minix/servers/pm/main.c
David van Moolenbroek 44d3230e40 For common calls, give servers unique call numbers
The getsysinfo(2), getrusage(2), and svrctl(2) calls used the same
call number to different services. Since we want to give each service
its own call number ranges, this is no longer tenable. This patch
introduces per-service call numbers for these calls.

Note that the remainder of the COMMON_ range is left intact, as these
the remaining requests in it are processed by SEF and thus server-
agnostic. The range should really be prefixed with SEF_ now.

Change-Id: I80d728bbeb98227359c525494c433965b40fefc3
2014-03-01 09:05:00 +01:00

461 lines
13 KiB
C

/* This file contains the main program of the process manager and some related
* procedures. When MINIX starts up, the kernel runs for a little while,
* initializing itself and its tasks, and then it runs PM and VFS. Both PM
* and VFS initialize themselves as far as they can. PM asks the kernel for
* all free memory and starts serving requests.
*
* The entry points into this file are:
* main: starts PM running
* reply: send a reply to a process making a PM system call
*/
#include "pm.h"
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/ds.h>
#include <minix/type.h>
#include <minix/endpoint.h>
#include <minix/minlib.h>
#include <minix/type.h>
#include <minix/vm.h>
#include <signal.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <string.h>
#include <machine/archtypes.h>
#include <env.h>
#include <assert.h>
#include "mproc.h"
#include "param.h"
#include "kernel/const.h"
#include "kernel/config.h"
#include "kernel/proc.h"
#if ENABLE_SYSCALL_STATS
EXTERN unsigned long calls_stats[NCALLS];
#endif
static int get_nice_value(int queue);
static void handle_vfs_reply(void);
#define click_to_round_k(n) \
((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
/* SEF functions and variables. */
static void sef_local_startup(void);
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
/*===========================================================================*
* main *
*===========================================================================*/
int main()
{
/* Main routine of the process manager. */
int result;
/* SEF local startup. */
sef_local_startup();
/* This is PM's main loop- get work and do it, forever and forever. */
while (TRUE) {
int ipc_status;
/* Wait for the next message and extract useful information from it. */
if (sef_receive_status(ANY, &m_in, &ipc_status) != OK)
panic("PM sef_receive_status error");
who_e = m_in.m_source; /* who sent the message */
if(pm_isokendpt(who_e, &who_p) != OK)
panic("PM got message from invalid endpoint: %d", who_e);
call_nr = m_in.m_type; /* system call number */
/* Process slot of caller. Misuse PM's own process slot if the kernel is
* calling. This can happen in case of synchronous alarms (CLOCK) or or
* event like pending kernel signals (SYSTEM).
*/
mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p];
if(who_p >= 0 && mp->mp_endpoint != who_e) {
panic("PM endpoint number out of sync with source: %d",
mp->mp_endpoint);
}
/* Drop delayed calls from exiting processes. */
if (mp->mp_flags & EXITING)
continue;
/* Check for system notifications first. Special cases. */
if (is_ipc_notify(ipc_status)) {
if (who_p == CLOCK) {
expire_timers(m_in.NOTIFY_TIMESTAMP);
}
/* done, continue */
continue;
}
switch(call_nr)
{
case PM_SETUID_REPLY:
case PM_SETGID_REPLY:
case PM_SETSID_REPLY:
case PM_EXEC_REPLY:
case PM_EXIT_REPLY:
case PM_CORE_REPLY:
case PM_FORK_REPLY:
case PM_SRV_FORK_REPLY:
case PM_UNPAUSE_REPLY:
case PM_REBOOT_REPLY:
case PM_SETGROUPS_REPLY:
if (who_e == VFS_PROC_NR)
{
handle_vfs_reply();
result= SUSPEND; /* don't reply */
}
else
result= ENOSYS;
break;
default:
/* Else, if the system call number is valid, perform the
* call.
*/
if ((unsigned) call_nr >= NCALLS) {
result = ENOSYS;
} else {
#if ENABLE_SYSCALL_STATS
calls_stats[call_nr]++;
#endif
result = (*call_vec[call_nr])();
}
break;
}
/* Send reply. */
if (result != SUSPEND) reply(who_p, result);
}
return(OK);
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
static void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail);
/* No live update support for now. */
/* Register signal callbacks. */
sef_setcb_signal_manager(process_ksig);
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
{
/* Initialize the process manager.
