minix/drivers/acpi/executer/exmutex.c
Tomas Hruby 9560b6dea8 ACPI driver
- 99% of the code is Intel's ACPICA. The license is compliant with BSD
  and GNU and virtually all systems that use ACPI use this code, For
  instance it is part of the Linux kernel.

- The only minix specific files are

  acpi.c
  osminixxf.c
  platform/acminix.h

  and

  include/minix/acpi.h

- At the moment the driver does not register interrupt hooks which I
  believe is mainly for handling PnP, events like "battery level is
  low" and power management. Should not be difficult to add it if need
  be.

- The interface to the outside world is virtually non-existent except
  a trivial message based service for PCI driver to query which device
  is connected to what IRQ line. This will evolve as more components
  start using this driver. VM, Scheduler and IOMMU are the possible
  users right now.

- because of dependency on a native 64bit (long long, part of c99) it
  is compiled only with a gnu-like compilers which in case of Minix
  includes gcc llvm-gcc and clang
2010-09-02 15:44:04 +00:00

626 lines
20 KiB
C

/******************************************************************************
*
* Module Name: exmutex - ASL Mutex Acquire/Release functions
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2010, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __EXMUTEX_C__
#include "acpi.h"
#include "accommon.h"
#include "acinterp.h"
#include "acevents.h"
#define _COMPONENT ACPI_EXECUTER
ACPI_MODULE_NAME ("exmutex")
/* Local prototypes */
static void
AcpiExLinkMutex (
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_THREAD_STATE *Thread);
/*******************************************************************************
*
* FUNCTION: AcpiExUnlinkMutex
*
* PARAMETERS: ObjDesc - The mutex to be unlinked
*
* RETURN: None
*
* DESCRIPTION: Remove a mutex from the "AcquiredMutex" list
*
******************************************************************************/
void
AcpiExUnlinkMutex (
ACPI_OPERAND_OBJECT *ObjDesc)
{
ACPI_THREAD_STATE *Thread = ObjDesc->Mutex.OwnerThread;
if (!Thread)
{
return;
}
/* Doubly linked list */
if (ObjDesc->Mutex.Next)
{
(ObjDesc->Mutex.Next)->Mutex.Prev = ObjDesc->Mutex.Prev;
}
if (ObjDesc->Mutex.Prev)
{
(ObjDesc->Mutex.Prev)->Mutex.Next = ObjDesc->Mutex.Next;
/*
* Migrate the previous sync level associated with this mutex to
* the previous mutex on the list so that it may be preserved.
* This handles the case where several mutexes have been acquired
* at the same level, but are not released in opposite order.
*/
(ObjDesc->Mutex.Prev)->Mutex.OriginalSyncLevel =
ObjDesc->Mutex.OriginalSyncLevel;
}
else
{
Thread->AcquiredMutexList = ObjDesc->Mutex.Next;
}
}
/*******************************************************************************
*
* FUNCTION: AcpiExLinkMutex
*
* PARAMETERS: ObjDesc - The mutex to be linked
* Thread - Current executing thread object
*
* RETURN: None
*
* DESCRIPTION: Add a mutex to the "AcquiredMutex" list for this walk
*
******************************************************************************/
static void
AcpiExLinkMutex (
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_THREAD_STATE *Thread)
{
ACPI_OPERAND_OBJECT *ListHead;
ListHead = Thread->AcquiredMutexList;
/* This object will be the first object in the list */
ObjDesc->Mutex.Prev = NULL;
ObjDesc->Mutex.Next = ListHead;
/* Update old first object to point back to this object */
if (ListHead)
{
ListHead->Mutex.Prev = ObjDesc;
}
/* Update list head */
Thread->AcquiredMutexList = ObjDesc;
}
/*******************************************************************************
*
* FUNCTION: AcpiExAcquireMutexObject
*
* PARAMETERS: Timeout - Timeout in milliseconds
* ObjDesc - Mutex object
* ThreadId - Current thread state
*
* RETURN: Status
*
* DESCRIPTION: Acquire an AML mutex, low-level interface. Provides a common
* path that supports multiple acquires by the same thread.
*
* MUTEX: Interpreter must be locked
*
* NOTE: This interface is called from three places:
* 1) From AcpiExAcquireMutex, via an AML Acquire() operator
* 2) From AcpiExAcquireGlobalLock when an AML Field access requires the
* global lock
* 3) From the external interface, AcpiAcquireGlobalLock
*
******************************************************************************/
ACPI_STATUS
AcpiExAcquireMutexObject (
