the end of the list, one normally
|
|
* makes an exception for an empty list and looks up the end of the list for
|
|
* nonempty lists. As shown above, this is not required with pointer pointers.
|
|
*/
|
|
|
|
#include <minix/com.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/endpoint.h>
|
|
#include "debug.h"
|
|
#include "kernel.h"
|
|
#include "proc.h"
|
|
#include <signal.h>
|
|
#include <minix/portio.h>
|
|
|
|
/* Scheduling and message passing functions. The functions are available to
|
|
* other parts of the kernel through lock_...(). The lock temporarily disables
|
|
* interrupts to prevent race conditions.
|
|
*/
|
|
FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
|
|
message *m_ptr, unsigned flags));
|
|
FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
|
|
message *m_ptr, unsigned flags));
|
|
FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
|
|
FORWARD _PROTOTYPE( int deadlock, (int function,
|
|
register struct proc *caller, int src_dst));
|
|
FORWARD _PROTOTYPE( void enqueue, (struct proc *rp));
|
|
FORWARD _PROTOTYPE( void dequeue, (struct proc *rp));
|
|
FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
|
|
FORWARD _PROTOTYPE( void pick_proc, (void));
|
|
|
|
#define BuildMess(m_ptr, src, dst_ptr) \
|
|
(m_ptr)->m_source = proc_addr(src)->p_endpoint; \
|
|
(m_ptr)->m_type = NOTIFY_FROM(src); \
|
|
(m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
|
|
switch (src) { \
|
|
case HARDWARE: \
|
|
(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
|
|
priv(dst_ptr)->s_int_pending = 0; \
|
|
break; \
|
|
case SYSTEM: \
|
|
(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
|
|
priv(dst_ptr)->s_sig_pending = 0; \
|
|
break; \
|
|
}
|
|
|
|
#define CopyMess(s,sp,sm,dp,dm) \
|
|
cp_mess(proc_addr(s)->p_endpoint, \
|
|
(sp)->p_memmap[D].mem_phys, \
|
|
(vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
|
|
|
|
/*===========================================================================*
|
|
* sys_call *
|
|
*===========================================================================*/
|
|
PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
|
|
int call_nr; /* system call number and flags */
|
|
int src_dst_e; /* src to receive from or dst to send to */
|
|
message *m_ptr; /* pointer to message in the caller's space */
|
|
long bit_map; /* notification event set or flags */
|
|
{
|
|
/* System calls are done by trapping to the kernel with an INT instruction.
|
|
* The trap is caught and sys_call() is called to send or receive a message
|
|
* (or both). The caller is always given by 'proc_ptr'.
|
|
*/
|
|
register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */
|
|
int function = call_nr & SYSCALL_FUNC; /* get system call function */
|
|
unsigned flags = call_nr & SYSCALL_FLAGS; /* get flags */
|
|
int mask_entry; /* bit to check in send mask */
|
|
int group_size; /* used for deadlock check */
|
|
int result; /* the system call's result */
|
|
int src_dst;
|
|
vir_clicks vlo, vhi; /* virtual clicks containing message to send */
|
|
|
|
#if 1
|
|
if (RTS_ISSET(caller_ptr, SLOT_FREE))
|
|
{
|
|
kprintf("called by the dead?!?\n");
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* Require a valid source and/ or destination process, unless echoing. */
|
|
if (src_dst_e != ANY && function != ECHO) {
|
|
if(!isokendpt(src_dst_e, &src_dst)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("sys_call: trap %d by %d with bad endpoint %d\n",
|
|
function, proc_nr(caller_ptr), src_dst_e);
|
|
#endif
|
|
return EDEADSRCDST;
|
|
}
|
|
} else src_dst = src_dst_e;
|
|
|
|
/* Check if the process has privileges for the requested call. Calls to the
|
|
* kernel may only be SENDREC, because tasks always reply and may not block
|
|
* if the caller doesn't do receive().
