minix/drivers/at_wini/at_wini.c
Ben Gras 3bd3c2cee1 Change at driver to understand 'safe' transfers and ioctls; do corresponding
safe copy and safe sys_insw and sys_outsw calls.
2006-06-20 08:51:24 +00:00

2557 lines
75 KiB
C

/* This file contains the device dependent part of a driver for the IBM-AT
* winchester controller. Written by Adri Koppes.
*
* The file contains one entry point:
*
* at_winchester_task: main entry when system is brought up
*
* Changes:
* Aug 19, 2005 ATA PCI support, supports SATA (Ben Gras)
* Nov 18, 2004 moved AT disk driver to user-space (Jorrit N. Herder)
* Aug 20, 2004 watchdogs replaced by sync alarms (Jorrit N. Herder)
* Mar 23, 2000 added ATAPI CDROM support (Michael Temari)
* May 14, 2000 d-d/i rewrite (Kees J. Bot)
* Apr 13, 1992 device dependent/independent split (Kees J. Bot)
*/
#include "at_wini.h"
#include <minix/sysutil.h>
#include <minix/keymap.h>
#include <sys/ioc_disk.h>
#include <ibm/pci.h>
#define ATAPI_DEBUG 0 /* To debug ATAPI code. */
/* I/O Ports used by winchester disk controllers. */
/* Read and write registers */
#define REG_CMD_BASE0 0x1F0 /* command base register of controller 0 */
#define REG_CMD_BASE1 0x170 /* command base register of controller 1 */
#define REG_CTL_BASE0 0x3F6 /* control base register of controller 0 */
#define REG_CTL_BASE1 0x376 /* control base register of controller 1 */
#define PCI_CTL_OFF 2 /* Offset of control registers from BAR2 */
#define PCI_DMA_2ND_OFF 8 /* Offset of DMA registers from BAR4 for
* secondary channel
*/
#define REG_DATA 0 /* data register (offset from the base reg.) */
#define REG_PRECOMP 1 /* start of write precompensation */
#define REG_COUNT 2 /* sectors to transfer */
#define REG_SECTOR 3 /* sector number */
#define REG_CYL_LO 4 /* low byte of cylinder number */
#define REG_CYL_HI 5 /* high byte of cylinder number */
#define REG_LDH 6 /* lba, drive and head */
#define LDH_DEFAULT 0xA0 /* ECC enable, 512 bytes per sector */
#define LDH_LBA 0x40 /* Use LBA addressing */
#define LDH_DEV 0x10 /* Drive 1 iff set */
#define ldh_init(drive) (LDH_DEFAULT | ((drive) << 4))
/* Read only registers */
#define REG_STATUS 7 /* status */
#define STATUS_BSY 0x80 /* controller busy */
#define STATUS_RDY 0x40 /* drive ready */
#define STATUS_WF 0x20 /* write fault */
#define STATUS_SC 0x10 /* seek complete (obsolete) */
#define STATUS_DRQ 0x08 /* data transfer request */
#define STATUS_CRD 0x04 /* corrected data */
#define STATUS_IDX 0x02 /* index pulse */
#define STATUS_ERR 0x01 /* error */
#define STATUS_ADMBSY 0x100 /* administratively busy (software) */
#define REG_ERROR 1 /* error code */
#define ERROR_BB 0x80 /* bad block */
#define ERROR_ECC 0x40 /* bad ecc bytes */
#define ERROR_ID 0x10 /* id not found */
#define ERROR_AC 0x04 /* aborted command */
#define ERROR_TK 0x02 /* track zero error */
#define ERROR_DM 0x01 /* no data address mark */
/* Write only registers */
#define REG_COMMAND 7 /* command */
#define CMD_IDLE 0x00 /* for w_command: drive idle */
#define CMD_RECALIBRATE 0x10 /* recalibrate drive */
#define CMD_READ 0x20 /* read data */
#define CMD_READ_EXT 0x24 /* read data (LBA48 addressed) */
#define CMD_READ_DMA_EXT 0x25 /* read data using DMA (w/ LBA48) */
#define CMD_WRITE 0x30 /* write data */
#define CMD_WRITE_EXT 0x34 /* write data (LBA48 addressed) */
#define CMD_WRITE_DMA_EXT 0x35 /* write data using DMA (w/ LBA48) */
#define CMD_READVERIFY 0x40 /* read verify */
#define CMD_FORMAT 0x50 /* format track */
#define CMD_SEEK 0x70 /* seek cylinder */
#define CMD_DIAG 0x90 /* execute device diagnostics */
#define CMD_SPECIFY 0x91 /* specify parameters */
#define CMD_READ_DMA 0xC8 /* read data using DMA */
#define CMD_WRITE_DMA 0xCA /* write data using DMA */
#define ATA_IDENTIFY 0xEC /* identify drive */
/* #define REG_CTL 0x206 */ /* control register */
#define REG_CTL 0 /* control register */
#define CTL_NORETRY 0x80 /* disable access retry */
#define CTL_NOECC 0x40 /* disable ecc retry */
#define CTL_EIGHTHEADS 0x08 /* more than eight heads */
#define CTL_RESET 0x04 /* reset controller */
#define CTL_INTDISABLE 0x02 /* disable interrupts */
#define REG_CTL_ALTSTAT 0 /* alternate status register */
/* Identify words */
#define ID_GENERAL 0x00 /* General configuration information */
#define ID_GEN_NOT_ATA 0x8000 /* Not an ATA device */
#define ID_CAPABILITIES 0x31 /* Capabilities (49)*/
#define ID_CAP_LBA 0x0200 /* LBA supported */
#define ID_CAP_DMA 0x0100 /* DMA supported */
#define ID_FIELD_VALIDITY 0x35 /* Field Validity (53) */
#define ID_FV_88 0x04 /* Word 88 is valid (UDMA) */
#define ID_MULTIWORD_DMA 0x3f /* Multiword DMA (63) */
#define ID_MWDMA_2_SEL 0x0400 /* Mode 2 is selected */
#define ID_MWDMA_1_SEL 0x0200 /* Mode 1 is selected */
#define ID_MWDMA_0_SEL 0x0100 /* Mode 0 is selected */
#define ID_MWDMA_2_SUP 0x0004 /* Mode 2 is supported */
#define ID_MWDMA_1_SUP 0x0002 /* Mode 1 is supported */
#define ID_MWDMA_0_SUP 0x0001 /* Mode 0 is supported */
#define ID_CSS 0x53 /* Command Sets Supported (83) */
#define ID_CSS_LBA48 0x0400
#define ID_ULTRA_DMA 0x58 /* Ultra DMA (88) */
#define ID_UDMA_5_SEL 0x2000 /* Mode 5 is selected */
#define ID_UDMA_4_SEL 0x1000 /* Mode 4 is selected */
#define ID_UDMA_3_SEL 0x0800 /* Mode 3 is selected */
#define ID_UDMA_2_SEL 0x0400 /* Mode 2 is selected */
#define ID_UDMA_1_SEL 0x0200 /* Mode 1 is selected */
#define ID_UDMA_0_SEL 0x0100 /* Mode 0 is selected */
#define ID_UDMA_5_SUP 0x0020 /* Mode 5 is supported */
#define ID_UDMA_4_SUP 0x0010 /* Mode 4 is supported */
#define ID_UDMA_3_SUP 0x0008 /* Mode 3 is supported */
#define ID_UDMA_2_SUP 0x0004 /* Mode 2 is supported */
#define ID_UDMA_1_SUP 0x0002 /* Mode 1 is supported */
#define ID_UDMA_0_SUP 0x0001 /* Mode 0 is supported */
/* DMA registers */
#define DMA_COMMAND 0 /* Command register */
#define DMA_CMD_WRITE 0x08 /* PCI bus master writes */
#define DMA_CMD_START 0x01 /* Start Bus Master */
#define DMA_STATUS 2 /* Status register */
#define DMA_ST_D1_DMACAP 0x40 /* Drive 1 is DMA capable */
#define DMA_ST_D0_DMACAP 0x20 /* Drive 0 is DMA capable */
#define DMA_ST_INT 0x04 /* Interrupt */
#define DMA_ST_ERROR 0x02 /* Error */
#define DMA_ST_BM_ACTIVE 0x01 /* Bus Master IDE Active */
#define DMA_PRDTP 4 /* PRD Table Pointer */
/* Check for the presence of LBA48 only on drives that are 'big'. */
#define LBA48_CHECK_SIZE 0x0f000000
#define LBA_MAX_SIZE 0x0fffffff /* Highest sector size for
* regular LBA.
*/
#if ENABLE_ATAPI
#define ERROR_SENSE 0xF0 /* sense key mask */
#define SENSE_NONE 0x00 /* no sense key */
#define SENSE_RECERR 0x10 /* recovered error */
#define SENSE_NOTRDY 0x20 /* not ready */
#define SENSE_MEDERR 0x30 /* medium error */
#define SENSE_HRDERR 0x40 /* hardware error */
#define SENSE_ILRQST 0x50 /* illegal request */
#define SENSE_UATTN 0x60 /* unit attention */
#define SENSE_DPROT 0x70 /* data protect */
#define SENSE_ABRT 0xb0 /* aborted command */
#define SENSE_MISCOM 0xe0 /* miscompare */
#define ERROR_MCR 0x08 /* media change requested */
#define ERROR_ABRT 0x04 /* aborted command */
#define ERROR_EOM 0x02 /* end of media detected */
#define ERROR_ILI 0x01 /* illegal length indication */
#define REG_FEAT 1 /* features */
#define FEAT_OVERLAP 0x02 /* overlap */
#define FEAT_DMA 0x01 /* dma */
#define REG_IRR 2 /* interrupt reason register */
#define IRR_REL 0x04 /* release */
#define IRR_IO 0x02 /* direction for xfer */
#define IRR_COD 0x01 /* command or data */
#define REG_SAMTAG 3
#define REG_CNT_LO 4 /* low byte of cylinder number */
#define REG_CNT_HI 5 /* high byte of cylinder number */
#define REG_DRIVE 6 /* drive select */
#endif
#define REG_STATUS 7 /* status */
#define STATUS_BSY 0x80 /* controller busy */
#define STATUS_DRDY 0x40 /* drive ready */
#define STATUS_DMADF 0x20 /* dma ready/drive fault */
#define STATUS_SRVCDSC 0x10 /* service or dsc */
#define STATUS_DRQ 0x08 /* data transfer request */
#define STATUS_CORR 0x04 /* correctable error occurred */
#define STATUS_CHECK 0x01 /* check error */
#ifdef ENABLE_ATAPI
#define ATAPI_PACKETCMD 0xA0 /* packet command */
#define ATAPI_IDENTIFY 0xA1 /* identify drive */
#define SCSI_READ10 0x28 /* read from disk */
#define SCSI_SENSE 0x03 /* sense request */
#define CD_SECTOR_SIZE 2048 /* sector size of a CD-ROM */
#endif /* ATAPI */
/* Interrupt request lines. */
#define NO_IRQ 0 /* no IRQ set yet */
#define ATAPI_PACKETSIZE 12
#define SENSE_PACKETSIZE 18
/* Common command block */
struct command {
u8_t precomp; /* REG_PRECOMP, etc. */
u8_t count;
u8_t sector;
u8_t cyl_lo;
u8_t cyl_hi;
u8_t ldh;
u8_t command;
/* The following at for LBA48 */
u8_t count_prev;
u8_t sector_prev;
u8_t cyl_lo_prev;
u8_t cyl_hi_prev;
};
/* Error codes */
#define ERR (-1) /* general error */
#define ERR_BAD_SECTOR (-2) /* block marked bad detected */
/* Some controllers don't interrupt, the clock will wake us up. */
#define WAKEUP (32*HZ) /* drive may be out for 31 seconds max */
/* Miscellaneous. */
#define MAX_DRIVES 8
#define COMPAT_DRIVES 4
#if _WORD_SIZE > 2
#define MAX_SECS 256 /* controller can transfer this many sectors */
#else
#define MAX_SECS 127 /* but not to a 16 bit process */
#endif
#define MAX_ERRORS 4 /* how often to try rd/wt before quitting */
#define NR_MINORS (MAX_DRIVES * DEV_PER_DRIVE)
#define SUB_PER_DRIVE (NR_PARTITIONS * NR_PARTITIONS)
#define NR_SUBDEVS (MAX_DRIVES * SUB_PER_DRIVE)
#define DELAY_USECS 1000 /* controller timeout in microseconds */
#define DELAY_TICKS 1 /* controller timeout in ticks */
#define DEF_TIMEOUT_TICKS 300 /* controller timeout in ticks */
#define RECOVERY_USECS 500000 /* controller recovery time in microseconds */
#define RECOVERY_TICKS 30 /* controller recovery time in ticks */
#define INITIALIZED 0x01 /* drive is initialized */
#define DEAF 0x02 /* controller must be reset */
#define SMART 0x04 /* drive supports ATA commands */
#if ENABLE_ATAPI
#define ATAPI 0x08 /* it is an ATAPI device */
#else
#define ATAPI 0 /* don't bother with ATAPI; optimise out */
#endif
#define IDENTIFIED 0x10 /* w_identify done successfully */
#define IGNORING 0x20 /* w_identify failed once */
/* Timeouts and max retries. */
int timeout_ticks = DEF_TIMEOUT_TICKS, max_errors = MAX_ERRORS;
int wakeup_ticks = WAKEUP;
long w_standard_timeouts = 0, w_pci_debug = 0, w_instance = 0,
disable_dma = 0, atapi_debug = 0;
int w_testing = 0, w_silent = 0;
int w_next_drive = 0;
/* Variables. */
/* The struct wini is indexed by controller first, then drive (0-3).