* Memory use info is collected from the boot monitor, the kernel, and
* all processes compiled into the system image. Initially this information
* is put into an array mem_chunks. Elements of mem_chunks are struct memory,
* and hold base, size pairs in units of clicks. This array is small, there
* should be no more than 8 chunks. After the array of chunks has been built
* the contents are used to initialize the hole list. Space for the hole list
* is reserved as an array with twice as many elements as the maximum number
* of processes allowed. It is managed as a linked list, and elements of the
* array are struct hole, which, in addition to storage for a base and size in
* click units also contain space for a link, a pointer to another element.
*/
int s;
static struct boot_image image[NR_BOOT_PROCS];
register struct boot_image *ip;
static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV };
static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT };
static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE,
SIGBUS, SIGSEGV };
register struct mproc *rmp;
register char *sig_ptr;
message mess;
/* Initialize process table, including timers. */
for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
init_timer(&rmp->mp_timer);
rmp->mp_magic = MP_MAGIC;
}
/* Build the set of signals which cause core dumps, and the set of signals
* that are by default ignored.
*/
sigemptyset(&core_sset);
for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
sigaddset(&core_sset, *sig_ptr);
sigemptyset(&ign_sset);
for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
sigaddset(&ign_sset, *sig_ptr);
sigemptyset(&noign_sset);
for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++)
sigaddset(&noign_sset, *sig_ptr);
/* Obtain a copy of the boot monitor parameters.
*/
if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
panic("get monitor params failed: %d", s);
/* Initialize PM's process table. Request a copy of the system image table
* that is defined at the kernel level to see which slots to fill in.
*/
if (OK != (s=sys_getimage(image)))
panic("couldn't get image table: %d", s);
procs_in_use = 0; /* start populating table */
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
if (ip->proc_nr >= 0) { /* task have negative nrs */
procs_in_use += 1; /* found user process */
/* Set process details found in the image table. */
rmp = &mproc[ip->proc_nr];
strlcpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN);
(void) sigemptyset(&rmp->mp_ignore);
(void) sigemptyset(&rmp->mp_sigmask);
(void) sigemptyset(&rmp->mp_catch);
if (ip->proc_nr == INIT_PROC_NR) { /* user process */
/* INIT is root, we make it father of itself. This is
* not really OK, INIT should have no father, i.e.
* a father with pid NO_PID. But PM currently assumes
* that mp_parent always points to a valid slot number.
*/
rmp->mp_parent = INIT_PROC_NR;
rmp->mp_procgrp = rmp->mp_pid = INIT_PID;
rmp->mp_flags |= IN_USE;
/* Set scheduling info */
rmp->mp_scheduler = KERNEL;
rmp->mp_nice = get_nice_value(USR_Q);
}
else { /* system process */
if(ip->proc_nr == RS_PROC_NR) {
rmp->mp_parent = INIT_PROC_NR;
}
else {
rmp->mp_parent = RS_PROC_NR;
}
rmp->mp_pid = get_free_pid();
rmp->mp_flags |= IN_USE | PRIV_PROC;
/* RS schedules this process */
rmp->mp_scheduler = NONE;
rmp->mp_nice = get_nice_value(SRV_Q);
}
/* Get kernel endpoint identifier. */
rmp->mp_endpoint = ip->endpoint;
/* Tell VFS about this system process. */
mess.m_type = PM_INIT;
mess.PM_SLOT = ip->proc_nr;
mess.PM_PID = rmp->mp_pid;
mess.PM_PROC = rmp->mp_endpoint;
if (OK != (s=send(VFS_PROC_NR, &mess)))
panic("can't sync up with VFS: %d", s);
}
}
/* Tell VFS that no more system processes follow and synchronize. */
mess.PR_ENDPT = NONE;
if (sendrec(VFS_PROC_NR, &mess) != OK || mess.m_type != OK)
panic("can't sync up with VFS");
#if defined(__i386__)
uts_val.machine[0] = 'i';
strcpy(uts_val.machine + 1, itoa(getprocessor()));
#elif defined(__arm__)
strcpy(uts_val.machine, "arm");
#endif
system_hz = sys_hz();
/* Initialize user-space scheduling. */
sched_init();
return(OK);
}
/*===========================================================================*
* reply *
*===========================================================================*/
void reply(proc_nr, result)
int proc_nr; /* process to reply to */
int result; /* result of call (usually OK or error #) */
{
/* Send a reply to a user process. System calls may occasionally fill in other
* fields, this is only for the main return value and for sending the reply.