|
|
*/
|
|
if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) ||
|
|
(iskerneln(src_dst) && function != SENDREC
|
|
&& function != RECEIVE)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
|
|
function, proc_nr(caller_ptr), src_dst);
|
|
#endif
|
|
return(ETRAPDENIED); /* trap denied by mask or kernel */
|
|
}
|
|
|
|
/* If the call involves a message buffer, i.e., for SEND, RECEIVE, SENDREC,
|
|
* or ECHO, check the message pointer. This check allows a message to be
|
|
* anywhere in data or stack or gap. It will have to be made more elaborate
|
|
* for machines which don't have the gap mapped.
|
|
*/
|
|
if (function & CHECK_PTR) {
|
|
vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;
|
|
vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
|
|
if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
|
|
vhi >= caller_ptr->p_memmap[S].mem_vir +
|
|
caller_ptr->p_memmap[S].mem_len) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("sys_call: invalid message pointer, trap %d, caller %d\n",
|
|
function, proc_nr(caller_ptr));
|
|
#endif
|
|
return(EFAULT); /* invalid message pointer */
|
|
}
|
|
}
|
|
|
|
/* If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY,
|
|
* verify that the caller is allowed to send to the given destination.
|
|
*/
|
|
if (function & CHECK_DST) {
|
|
if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("sys_call: ipc mask denied trap %d from %d to %d\n",
|
|
function, proc_nr(caller_ptr), src_dst);
|
|
#endif
|
|
return(ECALLDENIED); /* call denied by ipc mask */
|
|
}
|
|
}
|
|
|
|
/* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
|
|
if (function & CHECK_DEADLOCK) {
|
|
if (group_size = deadlock(function, caller_ptr, src_dst)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
|
|
function, proc_nr(caller_ptr), src_dst, group_size);
|
|
#endif
|
|
return(ELOCKED);
|
|
}
|
|
}
|
|
|
|
/* Now check if the call is known and try to perform the request. The only
|
|
* system calls that exist in MINIX are sending and receiving messages.
|
|
* - SENDREC: combines SEND and RECEIVE in a single system call
|
|
* - SEND: sender blocks until its message has been delivered
|
|
* - RECEIVE: receiver blocks until an acceptable message has arrived
|
|
* - NOTIFY: nonblocking call; deliver notification or mark pending
|
|
* - ECHO: nonblocking call; directly echo back the message
|
|
*/
|
|
switch(function) {
|
|
case SENDREC:
|
|
/* A flag is set so that notifications cannot interrupt SENDREC. */
|
|
caller_ptr->p_misc_flags |= REPLY_PENDING;
|
|
/* fall through */
|
|
case SEND:
|
|
result = mini_send(caller_ptr, src_dst_e, m_ptr, flags);
|
|
if (function == SEND || result != OK) {
|
|
break; /* done, or SEND failed */
|
|
} /* fall through for SENDREC */
|
|
case RECEIVE:
|
|
if (function == RECEIVE)
|
|
caller_ptr->p_misc_flags &= ~REPLY_PENDING;
|
|
result = mini_receive(caller_ptr, src_dst_e, m_ptr, flags);
|
|
break;
|
|
case NOTIFY:
|
|
result = mini_notify(caller_ptr, src_dst);
|
|
break;
|
|
case ECHO:
|
|
CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
|
|
result = OK;
|
|
break;
|
|
default:
|
|
result = EBADCALL; /* illegal system call */
|
|
}
|
|
|
|
/* Now, return the result of the system call to the caller. */
|
|
return(result);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* deadlock *
|
|
*===========================================================================*/
|
|
PRIVATE int deadlock(function, cp, src_dst)
|
|
int function; /* trap number */
|
|
register struct proc *cp; /* pointer to caller */
|
|
int src_dst; /* src or dst process */
|
|
{
|
|
/* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
|
|
* a cyclic dependency of blocking send and receive calls. The only cyclic
|
|
* depency that is not fatal is if the caller and target directly SEND(REC)
|
|
* and RECEIVE to each other. If a deadlock is found, the group size is
|
|
* returned. Otherwise zero is returned.
|
|
*/
|
|
register struct proc *xp; /* process pointer */
|
|
int group_size = 1; /* start with only caller */
|
|
int trap_flags;
|
|
|
|
while (src_dst != ANY) { /* check while process nr */
|
|
int src_dst_e;
|
|
xp = proc_addr(src_dst); /* follow chain of processes */
|
|
group_size ++; /* extra process in group */
|
|
|
|
/* Check whether the last process in the chain has a dependency. If it
|
|
* has not, the cycle cannot be closed and we are done.