* Controller 0 is always the 'compatability' ide controller, at
* the fixed locations, whether present or not.
*/
PRIVATE struct wini { /* main drive struct, one entry per drive */
unsigned state; /* drive state: deaf, initialized, dead */
unsigned short w_status; /* device status register */
unsigned base_cmd; /* command base register */
unsigned base_ctl; /* control base register */
unsigned base_dma; /* dma base register */
unsigned irq; /* interrupt request line */
unsigned irq_mask; /* 1 << irq */
unsigned irq_need_ack; /* irq needs to be acknowledged */
int irq_hook_id; /* id of irq hook at the kernel */
int lba48; /* supports lba48 */
int dma; /* supports dma */
unsigned lcylinders; /* logical number of cylinders (BIOS) */
unsigned lheads; /* logical number of heads */
unsigned lsectors; /* logical number of sectors per track */
unsigned pcylinders; /* physical number of cylinders (translated) */
unsigned pheads; /* physical number of heads */
unsigned psectors; /* physical number of sectors per track */
unsigned ldhpref; /* top four bytes of the LDH (head) register */
unsigned precomp; /* write precompensation cylinder / 4 */
unsigned max_count; /* max request for this drive */
unsigned open_ct; /* in-use count */
struct device part[DEV_PER_DRIVE]; /* disks and partitions */
struct device subpart[SUB_PER_DRIVE]; /* subpartitions */
} wini[MAX_DRIVES], *w_wn;
PRIVATE int w_device = -1;
PRIVATE int w_controller = -1;
PRIVATE int w_major = -1;
PRIVATE char w_id_string[40];
PRIVATE int win_tasknr; /* my task number */
PRIVATE int w_command; /* current command in execution */
PRIVATE u8_t w_byteval; /* used for SYS_IRQCTL */
PRIVATE int w_drive; /* selected drive */
PRIVATE int w_controller; /* selected controller */
PRIVATE struct device *w_dv; /* device's base and size */
/* Unfortunately, DMA_SECTORS and DMA_BUF_SIZE are already defined libdriver
* for 'tmp_buf'.
*/
#define ATA_DMA_SECTORS 64
#define ATA_DMA_BUF_SIZE (ATA_DMA_SECTORS*SECTOR_SIZE)
PRIVATE char dma_buf[ATA_DMA_BUF_SIZE];
PRIVATE phys_bytes dma_buf_phys;
#define N_PRDTE 1024 /* Should be enough for large requests */
PRIVATE struct prdte
{
u32_t prdte_base;
u16_t prdte_count;
u8_t prdte_reserved;
u8_t prdte_flags;
} prdt[N_PRDTE];
PRIVATE phys_bytes prdt_phys;
#define PRDTE_FL_EOT 0x80 /* End of table */
/* Some IDE devices announce themselves as RAID controllers */
PRIVATE struct
{
u16_t vendor;
u16_t device;
} raid_table[]=
{
{ 0x1106, 0x3149 }, /* VIA VT6420 */
{ 0, 0 } /* end of list */
};
FORWARD _PROTOTYPE( void init_params, (void) );
FORWARD _PROTOTYPE( void init_drive, (struct wini *w, int base_cmd,
int base_ctl, int base_dma, int irq, int ack, int hook,
int drive) );
FORWARD _PROTOTYPE( void init_params_pci, (int) );
FORWARD _PROTOTYPE( int w_do_open, (struct driver *dp, message *m_ptr) );
FORWARD _PROTOTYPE( struct device *w_prepare, (int dev) );
FORWARD _PROTOTYPE( int w_identify, (void) );
FORWARD _PROTOTYPE( char *w_name, (void) );
FORWARD _PROTOTYPE( int w_specify, (void) );
FORWARD _PROTOTYPE( int w_io_test, (void) );
FORWARD _PROTOTYPE( int w_transfer, (int proc_nr, int opcode, off_t position,
iovec_t *iov, unsigned nr_req, int safe));
FORWARD _PROTOTYPE( int com_out, (struct command *cmd) );
FORWARD _PROTOTYPE( int com_out_ext, (struct command *cmd) );
FORWARD _PROTOTYPE( void setup_dma, (unsigned *sizep, int proc_nr,
iovec_t *iov, int do_write, int *do_copyoutp, int safe) );
FORWARD _PROTOTYPE( void w_need_reset, (void) );
FORWARD _PROTOTYPE( void ack_irqs, (unsigned int) );
FORWARD _PROTOTYPE( int w_do_close, (struct driver *dp, message *m_ptr) );
FORWARD _PROTOTYPE( int w_other, (struct driver *dp, message *m_ptr, int));
FORWARD _PROTOTYPE( int w_hw_int, (struct driver *dp, message *m_ptr) );
FORWARD _PROTOTYPE( int com_simple, (struct command *cmd) );
FORWARD _PROTOTYPE( void w_timeout, (void) );
FORWARD _PROTOTYPE( int w_reset, (void) );
FORWARD _PROTOTYPE( void w_intr_wait, (void) );
FORWARD _PROTOTYPE( int at_intr_wait, (void) );
FORWARD _PROTOTYPE( int w_waitfor, (int mask, int value) );
FORWARD _PROTOTYPE( int w_waitfor_dma, (int mask, int value) );
FORWARD _PROTOTYPE( void w_geometry, (struct partition *entry) );
#if ENABLE_ATAPI
FORWARD _PROTOTYPE( int atapi_sendpacket, (u8_t *packet, unsigned cnt) );
FORWARD _PROTOTYPE( int atapi_intr_wait, (void) );
FORWARD _PROTOTYPE( int atapi_open, (void) );
FORWARD _PROTOTYPE( void atapi_close, (void) );
FORWARD _PROTOTYPE( int atapi_transfer, (int proc_nr, int opcode,
off_t position, iovec_t *iov, unsigned nr_req, int safe));
#endif
/* Entry points to this driver. */
PRIVATE struct driver w_dtab = {
w_name, /* current device's name */
w_do_open, /* open or mount request, initialize device */
w_do_close, /* release device */
do_diocntl, /* get or set a partition's geometry */
w_prepare, /* prepare for I/O on a given minor device */
w_transfer, /* do the I/O */
nop_cleanup, /* nothing to clean up */
w_geometry, /* tell the geometry of the disk */
nop_signal, /* no cleanup needed on shutdown */
nop_alarm, /* ignore leftover alarms */
nop_cancel, /* ignore CANCELs */
nop_select, /* ignore selects */
w_other, /* catch-all for unrecognized commands and ioctls */
w_hw_int /* leftover hardware interrupts */
};
/*===========================================================================*
* at_winchester_task *
*===========================================================================*/
PUBLIC int main()
{
/* Install signal handlers. Ask PM to transform signal into message. */
struct sigaction sa;
sa.sa_handler = SIG_MESS;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGTERM,&sa,NULL)<0) panic("AT","sigaction failed", errno);
/* Set special disk parameters then call the generic main loop. */
init_params();
signal(SIGTERM, SIG_IGN);
driver_task(&w_dtab);
return(OK);
}
/*===========================================================================*
* init_params *
*===========================================================================*/
PRIVATE void init_params()
{
/* This routine is called at startup to initialize the drive parameters. */
u16_t parv[2];
unsigned int vector, size;
int drive, nr_drives;
struct wini *wn;
u8_t params[16];
int s;
/* Boot variables. */
env_parse("ata_std_timeout", "d", 0, &w_standard_timeouts, 0, 1);
env_parse("ata_pci_debug", "d", 0, &w_pci_debug, 0, 1);
env_parse("ata_instance", "d", 0, &w_instance, 0, 8);
env_parse("ata_no_dma", "d", 0, &disable_dma, 0, 1);
env_parse("atapi_debug", "d", 0, &atapi_debug, 0, 1);
if (disable_dma)
printf("DMA for ATA devices is disabled.\n");
s= sys_umap(SELF, D, (vir_bytes)dma_buf, sizeof(dma_buf), &dma_buf_phys);
if (s != 0)
panic("at_wini", "can't map dma buffer", s);
s= sys_umap(SELF, D, (vir_bytes)prdt, sizeof(prdt), &prdt_phys);
if (s != 0)
panic("at_wini", "can't map prd table", s);
if (w_instance == 0) {
/* Get the number of drives from the BIOS data area */
if ((s=sys_vircopy(SELF, BIOS_SEG, NR_HD_DRIVES_ADDR,
SELF, D, (vir_bytes) params, NR_HD_DRIVES_SIZE)) != OK)
panic(w_name(), "Couldn't read BIOS", s);
if ((nr_drives = params[0]) > 2) nr_drives = 2;
for (drive = 0, wn = wini; drive < COMPAT_DRIVES; drive++, wn++) {
if (drive < nr_drives) {
/* Copy the BIOS parameter vector */
vector = (drive == 0) ? BIOS_HD0_PARAMS_ADDR:BIOS_HD1_PARAMS_ADDR;
size = (drive == 0) ? BIOS_HD0_PARAMS_SIZE:BIOS_HD1_PARAMS_SIZE;
if ((s=sys_vircopy(SELF, BIOS_SEG, vector,
SELF, D, (vir_bytes) parv, size)) != OK)
panic(w_name(), "Couldn't read BIOS", s);
/* Calculate the address of the parameters and copy them */
if ((s=sys_vircopy(
SELF, BIOS_SEG, hclick_to_physb(parv[1]) + parv[0],
SELF, D, (phys_bytes) params, 16L))!=OK)
panic(w_name(),"Couldn't copy parameters", s);
/* Copy the parameters to the structures of the drive */
wn->lcylinders = bp_cylinders(params);
wn->lheads = bp_heads(params);
wn->lsectors = bp_sectors(params);
wn->precomp = bp_precomp(params) >> 2;
}
/* Fill in non-BIOS parameters. */
init_drive(wn,
drive < 2 ? REG_CMD_BASE0 : REG_CMD_BASE1,
drive < 2 ? REG_CTL_BASE0 : REG_CTL_BASE1,
0 /* no DMA */, NO_IRQ, 0, 0, drive);
w_next_drive++;
}
}
/* Look for controllers on the pci bus. Skip none the first instance,
* skip one and then 2 for every instance, for every next instance.