UINT16 Timeout,
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_THREAD_ID ThreadId)
{
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE_PTR (ExAcquireMutexObject, ObjDesc);
if (!ObjDesc)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Support for multiple acquires by the owning thread */
if (ObjDesc->Mutex.ThreadId == ThreadId)
{
/*
* The mutex is already owned by this thread, just increment the
* acquisition depth
*/
ObjDesc->Mutex.AcquisitionDepth++;
return_ACPI_STATUS (AE_OK);
}
/* Acquire the mutex, wait if necessary. Special case for Global Lock */
if (ObjDesc == AcpiGbl_GlobalLockMutex)
{
Status = AcpiEvAcquireGlobalLock (Timeout);
}
else
{
Status = AcpiExSystemWaitMutex (ObjDesc->Mutex.OsMutex,
Timeout);
}
if (ACPI_FAILURE (Status))
{
/* Includes failure from a timeout on TimeDesc */
return_ACPI_STATUS (Status);
}
/* Acquired the mutex: update mutex object */
ObjDesc->Mutex.ThreadId = ThreadId;
ObjDesc->Mutex.AcquisitionDepth = 1;
ObjDesc->Mutex.OriginalSyncLevel = 0;
ObjDesc->Mutex.OwnerThread = NULL; /* Used only for AML Acquire() */
return_ACPI_STATUS (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiExAcquireMutex
*
* PARAMETERS: TimeDesc - Timeout integer
* ObjDesc - Mutex object
* WalkState - Current method execution state
*
* RETURN: Status
*
* DESCRIPTION: Acquire an AML mutex
*
******************************************************************************/
ACPI_STATUS
AcpiExAcquireMutex (
ACPI_OPERAND_OBJECT *TimeDesc,
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_WALK_STATE *WalkState)
{
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE_PTR (ExAcquireMutex, ObjDesc);
if (!ObjDesc)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Must have a valid thread state struct */
if (!WalkState->Thread)
{
ACPI_ERROR ((AE_INFO,
"Cannot acquire Mutex [%4.4s], null thread info",
AcpiUtGetNodeName (ObjDesc->Mutex.Node)));
return_ACPI_STATUS (AE_AML_INTERNAL);
}
/*
* Current sync level must be less than or equal to the sync level of the
* mutex. This mechanism provides some deadlock prevention
*/
if (WalkState->Thread->CurrentSyncLevel > ObjDesc->Mutex.SyncLevel)
{
ACPI_ERROR ((AE_INFO,
"Cannot acquire Mutex [%4.4s], current SyncLevel is too large (%u)",
AcpiUtGetNodeName (ObjDesc->Mutex.Node),
WalkState->Thread->CurrentSyncLevel));
return_ACPI_STATUS (AE_AML_MUTEX_ORDER);
}
Status = AcpiExAcquireMutexObject ((UINT16) TimeDesc->Integer.Value,
ObjDesc, WalkState->Thread->ThreadId);
if (ACPI_SUCCESS (Status) && ObjDesc->Mutex.AcquisitionDepth == 1)
{
/* Save Thread object, original/current sync levels */
ObjDesc->Mutex.OwnerThread = WalkState->Thread;
ObjDesc->Mutex.OriginalSyncLevel = WalkState->Thread->CurrentSyncLevel;
WalkState->Thread->CurrentSyncLevel = ObjDesc->Mutex.SyncLevel;
/* Link the mutex to the current thread for force-unlock at method exit */
AcpiExLinkMutex (ObjDesc, WalkState->Thread);
}
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExReleaseMutexObject
*
* PARAMETERS: ObjDesc - The object descriptor for this op
*
* RETURN: Status
*
* DESCRIPTION: Release a previously acquired Mutex, low level interface.
* Provides a common path that supports multiple releases (after
* previous multiple acquires) by the same thread.
*
* MUTEX: Interpreter must be locked
*
* NOTE: This interface is called from three places:
* 1) From AcpiExReleaseMutex, via an AML Acquire() operator
* 2) From AcpiExReleaseGlobalLock when an AML Field access requires the
* global lock
* 3) From the external interface, AcpiReleaseGlobalLock
*
******************************************************************************/
ACPI_STATUS
AcpiExReleaseMutexObject (
ACPI_OPERAND_OBJECT *ObjDesc)
{
ACPI_STATUS Status = AE_OK;
ACPI_FUNCTION_TRACE (ExReleaseMutexObject);
if (ObjDesc->Mutex.AcquisitionDepth == 0)
{
return (AE_NOT_ACQUIRED);
}
/* Match multiple Acquires with multiple Releases */
ObjDesc->Mutex.AcquisitionDepth--;
if (ObjDesc->Mutex.AcquisitionDepth != 0)
{
/* Just decrement the depth and return */
return_ACPI_STATUS (AE_OK);
}
if (ObjDesc->Mutex.OwnerThread)
{
/* Unlink the mutex from the owner's list */
AcpiExUnlinkMutex (ObjDesc);
ObjDesc->Mutex.OwnerThread = NULL;
}
/* Release the mutex, special case for Global Lock */
if (ObjDesc == AcpiGbl_GlobalLockMutex)
{
Status = AcpiEvReleaseGlobalLock ();
}
else
{