|
|
*/
|
|
if (RTS_ISSET(xp, RECEIVING)) { /* xp has dependency */
|
|
if(xp->p_getfrom_e == ANY) src_dst = ANY;
|
|
else okendpt(xp->p_getfrom_e, &src_dst);
|
|
} else if (RTS_ISSET(xp, SENDING)) { /* xp has dependency */
|
|
okendpt(xp->p_sendto_e, &src_dst);
|
|
} else {
|
|
return(0); /* not a deadlock */
|
|
}
|
|
|
|
/* Now check if there is a cyclic dependency. For group sizes of two,
|
|
* a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
|
|
* or other combinations indicate a deadlock.
|
|
*/
|
|
if (src_dst == proc_nr(cp)) { /* possible deadlock */
|
|
if (group_size == 2) { /* caller and src_dst */
|
|
/* The function number is magically converted to flags. */
|
|
if ((xp->p_rts_flags ^ (function << 2)) & SENDING) {
|
|
return(0); /* not a deadlock */
|
|
}
|
|
}
|
|
return(group_size); /* deadlock found */
|
|
}
|
|
}
|
|
return(0); /* not a deadlock */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* mini_send *
|
|
*===========================================================================*/
|
|
PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
|
|
register struct proc *caller_ptr; /* who is trying to send a message? */
|
|
int dst_e; /* to whom is message being sent? */
|
|
message *m_ptr; /* pointer to message buffer */
|
|
unsigned flags; /* system call flags */
|
|
{
|
|
/* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
|
|
* for this message, copy the message to it and unblock 'dst'. If 'dst' is
|
|
* not waiting at all, or is waiting for another source, queue 'caller_ptr'.
|
|
*/
|
|
register struct proc *dst_ptr;
|
|
register struct proc **xpp;
|
|
int dst_p;
|
|
|
|
dst_p = _ENDPOINT_P(dst_e);
|
|
dst_ptr = proc_addr(dst_p);
|
|
|
|
if (RTS_ISSET(dst_ptr, NO_ENDPOINT)) return EDSTDIED;
|
|
|
|
/* Check if 'dst' is blocked waiting for this message. The destination's
|
|
* SENDING flag may be set when its SENDREC call blocked while sending.
|
|
*/
|
|
if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
|
|
(dst_ptr->p_getfrom_e == ANY
|
|
|| dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
|
|
/* Destination is indeed waiting for this message. */
|
|
CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
|
|
dst_ptr->p_messbuf);
|
|
RTS_UNSET(dst_ptr, RECEIVING);
|
|
} else if ( ! (flags & NON_BLOCKING)) {
|
|
/* Destination is not waiting. Block and dequeue caller. */
|
|
caller_ptr->p_messbuf = m_ptr;
|
|
RTS_SET(caller_ptr, SENDING);
|
|
caller_ptr->p_sendto_e = dst_e;
|
|
|
|
/* Process is now blocked. Put in on the destination's queue. */
|
|
xpp = &dst_ptr->p_caller_q; /* find end of list */
|
|
while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
|
|
*xpp = caller_ptr; /* add caller to end */
|
|
caller_ptr->p_q_link = NIL_PROC; /* mark new end of list */
|
|
} else {
|
|
return(ENOTREADY);
|
|
}
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* mini_receive *
|
|
*===========================================================================*/
|
|
PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
|
|
register struct proc *caller_ptr; /* process trying to get message */
|
|
int src_e; /* which message source is wanted */
|
|
message *m_ptr; /* pointer to message buffer */
|
|
unsigned flags; /* system call flags */
|
|
{
|
|
/* A process or task wants to get a message. If a message is already queued,
|
|
* acquire it and deblock the sender. If no message from the desired source
|
|
* is available block the caller, unless the flags don't allow blocking.