*/
if (w_instance == 0)
init_params_pci(0);
else
init_params_pci(w_instance*2-1);
}
#define ATA_IF_NOTCOMPAT1 (1L << 0)
#define ATA_IF_NOTCOMPAT2 (1L << 2)
/*===========================================================================*
* init_drive *
*===========================================================================*/
PRIVATE void init_drive(struct wini *w, int base_cmd, int base_ctl,
int base_dma, int irq, int ack, int hook, int drive)
{
w->state = 0;
w->w_status = 0;
w->base_cmd = base_cmd;
w->base_ctl = base_ctl;
w->base_dma = base_dma;
w->irq = irq;
w->irq_mask = 1 << irq;
w->irq_need_ack = ack;
w->irq_hook_id = hook;
w->ldhpref = ldh_init(drive);
w->max_count = MAX_SECS << SECTOR_SHIFT;
w->lba48 = 0;
w->dma = 0;
}
/*===========================================================================*
* init_params_pci *
*===========================================================================*/
PRIVATE void init_params_pci(int skip)
{
int i, r, devind, drive;
int irq, irq_hook, raid;
u8_t bcr, scr, interface;
u16_t vid, did;
u32_t base_dma, t3;
pci_init();
for(drive = w_next_drive; drive < MAX_DRIVES; drive++)
wini[drive].state = IGNORING;
for(r = pci_first_dev(&devind, &vid, &did); r != 0;
r = pci_next_dev(&devind, &vid, &did)) {
raid= 0;
/* Except class 01h (mass storage), subclass be 01h (ATA).
* Also check listed RAID controllers.
*/
bcr= pci_attr_r8(devind, PCI_BCR);
scr= pci_attr_r8(devind, PCI_SCR);
interface= pci_attr_r8(devind, PCI_PIFR);
t3= ((bcr << 16) | (scr << 8) | interface);
if (bcr == PCI_BCR_MASS_STORAGE && scr == PCI_MS_IDE)
; /* Okay */
else if (t3 == PCI_T3_RAID)
{
for (i= 0; raid_table[i].vendor != 0; i++)
{
if (raid_table[i].vendor == vid &&
raid_table[i].device == did)
{
break;
}
}
if (raid_table[i].vendor == 0)
{
printf(
"atapci skipping unsupported RAID controller 0x%04x / 0x%04x\n",
vid, did);
continue;
}
printf("found supported RAID controller\n");
raid= 1;
}
else
continue; /* Unsupported device class */
/* Found a controller.
* Programming interface register tells us more.
*/
irq = pci_attr_r8(devind, PCI_ILR);
/* Any non-compat drives? */
if (raid || (interface & (ATA_IF_NOTCOMPAT1 | ATA_IF_NOTCOMPAT2))) {
int s;
if (w_next_drive >= MAX_DRIVES)
{
/* We can't accept more drives, but have to search for
* controllers operating in compatibility mode.
*/
continue;
}
irq_hook = irq;
if (skip > 0) {
if (w_pci_debug)
{
printf(
"atapci skipping controller (remain %d)\n",
skip);
}
skip--;
continue;
}
if ((s=sys_irqsetpolicy(irq, 0, &irq_hook)) != OK) {
printf("atapci: couldn't set IRQ policy %d\n", irq);
continue;
}
if ((s=sys_irqenable(&irq_hook)) != OK) {
printf("atapci: couldn't enable IRQ line %d\n", irq);
continue;
}
}
base_dma = pci_attr_r32(devind, PCI_BAR_5) & 0xfffffffc;
/* Primary channel not in compatability mode? */
if (raid || (interface & ATA_IF_NOTCOMPAT1)) {
u32_t base_cmd, base_ctl;
base_cmd = pci_attr_r32(devind, PCI_BAR) & 0xfffffffc;
base_ctl = pci_attr_r32(devind, PCI_BAR_2) & 0xfffffffc;
if (base_cmd != REG_CMD_BASE0 && base_cmd != REG_CMD_BASE1) {
init_drive(&wini[w_next_drive],
base_cmd, base_ctl+PCI_CTL_OFF,
base_dma, irq, 1, irq_hook, 0);
init_drive(&wini[w_next_drive+1],
base_cmd, base_ctl+PCI_CTL_OFF,
base_dma, irq, 1, irq_hook, 1);
if (w_pci_debug)
printf("atapci %d: 0x%x 0x%x irq %d\n", devind, base_cmd, base_ctl, irq);
w_next_drive += 2;
} else printf("atapci: ignored drives on primary channel, base %x\n", base_cmd);
}
else
{
/* Update base_dma for compatibility device */
for (i= 0; i<MAX_DRIVES; i++)
{
if (wini[i].base_cmd == REG_CMD_BASE0)
wini[i].base_dma= base_dma;
}
}
/* Secondary channel not in compatability mode? */
if (raid || (interface & ATA_IF_NOTCOMPAT2)) {
u32_t base_cmd, base_ctl;
base_cmd = pci_attr_r32(devind, PCI_BAR_3) & 0xfffffffc;
base_ctl = pci_attr_r32(devind, PCI_BAR_4) & 0xfffffffc;
if (base_dma != 0)
base_dma += PCI_DMA_2ND_OFF;
if (base_cmd != REG_CMD_BASE0 && base_cmd != REG_CMD_BASE1) {
init_drive(&wini[w_next_drive],
base_cmd, base_ctl+PCI_CTL_OFF, base_dma,
irq, 1, irq_hook, 2);
init_drive(&wini[w_next_drive+1],
base_cmd, base_ctl+PCI_CTL_OFF, base_dma,
irq, 1, irq_hook, 3);
if (w_pci_debug)
printf("atapci %d: 0x%x 0x%x irq %d\n", devind, base_cmd, base_ctl, irq);
w_next_drive += 2;
} else printf("atapci: ignored drives on secondary channel, base %x\n", base_cmd);
}
else
{
/* Update base_dma for compatibility device */
for (i= 0; i<MAX_DRIVES; i++)
{
if (wini[i].base_cmd == REG_CMD_BASE1 && base_dma != 0)
wini[i].base_dma= base_dma+PCI_DMA_2ND_OFF;
}
}
}
}
/*===========================================================================*
* w_do_open *
*===========================================================================*/
PRIVATE int w_do_open(dp, m_ptr)
struct driver *dp;
message *m_ptr;
{
/* Device open: Initialize the controller and read the partition table. */
struct wini *wn;
if (w_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO);
wn = w_wn;
/* If we've probed it before and it failed, don't probe it again. */
if (wn->state & IGNORING) return ENXIO;
/* If we haven't identified it yet, or it's gone deaf,
* (re-)identify it.
*/
if (!(wn->state & IDENTIFIED) || (wn->state & DEAF)) {
/* Try to identify the device. */
if (w_identify() != OK) {
#if VERBOSE
printf("%s: probe failed\n", w_name());
#endif
if (wn->state & DEAF) w_reset();
wn->state = IGNORING;
return(ENXIO);
}
/* Do a test transaction unless it's a CD drive (then
* we can believe the controller, and a test may fail
* due to no CD being in the drive). If it fails, ignore
* the device forever.
*/
if (!(wn->state & ATAPI) && w_io_test() != OK) {
wn->state |= IGNORING;
return(ENXIO);
}
#if VERBOSE
printf("%s: AT driver detected ", w_name());
if (wn->state & (SMART|ATAPI)) {
printf("%.40s\n", w_id_string);
} else {
printf("%ux%ux%u\n", wn->pcylinders, wn->pheads, wn->psectors);
}
#endif
}
#if ENABLE_ATAPI
if ((wn->state & ATAPI) && (m_ptr->COUNT & W_BIT))
return(EACCES);
#endif
/* Partition the drive if it's being opened for the first time,
* or being opened after being closed.
*/
if (wn->open_ct == 0) {
#if ENABLE_ATAPI
if (wn->state & ATAPI) {
int r;
if ((r = atapi_open()) != OK) return(r);
}
#endif
/* Partition the disk. */
partition(&w_dtab, w_drive * DEV_PER_DRIVE, P_PRIMARY, wn->state & ATAPI);
}
wn->open_ct++;
return(OK);
}
/*===========================================================================*
* w_prepare *
*===========================================================================*/
PRIVATE struct device *w_prepare(int device)
{
/* Prepare for I/O on a device. */
struct wini *prev_wn;
prev_wn = w_wn;
w_device = device;
if (device < NR_MINORS) { /* d0, d0p[0-3], d1, ... */
w_drive = device / DEV_PER_DRIVE; /* save drive number */
w_wn = &wini[w_drive];
w_dv = &w_wn->part[device % DEV_PER_DRIVE];
} else
if ((unsigned) (device -= MINOR_d0p0s0) < NR_SUBDEVS) {/*d[0-7]p[0-3]s[0-3]*/
w_drive = device / SUB_PER_DRIVE;
w_wn = &wini[w_drive];
w_dv = &w_wn->subpart[device % SUB_PER_DRIVE];
} else {
w_device = -1;
return(NIL_DEV);
}
return(w_dv);
}
/*===========================================================================*
* w_identify *
*===========================================================================*/
PRIVATE int w_identify()
{
/* Find out if a device exists, if it is an old AT disk, or a newer ATA
* drive, a removable media device, etc.