*/
struct mproc *rmp;
int r;
if(proc_nr < 0 || proc_nr >= NR_PROCS)
panic("reply arg out of range: %d", proc_nr);
rmp = &mproc[proc_nr];
rmp->mp_reply.reply_res = result;
if ((r = sendnb(rmp->mp_endpoint, &rmp->mp_reply)) != OK)
printf("PM can't reply to %d (%s): %d\n", rmp->mp_endpoint,
rmp->mp_name, r);
}
/*===========================================================================*
* get_nice_value *
*===========================================================================*/
static int get_nice_value(queue)
int queue; /* store mem chunks here */
{
/* Processes in the boot image have a priority assigned. The PM doesn't know
* about priorities, but uses 'nice' values instead. The priority is between
* MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
*/
int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) /
(MIN_USER_Q-MAX_USER_Q+1);
if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */
if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */
return nice_val;
}
/*===========================================================================*
* handle_vfs_reply *
*===========================================================================*/
static void handle_vfs_reply()
{
struct mproc *rmp;
endpoint_t proc_e;
int r, proc_n, new_parent;
/* PM_REBOOT is the only request not associated with a process.
* Handle its reply first.
*/
if (call_nr == PM_REBOOT_REPLY) {
/* Ask the kernel to abort. All system services, including
* the PM, will get a HARD_STOP notification. Await the
* notification in the main loop.
*/
sys_abort(abort_flag);
return;
}
/* Get the process associated with this call */
proc_e = m_in.PM_PROC;
if (pm_isokendpt(proc_e, &proc_n) != OK) {
panic("handle_vfs_reply: got bad endpoint from VFS: %d", proc_e);
}
rmp = &mproc[proc_n];
/* Now that VFS replied, mark the process as VFS-idle again */
if (!(rmp->mp_flags & VFS_CALL))
panic("handle_vfs_reply: reply without request: %d", call_nr);
new_parent = rmp->mp_flags & NEW_PARENT;
rmp->mp_flags &= ~(VFS_CALL | NEW_PARENT);
if (rmp->mp_flags & UNPAUSED)
panic("handle_vfs_reply: UNPAUSED set on entry: %d", call_nr);
/* Call-specific handler code */
switch (call_nr) {
case PM_SETUID_REPLY:
case PM_SETGID_REPLY:
case PM_SETGROUPS_REPLY:
/* Wake up the original caller */
reply(rmp-mproc, OK);
break;
case PM_SETSID_REPLY:
/* Wake up the original caller */
reply(rmp-mproc, rmp->mp_procgrp);
break;
case PM_EXEC_REPLY:
exec_restart(rmp, m_in.PM_STATUS, (vir_bytes)m_in.PM_PC,
(vir_bytes)m_in.PM_NEWSP, (vir_bytes)m_in.PM_NEWPS_STR);
break;
case PM_EXIT_REPLY:
exit_restart(rmp, FALSE /*dump_core*/);
break;
case PM_CORE_REPLY:
if (m_in.PM_STATUS == OK)
rmp->mp_sigstatus |= DUMPED;
exit_restart(rmp, TRUE /*dump_core*/);
break;
case PM_FORK_REPLY:
/* Schedule the newly created process ... */
r = OK;
if (rmp->mp_scheduler != KERNEL && rmp->mp_scheduler != NONE) {
r = sched_start_user(rmp->mp_scheduler, rmp);
}
/* If scheduling the process failed, we want to tear down the process
* and fail the fork */
if (r != OK) {
/* Tear down the newly created process */
rmp->mp_scheduler = NONE; /* don't try to stop scheduling */
exit_proc(rmp, -1, FALSE /*dump_core*/);
/* Wake up the parent with a failed fork (unless dead) */
if (!new_parent)
reply(rmp->mp_parent, -1);
}
else {
/* Wake up the child */
reply(proc_n, OK);
/* Wake up the parent, unless the parent is already dead */
if (!new_parent)
reply(rmp->mp_parent, rmp->mp_pid);
}
break;
case PM_SRV_FORK_REPLY:
/* Nothing to do */
break;
case PM_UNPAUSE_REPLY:
/* The target process must always be stopped while unpausing; otherwise
* it could just end up pausing itself on a new call afterwards.
*/
assert(rmp->mp_flags & PROC_STOPPED);
/* Process is now unpaused */
rmp->mp_flags |= UNPAUSED;
break;
default:
panic("handle_vfs_reply: unknown reply code: %d", call_nr);
}
/* Now that the process is idle again, look at pending signals */
if ((rmp->mp_flags & (IN_USE | EXITING)) == IN_USE)
restart_sigs(rmp);
}