|
|
*/
|
|
register struct proc **xpp;
|
|
register struct notification **ntf_q_pp;
|
|
message m;
|
|
int bit_nr;
|
|
sys_map_t *map;
|
|
bitchunk_t *chunk;
|
|
int i, src_id, src_proc_nr, src_p;
|
|
|
|
if(src_e == ANY) src_p = ANY;
|
|
else
|
|
{
|
|
okendpt(src_e, &src_p);
|
|
if (RTS_ISSET(proc_addr(src_p), NO_ENDPOINT)) return ESRCDIED;
|
|
}
|
|
|
|
|
|
/* Check to see if a message from desired source is already available.
|
|
* The caller's SENDING flag may be set if SENDREC couldn't send. If it is
|
|
* set, the process should be blocked.
|
|
*/
|
|
if (!RTS_ISSET(caller_ptr, SENDING)) {
|
|
|
|
/* Check if there are pending notifications, except for SENDREC. */
|
|
if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
|
|
|
|
map = &priv(caller_ptr)->s_notify_pending;
|
|
for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
|
|
|
|
/* Find a pending notification from the requested source. */
|
|
if (! *chunk) continue; /* no bits in chunk */
|
|
for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
|
|
src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
|
|
if (src_id >= NR_SYS_PROCS) break; /* out of range */
|
|
src_proc_nr = id_to_nr(src_id); /* get source proc */
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
if(src_proc_nr == NONE) {
|
|
kprintf("mini_receive: sending notify from NONE\n");
|
|
}
|
|
#endif
|
|
if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
|
|
*chunk &= ~(1 << i); /* no longer pending */
|
|
|
|
/* Found a suitable source, deliver the notification message. */
|
|
BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
|
|
CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
|
|
return(OK); /* report success */
|
|
}
|
|
}
|
|
|
|
/* Check caller queue. Use pointer pointers to keep code simple. */
|
|
xpp = &caller_ptr->p_caller_q;
|
|
while (*xpp != NIL_PROC) {
|
|
if (src_e == ANY || src_p == proc_nr(*xpp)) {
|
|
#if 1
|
|
if (RTS_ISSET(*xpp, SLOT_FREE))
|
|
{
|
|
kprintf("listening to the dead?!?\n");
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* Found acceptable message. Copy it and update status. */
|
|
CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
|
|
RTS_UNSET(*xpp, SENDING);
|
|
*xpp = (*xpp)->p_q_link; /* remove from queue */
|
|
return(OK); /* report success */
|
|
}
|
|
xpp = &(*xpp)->p_q_link; /* proceed to next */
|
|
}
|
|
}
|
|
|
|
/* No suitable message is available or the caller couldn't send in SENDREC.
|
|
* Block the process trying to receive, unless the flags tell otherwise.
|
|
*/
|
|
if ( ! (flags & NON_BLOCKING)) {
|
|
caller_ptr->p_getfrom_e = src_e;
|
|
caller_ptr->p_messbuf = m_ptr;
|
|
RTS_SET(caller_ptr, RECEIVING);
|
|
return(OK);
|
|
} else {
|
|
return(ENOTREADY);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* mini_notify *
|
|
*===========================================================================*/
|
|
PRIVATE int mini_notify(caller_ptr, dst)
|
|
register struct proc *caller_ptr; /* sender of the notification */
|
|
int dst; /* which process to notify */
|
|
{
|
|
register struct proc *dst_ptr = proc_addr(dst);
|
|
int src_id; /* source id for late delivery */
|
|
message m; /* the notification message */
|
|
|
|
/* Check to see if target is blocked waiting for this message. A process
|
|
* can be both sending and receiving during a SENDREC system call.
|
|
*/
|
|
if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
|
|
! (dst_ptr->p_misc_flags & REPLY_PENDING) &&
|
|
(dst_ptr->p_getfrom_e == ANY ||
|
|
dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
|
|
|
|
/* Destination is indeed waiting for a message. Assemble a notification
|
|
* message and deliver it. Copy from pseudo-source HARDWARE, since the
|
|
* message is in the kernel's address space.
|
|
*/
|
|
BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
|
|
CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
|
|
dst_ptr, dst_ptr->p_messbuf);
|
|
RTS_UNSET(dst_ptr, RECEIVING);
|
|
return(OK);
|
|
}
|
|
|
|
/* Destination is not ready to receive the notification. Add it to the
|
|
* bit map with pending notifications. Note the indirectness: the system id
|
|
* instead of the process number is used in the pending bit map.