*/
struct wini *wn = w_wn;
struct command cmd;
int i, s;
int id_dma, ultra_dma;
u32_t dma_base;
u16_t w;
unsigned long dma_status;
unsigned long size;
#define id_byte(n) (&tmp_buf[2 * (n)])
#define id_word(n) (((u16_t) id_byte(n)[0] << 0) \
|((u16_t) id_byte(n)[1] << 8))
#define id_longword(n) (((u32_t) id_byte(n)[0] << 0) \
|((u32_t) id_byte(n)[1] << 8) \
|((u32_t) id_byte(n)[2] << 16) \
|((u32_t) id_byte(n)[3] << 24))
/* Try to identify the device. */
cmd.ldh = wn->ldhpref;
cmd.command = ATA_IDENTIFY;
if (com_simple(&cmd) == OK && w_waitfor(STATUS_DRQ, STATUS_DRQ) &&
!(wn->w_status & (STATUS_ERR|STATUS_WF))) {
/* Device information. */
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK)
panic(w_name(),"Call to sys_insw() failed", s);
if (id_word(0) & ID_GEN_NOT_ATA)
{
printf("%s: not an ATA device?\n", w_name());
return ERR;
}
/* This is an ATA device. */
wn->state |= SMART;
/* Why are the strings byte swapped??? */
for (i = 0; i < 40; i++) w_id_string[i] = id_byte(27)[i^1];
/* Preferred CHS translation mode. */
wn->pcylinders = id_word(1);
wn->pheads = id_word(3);
wn->psectors = id_word(6);
size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors;
w= id_word(ID_CAPABILITIES);
if ((w & ID_CAP_LBA) && size > 512L*1024*2) {
/* Drive is LBA capable and is big enough to trust it to
* not make a mess of it.
*/
wn->ldhpref |= LDH_LBA;
size = id_longword(60);
w= id_word(ID_CSS);
if (size < LBA48_CHECK_SIZE)
{
/* No need to check for LBA48 */
}
else if (w & ID_CSS_LBA48) {
/* Drive is LBA48 capable (and LBA48 is turned on). */
if (id_longword(102)) {
/* If no. of sectors doesn't fit in 32 bits,
* trunacte to this. So it's LBA32 for now.
* This can still address devices up to 2TB
* though.
*/
size = ULONG_MAX;
} else {
/* Actual number of sectors fits in 32 bits. */
size = id_longword(100);
}
wn->lba48 = 1;
}
/* Check for DMA. Assume that only LBA capable devices can do
* DMA.
*/
w= id_word(ID_CAPABILITIES);
id_dma= !!(w & ID_CAP_DMA);
w= id_byte(ID_FIELD_VALIDITY)[0];
ultra_dma= !!(w & ID_FV_88);
dma_base= wn->base_dma;
if (dma_base)
{
if (sys_inb(dma_base + DMA_STATUS, &dma_status) != OK)
{
panic(w_name(),
"unable to read DMA status register",
NO_NUM);
}
}
if (disable_dma)
; /* DMA is disabled */
else if (id_dma && dma_base)
{
w= id_word(ID_MULTIWORD_DMA);
if (w & (ID_MWDMA_2_SUP|ID_MWDMA_1_SUP|ID_MWDMA_0_SUP))
{
printf(
"%s: multiword DMA modes supported:%s%s%s\n",
w_name(),
(w & ID_MWDMA_0_SUP) ? " 0" : "",
(w & ID_MWDMA_1_SUP) ? " 1" : "",
(w & ID_MWDMA_2_SUP) ? " 2" : "");
}
if (w & (ID_MWDMA_0_SEL|ID_MWDMA_1_SEL|ID_MWDMA_2_SEL))
{
printf(
"%s: multiword DMA mode selected:%s%s%s\n",
w_name(),
(w & ID_MWDMA_0_SEL) ? " 0" : "",
(w & ID_MWDMA_1_SEL) ? " 1" : "",
(w & ID_MWDMA_2_SEL) ? " 2" : "");
}
if (ultra_dma)
{
w= id_word(ID_ULTRA_DMA);
if (w & (ID_UDMA_0_SUP|ID_UDMA_1_SUP|
ID_UDMA_2_SUP|ID_UDMA_3_SUP|
ID_UDMA_4_SUP|ID_UDMA_5_SUP))
{
printf(
"%s: Ultra DMA modes supported:%s%s%s%s%s%s\n",
w_name(),
(w & ID_UDMA_0_SUP) ? " 0" : "",
(w & ID_UDMA_1_SUP) ? " 1" : "",
(w & ID_UDMA_2_SUP) ? " 2" : "",
(w & ID_UDMA_3_SUP) ? " 3" : "",
(w & ID_UDMA_4_SUP) ? " 4" : "",
(w & ID_UDMA_5_SUP) ? " 5" : "");
}
if (w & (ID_UDMA_0_SEL|ID_UDMA_1_SEL|
ID_UDMA_2_SEL|ID_UDMA_3_SEL|
ID_UDMA_4_SEL|ID_UDMA_5_SEL))
{
printf(
"%s: Ultra DMA mode selected:%s%s%s%s%s%s\n",
w_name(),
(w & ID_UDMA_0_SEL) ? " 0" : "",
(w & ID_UDMA_1_SEL) ? " 1" : "",
(w & ID_UDMA_2_SEL) ? " 2" : "",
(w & ID_UDMA_3_SEL) ? " 3" : "",
(w & ID_UDMA_4_SEL) ? " 4" : "",
(w & ID_UDMA_5_SEL) ? " 5" : "");
}
}
wn->dma= 1;
}
else if (id_dma || dma_base)
{
printf("id_dma %d, dma_base 0x%x\n", id_dma, dma_base);
}
else
printf("no DMA support\n");
#if 0
if (wn->dma && wn == &wini[0])
{
printf("disabling DMA for drive 0\n");
wn->dma= 0;
}
#endif
}
if (wn->lcylinders == 0) {
/* No BIOS parameters? Then make some up. */
wn->lcylinders = wn->pcylinders;
wn->lheads = wn->pheads;
wn->lsectors = wn->psectors;
while (wn->lcylinders > 1024) {
wn->lheads *= 2;
wn->lcylinders /= 2;
}
}
#if ENABLE_ATAPI
} else
if (cmd.command = ATAPI_IDENTIFY,
com_simple(&cmd) == OK && w_waitfor(STATUS_DRQ, STATUS_DRQ) &&
!(wn->w_status & (STATUS_ERR|STATUS_WF))) {
/* An ATAPI device. */
wn->state |= ATAPI;
/* Device information. */
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, 512)) != OK)
panic(w_name(),"Call to sys_insw() failed", s);
/* Why are the strings byte swapped??? */
for (i = 0; i < 40; i++) w_id_string[i] = id_byte(27)[i^1];
size = 0; /* Size set later. */
#endif
} else {
/* Not an ATA device; no translations, no special features. Don't
* touch it unless the BIOS knows about it.
*/
if (wn->lcylinders == 0) { return(ERR); } /* no BIOS parameters */
wn->pcylinders = wn->lcylinders;
wn->pheads = wn->lheads;
wn->psectors = wn->lsectors;
size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors;
}
/* Size of the whole drive */
wn->part[0].dv_size = mul64u(size, SECTOR_SIZE);
/* Reset/calibrate (where necessary) */
if (w_specify() != OK && w_specify() != OK) {
return(ERR);
}
if (wn->irq == NO_IRQ) {
/* Everything looks OK; register IRQ so we can stop polling. */
wn->irq = w_drive < 2 ? AT_WINI_0_IRQ : AT_WINI_1_IRQ;
wn->irq_hook_id = wn->irq; /* id to be returned if interrupt occurs */
if ((s=sys_irqsetpolicy(wn->irq, IRQ_REENABLE, &wn->irq_hook_id)) != OK)
panic(w_name(), "couldn't set IRQ policy", s);
if ((s=sys_irqenable(&wn->irq_hook_id)) != OK)
panic(w_name(), "couldn't enable IRQ line", s);
}
wn->state |= IDENTIFIED;
return(OK);
}
/*===========================================================================*
* w_name *
*===========================================================================*/
PRIVATE char *w_name()
{
/* Return a name for the current device. */
static char name[] = "AT-D0";
name[4] = '0' + w_drive;
return name;
}
/*===========================================================================*
* w_io_test *
*===========================================================================*/
PRIVATE int w_io_test(void)
{
int r, save_dev;
int save_timeout, save_errors, save_wakeup;
iovec_t iov;
#ifdef CD_SECTOR_SIZE
static char buf[CD_SECTOR_SIZE];
#else
static char buf[SECTOR_SIZE];
#endif
iov.iov_addr = (vir_bytes) buf;
iov.iov_size = sizeof(buf);
save_dev = w_device;
/* Reduce timeout values for this test transaction. */
save_timeout = timeout_ticks;
save_errors = max_errors;
save_wakeup = wakeup_ticks;
if (!w_standard_timeouts) {
timeout_ticks = HZ * 4;
wakeup_ticks = HZ * 6;
max_errors = 3;
}
w_testing = 1;
/* Try I/O on the actual drive (not any (sub)partition). */
if (w_prepare(w_drive * DEV_PER_DRIVE) == NIL_DEV)
panic(w_name(), "Couldn't switch devices", NO_NUM);
r = w_transfer(SELF, DEV_GATHER, 0, &iov, 1, 0);
/* Switch back. */
if (w_prepare(save_dev) == NIL_DEV)
panic(w_name(), "Couldn't switch back devices", NO_NUM);
/* Restore parameters. */
timeout_ticks = save_timeout;
max_errors = save_errors;
wakeup_ticks = save_wakeup;
w_testing = 0;
/* Test if everything worked. */
if (r != OK || iov.iov_size != 0) {
return ERR;
}
/* Everything worked. */
return OK;
}
/*===========================================================================*
* w_specify *
*===========================================================================*/
PRIVATE int w_specify()
{
/* Routine to initialize the drive after boot or when a reset is needed. */
struct wini *wn = w_wn;
struct command cmd;
if ((wn->state & DEAF) && w_reset() != OK) {
return(ERR);
}
if (!(wn->state & ATAPI)) {
/* Specify parameters: precompensation, number of heads and sectors. */
cmd.precomp = wn->precomp;
cmd.count = wn->psectors;
cmd.ldh = w_wn->ldhpref | (wn->pheads - 1);
cmd.command = CMD_SPECIFY; /* Specify some parameters */
/* Output command block and see if controller accepts the parameters. */
if (com_simple(&cmd) != OK) return(ERR);
if (!(wn->state & SMART)) {
/* Calibrate an old disk. */
cmd.sector = 0;
cmd.cyl_lo = 0;
cmd.cyl_hi = 0;
cmd.ldh = w_wn->ldhpref;
cmd.command = CMD_RECALIBRATE;
if (com_simple(&cmd) != OK) return(ERR);
}
}
wn->state |= INITIALIZED;
return(OK);
}
/*===========================================================================*
* do_transfer *
*===========================================================================*/
PRIVATE int do_transfer(struct wini *wn, unsigned int precomp,
unsigned int count, unsigned int sector,
unsigned int opcode, int do_dma)
{
struct command cmd;
unsigned int sector_high;
unsigned secspcyl = wn->pheads * wn->psectors;
int do_lba48;
sector_high= 0; /* For future extensions */
do_lba48= 0;
if (sector >= LBA48_CHECK_SIZE || sector_high != 0)
{
if (wn->lba48)
do_lba48= 1;
else if (sector > LBA_MAX_SIZE || sector_high != 0)
{
/* Strange sector count for LBA device */
return EIO;
}
}
cmd.precomp = precomp;
cmd.count = count;
if (do_dma)
{
cmd.command = opcode == DEV_SCATTER ? CMD_WRITE_DMA :
CMD_READ_DMA;
}
else
cmd.command = opcode == DEV_SCATTER ? CMD_WRITE : CMD_READ;
if (do_lba48) {
if (do_dma)
{
cmd.command = ((opcode == DEV_SCATTER) ?