AcpiOsReleaseMutex (ObjDesc->Mutex.OsMutex);
}
/* Clear mutex info */
ObjDesc->Mutex.ThreadId = 0;
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExReleaseMutex
*
* PARAMETERS: ObjDesc - The object descriptor for this op
* WalkState - Current method execution state
*
* RETURN: Status
*
* DESCRIPTION: Release a previously acquired Mutex.
*
******************************************************************************/
ACPI_STATUS
AcpiExReleaseMutex (
ACPI_OPERAND_OBJECT *ObjDesc,
ACPI_WALK_STATE *WalkState)
{
ACPI_STATUS Status = AE_OK;
UINT8 PreviousSyncLevel;
ACPI_THREAD_STATE *OwnerThread;
ACPI_FUNCTION_TRACE (ExReleaseMutex);
if (!ObjDesc)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
OwnerThread = ObjDesc->Mutex.OwnerThread;
/* The mutex must have been previously acquired in order to release it */
if (!OwnerThread)
{
ACPI_ERROR ((AE_INFO,
"Cannot release Mutex [%4.4s], not acquired",
AcpiUtGetNodeName (ObjDesc->Mutex.Node)));
return_ACPI_STATUS (AE_AML_MUTEX_NOT_ACQUIRED);
}
/* Must have a valid thread ID */
if (!WalkState->Thread)
{
ACPI_ERROR ((AE_INFO,
"Cannot release Mutex [%4.4s], null thread info",
AcpiUtGetNodeName (ObjDesc->Mutex.Node)));
return_ACPI_STATUS (AE_AML_INTERNAL);
}
/*
* The Mutex is owned, but this thread must be the owner.
* Special case for Global Lock, any thread can release
*/
if ((OwnerThread->ThreadId != WalkState->Thread->ThreadId) &&
(ObjDesc != AcpiGbl_GlobalLockMutex))
{
ACPI_ERROR ((AE_INFO,
"Thread %p cannot release Mutex [%4.4s] acquired by thread %p",
ACPI_CAST_PTR (void, WalkState->Thread->ThreadId),
AcpiUtGetNodeName (ObjDesc->Mutex.Node),
ACPI_CAST_PTR (void, OwnerThread->ThreadId)));
return_ACPI_STATUS (AE_AML_NOT_OWNER);
}
/*
* The sync level of the mutex must be equal to the current sync level. In
* other words, the current level means that at least one mutex at that
* level is currently being held. Attempting to release a mutex of a
* different level can only mean that the mutex ordering rule is being
* violated. This behavior is clarified in ACPI 4.0 specification.
*/
if (ObjDesc->Mutex.SyncLevel != OwnerThread->CurrentSyncLevel)
{
ACPI_ERROR ((AE_INFO,
"Cannot release Mutex [%4.4s], SyncLevel mismatch: mutex %u current %u",
AcpiUtGetNodeName (ObjDesc->Mutex.Node),
ObjDesc->Mutex.SyncLevel, WalkState->Thread->CurrentSyncLevel));
return_ACPI_STATUS (AE_AML_MUTEX_ORDER);
}
/*
* Get the previous SyncLevel from the head of the acquired mutex list.
* This handles the case where several mutexes at the same level have been
* acquired, but are not released in reverse order.
*/
PreviousSyncLevel =
OwnerThread->AcquiredMutexList->Mutex.OriginalSyncLevel;
Status = AcpiExReleaseMutexObject (ObjDesc);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
if (ObjDesc->Mutex.AcquisitionDepth == 0)
{
/* Restore the previous SyncLevel */
OwnerThread->CurrentSyncLevel = PreviousSyncLevel;
}
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiExReleaseAllMutexes
*
* PARAMETERS: Thread - Current executing thread object
*
* RETURN: Status
*
* DESCRIPTION: Release all mutexes held by this thread
*
* NOTE: This function is called as the thread is exiting the interpreter.
* Mutexes are not released when an individual control method is exited, but
* only when the parent thread actually exits the interpreter. This allows one
* method to acquire a mutex, and a different method to release it, as long as
* this is performed underneath a single parent control method.
*
******************************************************************************/
void
AcpiExReleaseAllMutexes (
ACPI_THREAD_STATE *Thread)
{
ACPI_OPERAND_OBJECT *Next = Thread->AcquiredMutexList;
ACPI_OPERAND_OBJECT *ObjDesc;
ACPI_FUNCTION_ENTRY ();
/* Traverse the list of owned mutexes, releasing each one */
while (Next)
{
ObjDesc = Next;
Next = ObjDesc->Mutex.Next;
ObjDesc->Mutex.Prev = NULL;
ObjDesc->Mutex.Next = NULL;
ObjDesc->Mutex.AcquisitionDepth = 0;
/* Release the mutex, special case for Global Lock */
if (ObjDesc == AcpiGbl_GlobalLockMutex)
{
/* Ignore errors */
(void) AcpiEvReleaseGlobalLock ();
}
else
{
AcpiOsReleaseMutex (ObjDesc->Mutex.OsMutex);
}
/* Mark mutex unowned */
ObjDesc->Mutex.OwnerThread = NULL;
ObjDesc->Mutex.ThreadId = 0;
/* Update Thread SyncLevel (Last mutex is the important one) */
Thread->CurrentSyncLevel = ObjDesc->Mutex.OriginalSyncLevel;
}
}