|
|
*/
|
|
src_id = priv(caller_ptr)->s_id;
|
|
set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lock_notify *
|
|
*===========================================================================*/
|
|
PUBLIC int lock_notify(src_e, dst_e)
|
|
int src_e; /* (endpoint) sender of the notification */
|
|
int dst_e; /* (endpoint) who is to be notified */
|
|
{
|
|
/* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
|
|
* is explicitely given to prevent confusion where the call comes from. MINIX
|
|
* kernel is not reentrant, which means to interrupts are disabled after
|
|
* the first kernel entry (hardware interrupt, trap, or exception). Locking
|
|
* is done by temporarily disabling interrupts.
|
|
*/
|
|
int result, src, dst;
|
|
|
|
if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
|
|
return EDEADSRCDST;
|
|
|
|
/* Exception or interrupt occurred, thus already locked. */
|
|
if (k_reenter >= 0) {
|
|
result = mini_notify(proc_addr(src), dst);
|
|
}
|
|
|
|
/* Call from task level, locking is required. */
|
|
else {
|
|
lock(0, "notify");
|
|
result = mini_notify(proc_addr(src), dst);
|
|
unlock(0);
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* enqueue *
|
|
*===========================================================================*/
|
|
PRIVATE void enqueue(rp)
|
|
register struct proc *rp; /* this process is now runnable */
|
|
{
|
|
/* Add 'rp' to one of the queues of runnable processes. This function is
|
|
* responsible for inserting a process into one of the scheduling queues.
|
|
* The mechanism is implemented here. The actual scheduling policy is
|
|
* defined in sched() and pick_proc().
|
|
*/
|
|
int q; /* scheduling queue to use */
|
|
int front; /* add to front or back */
|
|
|
|
#if DEBUG_SCHED_CHECK
|
|
check_runqueues("enqueue1");
|
|
if (rp->p_ready) kprintf("enqueue() already ready process\n");
|
|
#endif
|
|
|
|
/* Determine where to insert to process. */
|
|
sched(rp, &q, &front);
|
|
|
|
/* Now add the process to the queue. */
|
|
if (rdy_head[q] == NIL_PROC) { /* add to empty queue */
|
|
rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
|
|
rp->p_nextready = NIL_PROC; /* mark new end */
|
|
}
|
|
else if (front) { /* add to head of queue */
|
|
rp->p_nextready = rdy_head[q]; /* chain head of queue */
|
|
rdy_head[q] = rp; /* set new queue head */
|
|
}
|
|
else { /* add to tail of queue */
|
|
rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
|
|
rdy_tail[q] = rp; /* set new queue tail */
|
|
rp->p_nextready = NIL_PROC; /* mark new end */
|
|
}
|
|
|
|
/* Now select the next process to run, if there isn't a current
|
|
* process yet or current process isn't ready any more, or
|
|
* it's PREEMPTIBLE.
|
|
*/
|
|
if(!proc_ptr || proc_ptr->p_rts_flags ||
|
|
(priv(proc_ptr)->s_flags & PREEMPTIBLE)) {
|
|
pick_proc();
|
|
}
|
|
|
|
#if DEBUG_SCHED_CHECK
|
|
rp->p_ready = 1;
|
|
check_runqueues("enqueue2");
|
|
#endif
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* dequeue *
|
|
*===========================================================================*/
|
|
PRIVATE void dequeue(rp)
|
|
register struct proc *rp; /* this process is no longer runnable */
|
|
{
|
|
/* A process must be removed from the scheduling queues, for example, because
|
|
* it has blocked. If the currently active process is removed, a new process
|
|
* is picked to run by calling pick_proc().