CMD_WRITE_DMA_EXT : CMD_READ_DMA_EXT);
}
else
{
cmd.command = ((opcode == DEV_SCATTER) ?
CMD_WRITE_EXT : CMD_READ_EXT);
}
cmd.count_prev= (count >> 8);
cmd.sector = (sector >> 0) & 0xFF;
cmd.cyl_lo = (sector >> 8) & 0xFF;
cmd.cyl_hi = (sector >> 16) & 0xFF;
cmd.sector_prev= (sector >> 24) & 0xFF;
cmd.cyl_lo_prev= (sector_high) & 0xFF;
cmd.cyl_hi_prev= (sector_high >> 8) & 0xFF;
cmd.ldh = wn->ldhpref;
return com_out_ext(&cmd);
} else if (wn->ldhpref & LDH_LBA) {
cmd.sector = (sector >> 0) & 0xFF;
cmd.cyl_lo = (sector >> 8) & 0xFF;
cmd.cyl_hi = (sector >> 16) & 0xFF;
cmd.ldh = wn->ldhpref | ((sector >> 24) & 0xF);
} else {
int cylinder, head, sec;
cylinder = sector / secspcyl;
head = (sector % secspcyl) / wn->psectors;
sec = sector % wn->psectors;
cmd.sector = sec + 1;
cmd.cyl_lo = cylinder & BYTE;
cmd.cyl_hi = (cylinder >> 8) & BYTE;
cmd.ldh = wn->ldhpref | head;
}
return com_out(&cmd);
}
/*===========================================================================*
* w_transfer *
*===========================================================================*/
PRIVATE int w_transfer(proc_nr, opcode, position, iov, nr_req, safe)
int proc_nr; /* process doing the request */
int opcode; /* DEV_GATHER or DEV_SCATTER */
off_t position; /* offset on device to read or write */
iovec_t *iov; /* pointer to read or write request vector */
unsigned nr_req; /* length of request vector */
int safe; /* iov contains addresses (0) or grants? */
{
struct wini *wn = w_wn;
iovec_t *iop, *iov_end = iov + nr_req;
int n, r, s, errors, do_dma, do_write, do_copyout;
unsigned long v, block, w_status;
unsigned long dv_size = cv64ul(w_dv->dv_size);
unsigned cylinder, head, sector, nbytes;
unsigned dma_buf_offset;
size_t addr_offset = 0;
#if ENABLE_ATAPI
if (w_wn->state & ATAPI) {
return atapi_transfer(proc_nr, opcode, position, iov, nr_req, safe);
}
#endif
/* Check disk address. */
if ((position & SECTOR_MASK) != 0) return(EINVAL);
errors = 0;
while (nr_req > 0) {
/* How many bytes to transfer? */
nbytes = 0;
for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
/* Which block on disk and how close to EOF? */
if (position >= dv_size) return(OK); /* At EOF */
if (position + nbytes > dv_size) nbytes = dv_size - position;
block = div64u(add64ul(w_dv->dv_base, position), SECTOR_SIZE);
do_dma= wn->dma;
do_write= (opcode == DEV_SCATTER);
if (nbytes >= wn->max_count) {
/* The drive can't do more then max_count at once. */
nbytes = wn->max_count;
}
/* First check to see if a reinitialization is needed. */
if (!(wn->state & INITIALIZED) && w_specify() != OK) return(EIO);
if (do_dma)
{
setup_dma(&nbytes, proc_nr, iov, do_write, &do_copyout, safe);
#if 0
printf("nbytes = %d\n", nbytes);
#endif
}
/* Tell the controller to transfer nbytes bytes. */
r = do_transfer(wn, wn->precomp, (nbytes >> SECTOR_SHIFT),
block, opcode, do_dma);
if (opcode == DEV_SCATTER) {
/* The specs call for a 400 ns wait after issuing the command.
* Reading the alternate status register is the suggested
* way to implement this wait.
*/
if (sys_inb((wn->base_ctl+REG_CTL_ALTSTAT), &w_status) != OK)
panic(w_name(), "couldn't get status", NO_NUM);
}
if (do_dma)
{
/* Wait for the interrupt, check DMA status and optionally
* copy out.
*/
if ((r = at_intr_wait()) != OK)
{
/* Don't retry if sector marked bad or too many
* errors.
*/
if (r == ERR_BAD_SECTOR || ++errors == max_errors) {
w_command = CMD_IDLE;
return(EIO);
}
continue;
}
/* Wait for DMA_ST_INT to get set */
w_waitfor_dma(DMA_ST_INT, DMA_ST_INT);
r= sys_inb(wn->base_dma + DMA_STATUS, &v);
if (r != 0) panic("at_wini", "w_transfer: sys_inb failed", r);
#if 0
printf("dma_status: 0x%x\n", v);
#endif
if (!(v & DMA_ST_INT))
{
/* DMA did not complete successfully */
if (v & DMA_ST_BM_ACTIVE)
panic(w_name(), "DMA did not complete", NO_NUM);
else if (v & DMA_ST_ERROR)
{
printf("at_wini: DMA error\n");
r= EIO;
break;
}
else
{
#if 0
printf("DMA buffer too small\n");
#endif
panic(w_name(), "DMA buffer too small", NO_NUM);
}
}
else if (v & DMA_ST_BM_ACTIVE)
panic(w_name(), "DMA buffer too large", NO_NUM);
dma_buf_offset= 0;
while (r == OK && nbytes > 0)
{
n= iov->iov_size;
if (n > nbytes)
n= nbytes;
if (do_copyout)
{
if(safe) {
s= sys_safecopyto(proc_nr, iov->iov_addr,
addr_offset,
(vir_bytes)dma_buf+dma_buf_offset, n, D);
} else {
s= sys_vircopy(SELF, D,
(vir_bytes)dma_buf+dma_buf_offset,
proc_nr, D,
iov->iov_addr + addr_offset, n);
}
if (s != OK)
{
panic(w_name(),
"w_transfer: sys_vircopy failed",
s);
}
}
/* Book the bytes successfully transferred. */
nbytes -= n;
position += n;
if ((iov->iov_size -= n) == 0) {
iov++; nr_req--; addr_offset = 0;
}
dma_buf_offset += n;
}
}
while (r == OK && nbytes > 0) {
/* For each sector, wait for an interrupt and fetch the data
* (read), or supply data to the controller and wait for an
* interrupt (write).
*/
if (opcode == DEV_GATHER) {
/* First an interrupt, then data. */
if ((r = at_intr_wait()) != OK) {
/* An error, send data to the bit bucket. */
if (w_wn->w_status & STATUS_DRQ) {
if ((s=sys_insw(wn->base_cmd+REG_DATA,
SELF, tmp_buf,
SECTOR_SIZE)) != OK)
{
panic(w_name(),
"Call to sys_insw() failed",
s);
}
}
break;
}
}
/* Wait for busy to clear. */
if (!w_waitfor(STATUS_BSY, 0)) { r = ERR; break; }
/* Wait for data transfer requested. */
if (!w_waitfor(STATUS_DRQ, STATUS_DRQ)) { r = ERR; break; }
/* Copy bytes to or from the device's buffer. */
if (opcode == DEV_GATHER) {
if(safe) {
s=sys_safe_insw(wn->base_cmd + REG_DATA, proc_nr,
(void *) (iov->iov_addr), addr_offset,
SECTOR_SIZE);
} else {
s=sys_insw(wn->base_cmd + REG_DATA, proc_nr,
(void *) (iov->iov_addr + addr_offset),
SECTOR_SIZE);
}
if(s != OK) {
panic(w_name(),"Call to sys_insw() failed", s);
}
} else {
if(safe) {
s=sys_safe_outsw(wn->base_cmd + REG_DATA, proc_nr,
(void *) (iov->iov_addr), addr_offset,
SECTOR_SIZE);
} else {
s=sys_outsw(wn->base_cmd + REG_DATA, proc_nr,
(void *) (iov->iov_addr + addr_offset),
SECTOR_SIZE);
}
if(s != OK) {
panic(w_name(),"Call to sys_outsw() failed",
s);
}
/* Data sent, wait for an interrupt. */
if ((r = at_intr_wait()) != OK) break;
}
/* Book the bytes successfully transferred. */
nbytes -= SECTOR_SIZE;
position += SECTOR_SIZE;
addr_offset += SECTOR_SIZE;
if ((iov->iov_size -= SECTOR_SIZE) == 0) {
iov++;
nr_req--;
addr_offset = 0;
}
}
/* Any errors? */
if (r != OK) {
/* Don't retry if sector marked bad or too many errors. */
if (r == ERR_BAD_SECTOR || ++errors == max_errors) {
w_command = CMD_IDLE;
return(EIO);
}
}
}
w_command = CMD_IDLE;
return(OK);
}
/*===========================================================================*
* com_out *
*===========================================================================*/
PRIVATE int com_out(cmd)
struct command *cmd; /* Command block */
{
/* Output the command block to the winchester controller and return status */
struct wini *wn = w_wn;
unsigned base_cmd = wn->base_cmd;
unsigned base_ctl = wn->base_ctl;
pvb_pair_t outbyte[7]; /* vector for sys_voutb() */
int s; /* status for sys_(v)outb() */
if (w_wn->state & IGNORING) return ERR;
if (!w_waitfor(STATUS_BSY, 0)) {
printf("%s: controller not ready\n", w_name());
return(ERR);
}
/* Select drive. */
if ((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK)
panic(w_name(),"Couldn't write register to select drive",s);
if (!w_waitfor(STATUS_BSY, 0)) {
printf("%s: com_out: drive not ready\n", w_name());
return(ERR);
}
/* Schedule a wakeup call, some controllers are flaky. This is done with
* a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent
* from HARDWARE, so that w_intr_wait() can call w_timeout() in case the
* controller was not able to execute the command. Leftover timeouts are
* simply ignored by the main loop.
*/
sys_setalarm(wakeup_ticks, 0);
wn->w_status = STATUS_ADMBSY;
w_command = cmd->command;
pv_set(outbyte[0], base_ctl + REG_CTL, wn->pheads >= 8 ? CTL_EIGHTHEADS : 0);
pv_set(outbyte[1], base_cmd + REG_PRECOMP, cmd->precomp);
pv_set(outbyte[2], base_cmd + REG_COUNT, cmd->count);
pv_set(outbyte[3], base_cmd + REG_SECTOR, cmd->sector);
pv_set(outbyte[4], base_cmd + REG_CYL_LO, cmd->cyl_lo);
pv_set(outbyte[5], base_cmd + REG_CYL_HI, cmd->cyl_hi);
pv_set(outbyte[6], base_cmd + REG_COMMAND, cmd->command);
if ((s=sys_voutb(outbyte,7)) != OK)
panic(w_name(),"Couldn't write registers with sys_voutb()",s);
return(OK);
}
/*===========================================================================*
* com_out_ext *
*===========================================================================*/
PRIVATE int com_out_ext(cmd)
struct command *cmd; /* Command block */
{
/* Output the command block to the winchester controller and return status */
struct wini *wn = w_wn;
unsigned base_cmd = wn->base_cmd;
unsigned base_ctl = wn->base_ctl;
pvb_pair_t outbyte[11]; /* vector for sys_voutb() */
int s; /* status for sys_(v)outb() */
unsigned long w_status;
if (w_wn->state & IGNORING) return ERR;
if (!w_waitfor(STATUS_BSY, 0)) {
printf("%s: controller not ready\n", w_name());
return(ERR);
}
/* Select drive. */
if ((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK)
panic(w_name(),"Couldn't write register to select drive",s);
if (!w_waitfor(STATUS_BSY, 0)) {
printf("%s: com_out: drive not ready\n", w_name());
return(ERR);
}
/* Schedule a wakeup call, some controllers are flaky. This is done with
* a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent
* from HARDWARE, so that w_intr_wait() can call w_timeout() in case the
* controller was not able to execute the command. Leftover timeouts are
* simply ignored by the main loop.