|
|
*/
|
|
register int q = rp->p_priority; /* queue to use */
|
|
register struct proc **xpp; /* iterate over queue */
|
|
register struct proc *prev_xp;
|
|
|
|
/* Side-effect for kernel: check if the task's stack still is ok? */
|
|
if (iskernelp(rp)) {
|
|
if (*priv(rp)->s_stack_guard != STACK_GUARD)
|
|
panic("stack overrun by task", proc_nr(rp));
|
|
}
|
|
|
|
#if DEBUG_SCHED_CHECK
|
|
check_runqueues("dequeue1");
|
|
if (! rp->p_ready) kprintf("dequeue() already unready process\n");
|
|
#endif
|
|
|
|
/* Now make sure that the process is not in its ready queue. Remove the
|
|
* process if it is found. A process can be made unready even if it is not
|
|
* running by being sent a signal that kills it.
|
|
*/
|
|
prev_xp = NIL_PROC;
|
|
for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
|
|
|
|
if (*xpp == rp) { /* found process to remove */
|
|
*xpp = (*xpp)->p_nextready; /* replace with next chain */
|
|
if (rp == rdy_tail[q]) /* queue tail removed */
|
|
rdy_tail[q] = prev_xp; /* set new tail */
|
|
if (rp == proc_ptr || rp == next_ptr) /* active process removed */
|
|
pick_proc(); /* pick new process to run */
|
|
break;
|
|
}
|
|
prev_xp = *xpp; /* save previous in chain */
|
|
}
|
|
|
|
#if DEBUG_SCHED_CHECK
|
|
rp->p_ready = 0;
|
|
check_runqueues("dequeue2");
|
|
#endif
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sched *
|
|
*===========================================================================*/
|
|
PRIVATE void sched(rp, queue, front)
|
|
register struct proc *rp; /* process to be scheduled */
|
|
int *queue; /* return: queue to use */
|
|
int *front; /* return: front or back */
|
|
{
|
|
/* This function determines the scheduling policy. It is called whenever a
|
|
* process must be added to one of the scheduling queues to decide where to
|
|
* insert it. As a side-effect the process' priority may be updated.
|
|
*/
|
|
int time_left = (rp->p_ticks_left > 0); /* quantum fully consumed */
|
|
|
|
/* Check whether the process has time left. Otherwise give a new quantum
|
|
* and lower the process' priority, unless the process already is in the
|
|
* lowest queue.
|
|
*/
|
|
if (! time_left) { /* quantum consumed ? */
|
|
rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
|
|
if (rp->p_priority < (IDLE_Q-1)) {
|
|
rp->p_priority += 1; /* lower priority */
|
|
}
|
|
}
|
|
|
|
/* If there is time left, the process is added to the front of its queue,
|
|
* so that it can immediately run. The queue to use simply is always the
|
|
* process' current priority.
|
|
*/
|
|
*queue = rp->p_priority;
|
|
*front = time_left;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* pick_proc *
|
|
*===========================================================================*/
|
|
PRIVATE void pick_proc()
|
|
{
|
|
/* Decide who to run now. A new process is selected by setting 'next_ptr'.
|
|
* When a billable process is selected, record it in 'bill_ptr', so that the
|
|
* clock task can tell who to bill for system time.
|
|
*/
|
|
register struct proc *rp; /* process to run */
|
|
int q; /* iterate over queues */
|
|
|
|
/* Check each of the scheduling queues for ready processes. The number of
|
|
* queues is defined in proc.h, and priorities are set in the task table.
|
|
* The lowest queue contains IDLE, which is always ready.
|
|
*/
|
|
for (q=0; q < NR_SCHED_QUEUES; q++) {
|
|
if ( (rp = rdy_head[q]) != NIL_PROC) {
|
|
next_ptr = rp; /* run process 'rp' next */
|
|
if (priv(rp)->s_flags & BILLABLE)
|
|
bill_ptr = rp; /* bill for system time */
|
|
return;
|
|
}
|
|
}
|
|
panic("no ready process", NO_NUM);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* balance_queues *
|
|
*===========================================================================*/
|
|
#define Q_BALANCE_TICKS 100
|
|
PUBLIC void balance_queues(tp)
|
|
timer_t *tp; /* watchdog timer pointer */
|
|
{
|
|
/* Check entire process table and give all process a higher priority. This
|
|
* effectively means giving a new quantum. If a process already is at its
|
|
* maximum priority, its quantum will be renewed.
|
|
*/
|
|
static timer_t queue_timer; /* timer structure to use */
|
|
register struct proc* rp; /* process table pointer */
|
|
clock_t next_period; /* time of next period */
|
|
int ticks_added = 0; /* total time added */
|
|
|
|
for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
|
|
if (! isemptyp(rp)) { /* check slot use */
|
|
lock(5,"balance_queues");
|
|
if (rp->p_priority > rp->p_max_priority) { /* update priority? */
|
|
if (rp->p_rts_flags == 0) dequeue(rp); /* take off queue */
|
|
ticks_added += rp->p_quantum_size; /* do accounting */
|
|
rp->p_priority -= 1; /* raise priority */
|
|
if (rp->p_rts_flags == 0) enqueue(rp); /* put on queue */
|
|
}
|
|
else {
|
|
ticks_added += rp->p_quantum_size - rp->p_ticks_left;
|
|
rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
|
|
}
|
|
unlock(5);
|
|
}
|
|
}
|
|
#if DEBUG
|
|
kprintf("ticks_added: %d\n", ticks_added);
|
|
#endif
|
|
|
|
/* Now schedule a new watchdog timer to balance the queues again. The
|
|
* period depends on the total amount of quantum ticks added.
|
|
*/
|
|
next_period = MAX(Q_BALANCE_TICKS, ticks_added); /* calculate next */
|
|
set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lock_send *
|
|
*===========================================================================*/
|
|
PUBLIC int lock_send(dst_e, m_ptr)
|
|
int dst_e; /* to whom is message being sent? */
|
|
message *m_ptr; /* pointer to message buffer */
|
|
{
|
|
/* Safe gateway to mini_send() for tasks. */
|
|
int result;
|
|
lock(2, "send");
|
|
result = mini_send(proc_ptr, dst_e, m_ptr, NON_BLOCKING);
|
|
unlock(2);
|
|
return(result);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lock_enqueue *
|
|
*===========================================================================*/
|
|
PUBLIC void lock_enqueue(rp)
|
|
struct proc *rp; /* this process is now runnable */
|
|
{
|
|
/* Safe gateway to enqueue() for tasks. */
|
|
lock(3, "enqueue");
|
|
enqueue(rp);
|
|
unlock(3);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lock_dequeue *
|
|
*===========================================================================*/
|
|
PUBLIC void lock_dequeue(rp)
|
|
struct proc *rp; /* this process is no longer runnable */
|
|
{
|
|
/* Safe gateway to dequeue() for tasks. */
|
|
if (k_reenter >= 0) {
|
|
/* We're in an exception or interrupt, so don't lock (and ...
|
|
* don't unlock).
|
|
*/
|
|
dequeue(rp);
|
|
} else {
|
|
lock(4, "dequeue");
|
|
dequeue(rp);
|
|
unlock(4);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* isokendpt_f *
|
|
*===========================================================================*/
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
|
|
char *file;
|
|
int line;
|
|
#else
|
|
PUBLIC int isokendpt_f(e, p, fatalflag)
|
|
#endif
|
|
endpoint_t e;
|
|
int *p, fatalflag;
|
|
{
|
|
int ok = 0;
|
|
/* Convert an endpoint number into a process number.
|
|
* Return nonzero if the process is alive with the corresponding
|
|
* generation number, zero otherwise.
|
|
*
|
|
* This function is called with file and line number by the
|
|
* isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
|
|
* otherwise without. This allows us to print the where the
|
|
* conversion was attempted, making the errors verbose without
|
|
* adding code for that at every call.
|
|
*
|
|
* If fatalflag is nonzero, we must panic if the conversion doesn't
|
|
* succeed.
|
|
*/
|
|
*p = _ENDPOINT_P(e);
|
|
if(!isokprocn(*p)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
|
|
file, line, e, *p);
|
|
#endif
|
|
} else if(isemptyn(*p)) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
|
|
#endif
|
|
} else if(proc_addr(*p)->p_endpoint != e) {
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
|
|
e, *p, proc_addr(*p)->p_endpoint,
|
|
_ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
|
|
#endif
|
|
} else ok = 1;
|
|
if(!ok && fatalflag) {
|
|
panic("invalid endpoint ", e);
|
|
}
|
|
return ok;
|
|
}
|
|
|