*/
sys_setalarm(wakeup_ticks, 0);
wn->w_status = STATUS_ADMBSY;
w_command = cmd->command;
pv_set(outbyte[0], base_ctl + REG_CTL, 0);
pv_set(outbyte[1], base_cmd + REG_COUNT, cmd->count_prev);
pv_set(outbyte[2], base_cmd + REG_SECTOR, cmd->sector_prev);
pv_set(outbyte[3], base_cmd + REG_CYL_LO, cmd->cyl_lo_prev);
pv_set(outbyte[4], base_cmd + REG_CYL_HI, cmd->cyl_hi_prev);
pv_set(outbyte[5], base_cmd + REG_COUNT, cmd->count);
pv_set(outbyte[6], base_cmd + REG_SECTOR, cmd->sector);
pv_set(outbyte[7], base_cmd + REG_CYL_LO, cmd->cyl_lo);
pv_set(outbyte[8], base_cmd + REG_CYL_HI, cmd->cyl_hi);
pv_set(outbyte[10], base_cmd + REG_COMMAND, cmd->command);
if ((s=sys_voutb(outbyte, 11)) != OK)
panic(w_name(),"Couldn't write registers with sys_voutb()",s);
return(OK);
}
/*===========================================================================*
* setup_dma *
*===========================================================================*/
PRIVATE void setup_dma(sizep, proc_nr, iov, do_write, do_copyoutp, safe)
unsigned *sizep;
int proc_nr;
iovec_t *iov;
int do_write;
int *do_copyoutp;
int safe;
{
phys_bytes phys, user_phys;
unsigned n, offset, size;
int i, j, r, bad;
unsigned long v;
struct wini *wn = w_wn;
/* First try direct scatter/gather to the supplied buffers */
size= *sizep;
i= 0; /* iov index */
j= 0; /* prdt index */
bad= 0;
offset= 0; /* Offset in current iov */
#if 0
printf("setup_dma: proc_nr %d\n", proc_nr);
#endif
while (size > 0)
{
#if 0
printf(
"setup_dma: iov[%d]: addr 0x%x, size %d offset %d, size %d\n",
i, iov[i].iov_addr, iov[i].iov_size, offset, size);
#endif
n= iov[i].iov_size-offset;
if (n > size)
n= size;
if (n == 0 || (n & 1))
panic("at_wini", "bad size in iov", iov[i].iov_size);
if(safe) {
r= sys_umap(proc_nr, GRANT_SEG, iov[i].iov_addr, n,&user_phys);
user_phys += offset;
} else {
r= sys_umap(proc_nr, D, iov[i].iov_addr+offset, n, &user_phys);
}
if (r != 0)
panic("at_wini", "can't map user buffer", r);
if (user_phys & 1)
{
/* Buffer is not aligned */
printf("setup_dma: user buffer is not aligned\n");
bad= 1;
break;
}
/* vector is not allowed to cross a 64K boundary */
if (user_phys/0x10000 != (user_phys+n-1)/0x10000)
n= ((user_phys/0x10000)+1)*0x10000 - user_phys;
/* vector is not allowed to be bigger than 64K, but we get that
* for free.
*/
if (j >= N_PRDTE)
{
/* Too many entries */
bad= 1;
break;
}
prdt[j].prdte_base= user_phys;
prdt[j].prdte_count= n;
prdt[j].prdte_reserved= 0;
prdt[j].prdte_flags= 0;
j++;
offset += n;
if (offset >= iov[i].iov_size)
{
i++;
offset= 0;
}
size -= n;
}
if (!bad)
{
if (j <= 0 || j > N_PRDTE)
panic("at_wini", "bad prdt index", j);
prdt[j-1].prdte_flags |= PRDTE_FL_EOT;
#if 0
for (i= 0; i<j; i++)
{
printf("prdt[%d]: base 0x%x, size %d, flags 0x%x\n",
i, prdt[i].prdte_base, prdt[i].prdte_count,
prdt[i].prdte_flags);
}
#endif
}
/* The caller needs to perform a copy-out from the dma buffer if
* this is a read request and we can't DMA directly to the user's
* buffers.
*/
*do_copyoutp= (!do_write && bad);
if (bad)
{
/* Adjust request size */
size= *sizep;
if (size > ATA_DMA_BUF_SIZE)
*sizep= size= ATA_DMA_BUF_SIZE;
if (do_write)
{
/* Copy-in */
for (offset= 0; offset < size; offset += n)
{
n= size-offset;
if (n > iov->iov_size)
n= iov->iov_size;
if(safe) {
r= sys_safecopyfrom(proc_nr, iov->iov_addr,
0, (vir_bytes)dma_buf+offset, n, D);
} else {
r= sys_vircopy(proc_nr, D, iov->iov_addr,
SELF, D, (vir_bytes)dma_buf+offset,
n);
}
if (r != OK)
{
panic(w_name(),
"setup_dma: sys_vircopy failed",
r);
}
iov++;
}
}
/* Fill-in the physical region descriptor table */
phys= dma_buf_phys;
if (phys & 1)
{
/* Two byte alignment is required */
panic("at_wini", "bad buffer alignment in setup_dma",
phys);
}
for (j= 0; j<N_PRDTE; i++)
{
if (size == 0)
{
panic("at_wini", "bad size in setup_dma",
size);
}
if (size & 1)
{
/* Two byte alignment is required for size */
panic("at_wini",
"bad size alignment in setup_dma",
size);
}
n= size;
/* Buffer is not allowed to cross a 64K boundary */
if (phys / 0x10000 != (phys+n-1) / 0x10000)
{
n= ((phys/0x10000)+1)*0x10000 - phys;
}
prdt[j].prdte_base= phys;
prdt[j].prdte_count= n;
prdt[j].prdte_reserved= 0;
prdt[j].prdte_flags= 0;
size -= n;
if (size == 0)
{
prdt[j].prdte_flags |= PRDTE_FL_EOT;
break;
}
}
if (size != 0)
panic("at_wini", "size to large for prdt", NO_NUM);
#if 0
for (i= 0; i<=j; i++)
{
printf("prdt[%d]: base 0x%x, size %d, flags 0x%x\n",
i, prdt[i].prdte_base, prdt[i].prdte_count,
prdt[i].prdte_flags);
}
#endif
}
/* Stop bus master operation */
r= sys_outb(wn->base_dma + DMA_COMMAND, 0);
if (r != 0) panic("at_wini", "setup_dma: sys_outb failed", r);
/* Verify that the bus master is not active */
r= sys_inb(wn->base_dma + DMA_STATUS, &v);
if (r != 0) panic("at_wini", "setup_dma: sys_inb failed", r);
if (v & DMA_ST_BM_ACTIVE)
panic("at_wini", "Bus master IDE active", NO_NUM);
if (prdt_phys & 3)
panic("at_wini", "prdt not aligned", prdt_phys);
r= sys_outl(wn->base_dma + DMA_PRDTP, prdt_phys);
if (r != 0) panic("at_wini", "setup_dma: sys_outl failed", r);
/* Clear interrupt and error flags */
r= sys_outb(wn->base_dma + DMA_STATUS, DMA_ST_INT | DMA_ST_ERROR);
if (r != 0) panic("at_wini", "setup_dma: sys_outb failed", r);
/* Assume disk reads. Start DMA */
v= DMA_CMD_START;
if (!do_write)
{
/* Disk reads generate PCI write cycles. */
v |= DMA_CMD_WRITE;
}
r= sys_outb(wn->base_dma + DMA_COMMAND, v);
if (r != 0) panic("at_wini", "setup_dma: sys_outb failed", r);
#if 0
r= sys_inb(wn->base_dma + DMA_STATUS, &v);
if (r != 0) panic("at_wini", "setup_dma: sys_inb failed", r);
printf("dma status: 0x%x\n", v);
#endif
}
/*===========================================================================*
* w_need_reset *
*===========================================================================*/
PRIVATE void w_need_reset()
{
/* The controller needs to be reset. */
struct wini *wn;
int dr = 0;
for (wn = wini; wn < &wini[MAX_DRIVES]; wn++, dr++) {
if (wn->base_cmd == w_wn->base_cmd) {
wn->state |= DEAF;
wn->state &= ~INITIALIZED;
}
}
}
/*===========================================================================*
* w_do_close *
*===========================================================================*/
PRIVATE int w_do_close(dp, m_ptr)
struct driver *dp;
message *m_ptr;
{
/* Device close: Release a device. */
if (w_prepare(m_ptr->DEVICE) == NIL_DEV)
return(ENXIO);
w_wn->open_ct--;
#if ENABLE_ATAPI
if (w_wn->open_ct == 0 && (w_wn->state & ATAPI)) atapi_close();
#endif
return(OK);
}
/*===========================================================================*
* com_simple *
*===========================================================================*/
PRIVATE int com_simple(cmd)
struct command *cmd; /* Command block */
{
/* A simple controller command, only one interrupt and no data-out phase. */
int r;
if (w_wn->state & IGNORING) return ERR;
if ((r = com_out(cmd)) == OK) r = at_intr_wait();
w_command = CMD_IDLE;
return(r);
}
/*===========================================================================*
* w_timeout *
*===========================================================================*/
PRIVATE void w_timeout(void)
{
struct wini *wn = w_wn;
switch (w_command) {
case CMD_IDLE:
break; /* fine */
case CMD_READ:
case CMD_READ_EXT:
case CMD_WRITE:
case CMD_WRITE_EXT:
/* Impossible, but not on PC's: The controller does not respond. */
/* Limiting multisector I/O seems to help. */
if (wn->max_count > 8 * SECTOR_SIZE) {
wn->max_count = 8 * SECTOR_SIZE;
} else {
wn->max_count = SECTOR_SIZE;
}
/*FALL THROUGH*/
default:
/* Some other command. */
if (w_testing) wn->state |= IGNORING; /* Kick out this drive. */
else if (!w_silent) printf("%s: timeout on command 0x%02x\n",
w_name(), w_command);
w_need_reset();
wn->w_status = 0;
}
}
/*===========================================================================*
* w_reset *
*===========================================================================*/
PRIVATE int w_reset()
{
/* Issue a reset to the controller. This is done after any catastrophe,
* like the controller refusing to respond.
*/
int s;
struct wini *wn = w_wn;
/* Don't bother if this drive is forgotten. */
if (w_wn->state & IGNORING) return ERR;
/* Wait for any internal drive recovery. */
tickdelay(RECOVERY_TICKS);
/* Strobe reset bit */
if ((s=sys_outb(wn->base_ctl + REG_CTL, CTL_RESET)) != OK)
panic(w_name(),"Couldn't strobe reset bit",s);
tickdelay(DELAY_TICKS);
if ((s=sys_outb(wn->base_ctl + REG_CTL, 0)) != OK)
panic(w_name(),"Couldn't strobe reset bit",s);
tickdelay(DELAY_TICKS);
/* Wait for controller ready */
if (!w_waitfor(STATUS_BSY, 0)) {
printf("%s: reset failed, drive busy\n", w_name());
return(ERR);
}
/* The error register should be checked now, but some drives mess it up. */
for (wn = wini; wn < &wini[MAX_DRIVES]; wn++) {
if (wn->base_cmd == w_wn->base_cmd) {
wn->state &= ~DEAF;
if (w_wn->irq_need_ack) {
/* Make sure irq is actually enabled.. */
sys_irqenable(&w_wn->irq_hook_id);
}
}
}
return(OK);
}
/*===========================================================================*
* w_intr_wait *
*===========================================================================*/
PRIVATE void w_intr_wait()
{
/* Wait for a task completion interrupt. */
int r;
unsigned long w_status;
message m;
if (w_wn->irq != NO_IRQ) {
/* Wait for an interrupt that sets w_status to "not busy". */
while (w_wn->w_status & (STATUS_ADMBSY|STATUS_BSY)) {
int rr;
if((rr=receive(ANY, &m)) != OK) { /* expect HARD_INT message */
printf("w_intr_wait: receive from ANY failed (%d)\n",
r);
continue; /* try again */
}
if (m.m_type == SYN_ALARM) { /* but check for timeout */
w_timeout(); /* a.o. set w_status */
} else if (m.m_type == HARD_INT) {
r= sys_inb(w_wn->base_cmd + REG_STATUS, &w_status);
if (r != 0)
panic("at_wini", "sys_inb failed", r);
w_wn->w_status= w_status;
ack_irqs(m.NOTIFY_ARG);
} else if (m.m_type == DEV_PING) {
notify(m.m_source);
} else {
printf("AT_WINI got unexpected message %d from %d\n",
m.m_type, m.m_source);
}
}
} else {
/* Interrupt not yet allocated; use polling. */
(void) w_waitfor(STATUS_BSY, 0);
}
}
/*===========================================================================*
* at_intr_wait *
*===========================================================================*/
PRIVATE int at_intr_wait()
{
/* Wait for an interrupt, study the status bits and return error/success. */
int r, s;
unsigned long inbval;
w_intr_wait();
if ((w_wn->w_status & (STATUS_BSY | STATUS_WF | STATUS_ERR)) == 0) {
r = OK;
} else {
if ((s=sys_inb(w_wn->base_cmd + REG_ERROR, &inbval)) != OK)
panic(w_name(),"Couldn't read register",s);
if ((w_wn->w_status & STATUS_ERR) && (inbval & ERROR_BB)) {
r = ERR_BAD_SECTOR; /* sector marked bad, retries won't help */
} else {
r = ERR; /* any other error */
}
}
w_wn->w_status |= STATUS_ADMBSY; /* assume still busy with I/O */
return(r);
}
/*===========================================================================*
* w_waitfor *
*===========================================================================*/
PRIVATE int w_waitfor(mask, value)
int mask; /* status mask */
int value; /* required status */
{
/* Wait until controller is in the required state. Return zero on timeout.
* An alarm that set a timeout flag is used. TIMEOUT is in micros, we need
* ticks. Disabling the alarm is not needed, because a static flag is used
* and a leftover timeout cannot do any harm.
*/
unsigned long w_status;
clock_t t0, t1;
int s;
getuptime(&t0);
do {
if ((s=sys_inb(w_wn->base_cmd + REG_STATUS, &w_status)) != OK)
panic(w_name(),"Couldn't read register",s);
w_wn->w_status= w_status;
if ((w_wn->w_status & mask) == value) {
return 1;
}
} while ((s=getuptime(&t1)) == OK && (t1-t0) < timeout_ticks );
if (OK != s) printf("AT_WINI: warning, get_uptime failed: %d\n",s);
w_need_reset(); /* controller gone deaf */
return(0);
}
/*===========================================================================*
* w_waitfor_dma *
*===========================================================================*/
PRIVATE int w_waitfor_dma(mask, value)
int mask; /* status mask */
int value; /* required status */
{
/* Wait until controller is in the required state. Return zero on timeout.
* An alarm that set a timeout flag is used. TIMEOUT is in micros, we need
* ticks. Disabling the alarm is not needed, because a static flag is used
* and a leftover timeout cannot do any harm.
*/
unsigned long w_status;
clock_t t0, t1;
int s;
getuptime(&t0);
do {
if ((s=sys_inb(w_wn->base_dma + DMA_STATUS, &w_status)) != OK)
panic(w_name(),"Couldn't read register",s);
if ((w_status & mask) == value) {
return 1;
}
} while ((s=getuptime(&t1)) == OK && (t1-t0) < timeout_ticks );
if (OK != s) printf("AT_WINI: warning, get_uptime failed: %d\n",s);
return(0);
}
/*===========================================================================*
* w_geometry *
*===========================================================================*/
PRIVATE void w_geometry(entry)
struct partition *entry;
{
struct wini *wn = w_wn;
if (wn->state & ATAPI) { /* Make up some numbers. */
entry->cylinders = div64u(wn->part[0].dv_size, SECTOR_SIZE) / (64*32);
entry->heads = 64;
entry->sectors = 32;
} else { /* Return logical geometry. */
entry->cylinders = wn->lcylinders;
entry->heads = wn->lheads;
entry->sectors = wn->lsectors;
}
}
#if ENABLE_ATAPI
/*===========================================================================*
* atapi_open *
*===========================================================================*/
PRIVATE int atapi_open()
{
/* Should load and lock the device and obtain its size. For now just set the
* size of the device to something big. What is really needed is a generic
* SCSI layer that does all this stuff for ATAPI and SCSI devices (kjb). (XXX)
*/
w_wn->part[0].dv_size = mul64u(800L*1024, 1024);
return(OK);
}
/*===========================================================================*
* atapi_close *
*===========================================================================*/
PRIVATE void atapi_close()
{
/* Should unlock the device. For now do nothing. (XXX) */
}
void sense_request(void)
{
int r, i;
static u8_t sense[100], packet[ATAPI_PACKETSIZE];
packet[0] = SCSI_SENSE;
packet[1] = 0;
packet[2] = 0;
packet[3] = 0;
packet[4] = SENSE_PACKETSIZE;
packet[5] = 0;
packet[7] = 0;
packet[8] = 0;
packet[9] = 0;
packet[10] = 0;
packet[11] = 0;
for(i = 0; i < SENSE_PACKETSIZE; i++) sense[i] = 0xff;
r = atapi_sendpacket(packet, SENSE_PACKETSIZE);
if (r != OK) { printf("request sense command failed\n"); return; }
if (atapi_intr_wait() <= 0) { printf("WARNING: request response failed\n"); }
if (sys_insw(w_wn->base_cmd + REG_DATA, SELF, (void *) sense, SENSE_PACKETSIZE) != OK)
printf("WARNING: sense reading failed\n");
printf("sense data:");
for(i = 0; i < SENSE_PACKETSIZE; i++) printf(" %02x", sense[i]);
printf("\n");
}
/*===========================================================================*
* atapi_transfer *
*===========================================================================*/
PRIVATE int atapi_transfer(proc_nr, opcode, position, iov, nr_req, safe)
int proc_nr; /* process doing the request */
int opcode; /* DEV_GATHER or DEV_SCATTER */
off_t position; /* offset on device to read or write */
iovec_t *iov; /* pointer to read or write request vector */
unsigned nr_req; /* length of request vector */
int safe; /* use safecopies? */
{
struct wini *wn = w_wn;
iovec_t *iop, *iov_end = iov + nr_req;
int r, s, errors, fresh;
u64_t pos;
unsigned long block;
unsigned long dv_size = cv64ul(w_dv->dv_size);
unsigned nbytes, nblocks, count, before, chunk;
static u8_t packet[ATAPI_PACKETSIZE];
size_t addr_offset = 0;
errors = fresh = 0;
while (nr_req > 0 && !fresh) {
/* The Minix block size is smaller than the CD block size, so we
* may have to read extra before or after the good data.
*/
pos = add64ul(w_dv->dv_base, position);
block = div64u(pos, CD_SECTOR_SIZE);
before = rem64u(pos, CD_SECTOR_SIZE);
/* How many bytes to transfer? */
nbytes = count = 0;
for (iop = iov; iop < iov_end; iop++) {
nbytes += iop->iov_size;
if ((before + nbytes) % CD_SECTOR_SIZE == 0) count = nbytes;
}
/* Does one of the memory chunks end nicely on a CD sector multiple? */
if (count != 0) nbytes = count;
/* Data comes in as words, so we have to enforce even byte counts. */
if ((before | nbytes) & 1) return(EINVAL);
/* Which block on disk and how close to EOF? */
if (position >= dv_size) return(OK); /* At EOF */
if (position + nbytes > dv_size) nbytes = dv_size - position;
nblocks = (before + nbytes + CD_SECTOR_SIZE - 1) / CD_SECTOR_SIZE;
if (ATAPI_DEBUG) {
printf("block=%lu, before=%u, nbytes=%u, nblocks=%u\n",
block, before, nbytes, nblocks);
}
/* First check to see if a reinitialization is needed. */
if (!(wn->state & INITIALIZED) && w_specify() != OK) return(EIO);
/* Build an ATAPI command packet. */
packet[0] = SCSI_READ10;
packet[1] = 0;
packet[2] = (block >> 24) & 0xFF;
packet[3] = (block >> 16) & 0xFF;
packet[4] = (block >> 8) & 0xFF;
packet[5] = (block >> 0) & 0xFF;
packet[7] = (nblocks >> 8) & 0xFF;
packet[8] = (nblocks >> 0) & 0xFF;
packet[9] = 0;
packet[10] = 0;
packet[11] = 0;
/* Tell the controller to execute the packet command. */
r = atapi_sendpacket(packet, nblocks * CD_SECTOR_SIZE);
if (r != OK) goto err;
/* Read chunks of data. */
while ((r = atapi_intr_wait()) > 0) {
count = r;
if (ATAPI_DEBUG) {
printf("before=%u, nbytes=%u, count=%u\n",
before, nbytes, count);
}
while (before > 0 && count > 0) { /* Discard before. */
chunk = before;
if (chunk > count) chunk = count;
if (chunk > DMA_BUF_SIZE) chunk = DMA_BUF_SIZE;
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, chunk)) != OK)
panic(w_name(),"Call to sys_insw() failed", s);
before -= chunk;
count -= chunk;
}
while (nbytes > 0 && count > 0) { /* Requested data. */
chunk = nbytes;
if (chunk > count) chunk = count;
if (chunk > iov->iov_size) chunk = iov->iov_size;
if(safe) {
s=sys_safe_insw(wn->base_cmd + REG_DATA, proc_nr,
(void *) iov->iov_addr, addr_offset, chunk);
} else {
s=sys_insw(wn->base_cmd + REG_DATA, proc_nr,
(void *) (iov->iov_addr + addr_offset), chunk);
}
if (s != OK)
panic(w_name(),"Call to sys_insw() failed", s);
position += chunk;
nbytes -= chunk;
count -= chunk;
addr_offset += chunk;
fresh = 0;
if ((iov->iov_size -= chunk) == 0) {
iov++;
nr_req--;
fresh = 1; /* new element is optional */
addr_offset = 0;
}
}
while (count > 0) { /* Excess data. */
chunk = count;
if (chunk > DMA_BUF_SIZE) chunk = DMA_BUF_SIZE;
if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, chunk)) != OK)
panic(w_name(),"Call to sys_insw() failed", s);
count -= chunk;
}
}
if (r < 0) {
err: /* Don't retry if too many errors. */
if (atapi_debug) sense_request();
if (++errors == max_errors) {
w_command = CMD_IDLE;
if (atapi_debug) printf("giving up (%d)\n", errors);
return(EIO);
}
if (atapi_debug) printf("retry (%d)\n", errors);
}
}
w_command = CMD_IDLE;
return(OK);
}
/*===========================================================================*
* atapi_sendpacket *
*===========================================================================*/
PRIVATE int atapi_sendpacket(packet, cnt)
u8_t *packet;
unsigned cnt;
{
/* Send an Atapi Packet Command */
struct wini *wn = w_wn;
pvb_pair_t outbyte[6]; /* vector for sys_voutb() */
int s;
if (wn->state & IGNORING) return ERR;
/* Select Master/Slave drive */
if ((s=sys_outb(wn->base_cmd + REG_DRIVE, wn->ldhpref)) != OK)
panic(w_name(),"Couldn't select master/ slave drive",s);
if (!w_waitfor(STATUS_BSY | STATUS_DRQ, 0)) {
printf("%s: atapi_sendpacket: drive not ready\n", w_name());
return(ERR);
}
/* Schedule a wakeup call, some controllers are flaky. This is done with
* a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent
* from HARDWARE, so that w_intr_wait() can call w_timeout() in case the
* controller was not able to execute the command. Leftover timeouts are
* simply ignored by the main loop.
*/
sys_setalarm(wakeup_ticks, 0);
#if _WORD_SIZE > 2
if (cnt > 0xFFFE) cnt = 0xFFFE; /* Max data per interrupt. */
#endif
w_command = ATAPI_PACKETCMD;
pv_set(outbyte[0], wn->base_cmd + REG_FEAT, 0);
pv_set(outbyte[1], wn->base_cmd + REG_IRR, 0);
pv_set(outbyte[2], wn->base_cmd + REG_SAMTAG, 0);
pv_set(outbyte[3], wn->base_cmd + REG_CNT_LO, (cnt >> 0) & 0xFF);
pv_set(outbyte[4], wn->base_cmd + REG_CNT_HI, (cnt >> 8) & 0xFF);
pv_set(outbyte[5], wn->base_cmd + REG_COMMAND, w_command);
if (atapi_debug) printf("cmd: %x ", w_command);
if ((s=sys_voutb(outbyte,6)) != OK)
panic(w_name(),"Couldn't write registers with sys_voutb()",s);
if (!w_waitfor(STATUS_BSY | STATUS_DRQ, STATUS_DRQ)) {
printf("%s: timeout (BSY|DRQ -> DRQ)\n", w_name());
return(ERR);
}
wn->w_status |= STATUS_ADMBSY; /* Command not at all done yet. */
/* Send the command packet to the device. */
if ((s=sys_outsw(wn->base_cmd + REG_DATA, SELF, packet, ATAPI_PACKETSIZE)) != OK)
panic(w_name(),"sys_outsw() failed", s);
{
int p;
if (atapi_debug) {
printf("sent command:");
for(p = 0; p < ATAPI_PACKETSIZE; p++) { printf(" %02x", packet[p]); }
printf("\n");
}
}
return(OK);
}
#endif /* ENABLE_ATAPI */
/*===========================================================================*
* w_other *
*===========================================================================*/
PRIVATE int w_other(dr, m, safe)
struct driver *dr;
message *m;
int safe;
{
int r, timeout, prev;
if (m->m_type != DEV_IOCTL && m->m_type != DEV_IOCTL_S ) {
return EINVAL;
}
if (m->REQUEST == DIOCTIMEOUT) {
if(safe) {
r= sys_safecopyfrom(m->IO_ENDPT, (vir_bytes) m->IO_GRANT,
0, (vir_bytes)&timeout, sizeof(timeout), D);
} else {
r= sys_datacopy(m->IO_ENDPT, (vir_bytes)m->ADDRESS,
SELF, (vir_bytes)&timeout, sizeof(timeout));
}
if(r != OK)
return r;
if (timeout == 0) {
/* Restore defaults. */
timeout_ticks = DEF_TIMEOUT_TICKS;
max_errors = MAX_ERRORS;
wakeup_ticks = WAKEUP;
w_silent = 0;
} else if (timeout < 0) {
return EINVAL;
} else {
prev = wakeup_ticks;
if (!w_standard_timeouts) {
/* Set (lower) timeout, lower error
* tolerance and set silent mode.
*/
wakeup_ticks = timeout;
max_errors = 3;
w_silent = 1;
if (timeout_ticks > timeout)
timeout_ticks = timeout;
}
if(safe) {
r= sys_safecopyto(m->IO_ENDPT,
(vir_bytes) m->IO_GRANT,
0, (vir_bytes)&prev, sizeof(prev), D);
} else {
r=sys_datacopy(SELF, (vir_bytes)&prev,
m->IO_ENDPT, (vir_bytes)m->ADDRESS,
sizeof(prev));
}
if(r != OK)
return r;
}
return OK;
} else if (m->REQUEST == DIOCOPENCT) {
int count;
if (w_prepare(m->DEVICE) == NIL_DEV) return ENXIO;
count = w_wn->open_ct;
if(safe) {
r= sys_safecopyto(m->IO_ENDPT, (vir_bytes) m->IO_GRANT,
0, (vir_bytes)&count, sizeof(count), D);
} else {
r=sys_datacopy(SELF, (vir_bytes)&count,
m->IO_ENDPT, (vir_bytes)m->ADDRESS, sizeof(count));
}
if(r != OK)
return r;
return OK;
}
return EINVAL;
}
/*===========================================================================*
* w_hw_int *
*===========================================================================*/
PRIVATE int w_hw_int(dr, m)
struct driver *dr;
message *m;
{
/* Leftover interrupt(s) received; ack it/them. */
ack_irqs(m->NOTIFY_ARG);
return OK;
}
/*===========================================================================*
* ack_irqs *
*===========================================================================*/
PRIVATE void ack_irqs(unsigned int irqs)
{
unsigned int drive;
unsigned long w_status;
for (drive = 0; drive < MAX_DRIVES && irqs; drive++) {
if (!(wini[drive].state & IGNORING) && wini[drive].irq_need_ack &&
(wini[drive].irq_mask & irqs)) {
if (sys_inb((wini[drive].base_cmd + REG_STATUS),
&w_status) != OK)
{
panic(w_name(), "couldn't ack irq on drive %d\n",
drive);
}
wini[drive].w_status= w_status;
if (sys_irqenable(&wini[drive].irq_hook_id) != OK)
printf("couldn't re-enable drive %d\n", drive);
irqs &= ~wini[drive].irq_mask;
}
}
}
#define STSTR(a) if (status & STATUS_ ## a) { strcat(str, #a); strcat(str, " "); }
#define ERRSTR(a) if (e & ERROR_ ## a) { strcat(str, #a); strcat(str, " "); }
char *strstatus(int status)
{
static char str[200];
str[0] = '\0';
STSTR(BSY);
STSTR(DRDY);
STSTR(DMADF);
STSTR(SRVCDSC);
STSTR(DRQ);
STSTR(CORR);
STSTR(CHECK);
return str;
}
char *strerr(int e)
{
static char str[200];
str[0] = '\0';
ERRSTR(BB);
ERRSTR(ECC);
ERRSTR(ID);
ERRSTR(AC);
ERRSTR(TK);
ERRSTR(DM);
return str;
}
#if ENABLE_ATAPI
/*===========================================================================*
* atapi_intr_wait *
*===========================================================================*/
PRIVATE int atapi_intr_wait()
{
/* Wait for an interrupt and study the results. Returns a number of bytes
* that need to be transferred, or an error code.
*/
struct wini *wn = w_wn;
pvb_pair_t inbyte[4]; /* vector for sys_vinb() */
int s; /* status for sys_vinb() */
int e;
int len;
int irr;
int r;
int phase;
w_intr_wait();
/* Request series of device I/O. */
inbyte[0].port = wn->base_cmd + REG_ERROR;
inbyte[1].port = wn->base_cmd + REG_CNT_LO;
inbyte[2].port = wn->base_cmd + REG_CNT_HI;
inbyte[3].port = wn->base_cmd + REG_IRR;
if ((s=sys_vinb(inbyte, 4)) != OK)
panic(w_name(),"ATAPI failed sys_vinb()", s);
e = inbyte[0].value;
len = inbyte[1].value;
len |= inbyte[2].value << 8;
irr = inbyte[3].value;
#if ATAPI_DEBUG
printf("wn %p S=%x=%s E=%02x=%s L=%04x I=%02x\n", wn, wn->w_status, strstatus(wn->w_status), e, strerr(e), len, irr);
#endif
if (wn->w_status & (STATUS_BSY | STATUS_CHECK)) {
if (atapi_debug) {
printf("atapi fail: S=%x=%s E=%02x=%s L=%04x I=%02x\n", wn->w_status, strstatus(wn->w_status), e, strerr(e), len, irr);
}
return ERR;
}
phase = (wn->w_status & STATUS_DRQ) | (irr & (IRR_COD | IRR_IO));
switch (phase) {
case IRR_COD | IRR_IO:
if (ATAPI_DEBUG) printf("ACD: Phase Command Complete\n");
r = OK;
break;
case 0:
if (ATAPI_DEBUG) printf("ACD: Phase Command Aborted\n");
r = ERR;
break;
case STATUS_DRQ | IRR_COD:
if (ATAPI_DEBUG) printf("ACD: Phase Command Out\n");
r = ERR;
break;
case STATUS_DRQ:
if (ATAPI_DEBUG) printf("ACD: Phase Data Out %d\n", len);
r = len;
break;
case STATUS_DRQ | IRR_IO:
if (ATAPI_DEBUG) printf("ACD: Phase Data In %d\n", len);
r = len;
break;
default:
if (ATAPI_DEBUG) printf("ACD: Phase Unknown\n");
r = ERR;
break;
}
#if 0
/* retry if the media changed */
XXX while (phase == (IRR_IO | IRR_COD) && (wn->w_status & STATUS_CHECK)
&& (e & ERROR_SENSE) == SENSE_UATTN && --try > 0);
#endif
wn->w_status |= STATUS_ADMBSY; /* Assume not done yet. */
return(r);
}
#endif /* ENABLE_ATAPI */