f14fb60209
* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
680 lines
17 KiB
C
680 lines
17 KiB
C
/* $NetBSD: hash_bigkey.c,v 1.24 2012/03/13 21:13:32 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1990, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Margo Seltzer.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#if HAVE_NBTOOL_CONFIG_H
|
|
#include "nbtool_config.h"
|
|
#endif
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: hash_bigkey.c,v 1.24 2012/03/13 21:13:32 christos Exp $");
|
|
|
|
/*
|
|
* PACKAGE: hash
|
|
* DESCRIPTION:
|
|
* Big key/data handling for the hashing package.
|
|
*
|
|
* ROUTINES:
|
|
* External
|
|
* __big_keydata
|
|
* __big_split
|
|
* __big_insert
|
|
* __big_return
|
|
* __big_delete
|
|
* __find_last_page
|
|
* Internal
|
|
* collect_key
|
|
* collect_data
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include <db.h>
|
|
#include "hash.h"
|
|
#include "page.h"
|
|
#include "extern.h"
|
|
|
|
static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
|
|
static int collect_data(HTAB *, BUFHEAD *, int, int);
|
|
|
|
/*
|
|
* Big_insert
|
|
*
|
|
* You need to do an insert and the key/data pair is too big
|
|
*
|
|
* Returns:
|
|
* 0 ==> OK
|
|
*-1 ==> ERROR
|
|
*/
|
|
int
|
|
__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
|
|
{
|
|
uint16_t *p, n;
|
|
size_t key_size, val_size;
|
|
uint16_t space, move_bytes, off;
|
|
char *cp, *key_data, *val_data;
|
|
size_t temp;
|
|
|
|
cp = bufp->page; /* Character pointer of p. */
|
|
p = (uint16_t *)(void *)cp;
|
|
|
|
key_data = (char *)key->data;
|
|
_DBFIT(key->size, int);
|
|
key_size = key->size;
|
|
val_data = (char *)val->data;
|
|
_DBFIT(val->size, int);
|
|
val_size = val->size;
|
|
|
|
/* First move the Key */
|
|
|
|
temp = FREESPACE(p) - BIGOVERHEAD;
|
|
_DBFIT(temp, uint16_t);
|
|
space = (uint16_t)temp;
|
|
while (key_size) {
|
|
size_t kspace = MIN(space, key_size);
|
|
_DBFIT(kspace, uint16_t);
|
|
move_bytes = (uint16_t)kspace;
|
|
off = OFFSET(p) - move_bytes;
|
|
memmove(cp + off, key_data, (size_t)move_bytes);
|
|
key_size -= move_bytes;
|
|
key_data += move_bytes;
|
|
n = p[0];
|
|
p[++n] = off;
|
|
p[0] = ++n;
|
|
temp = off - PAGE_META(n);
|
|
_DBFIT(temp, uint16_t);
|
|
FREESPACE(p) = (uint16_t)temp;
|
|
OFFSET(p) = off;
|
|
p[n] = PARTIAL_KEY;
|
|
bufp = __add_ovflpage(hashp, bufp);
|
|
if (!bufp)
|
|
return (-1);
|
|
n = p[0];
|
|
if (!key_size) {
|
|
space = FREESPACE(p);
|
|
if (space) {
|
|
size_t vspace = MIN(space, val_size);
|
|
_DBFIT(vspace, uint16_t);
|
|
move_bytes = (uint16_t)vspace;
|
|
/*
|
|
* If the data would fit exactly in the
|
|
* remaining space, we must overflow it to the
|
|
* next page; otherwise the invariant that the
|
|
* data must end on a page with FREESPACE
|
|
* non-zero would fail.
|
|
*/
|
|
if (space == val_size && val_size == val->size)
|
|
goto toolarge;
|
|
off = OFFSET(p) - move_bytes;
|
|
memmove(cp + off, val_data, (size_t)move_bytes);
|
|
val_data += move_bytes;
|
|
val_size -= move_bytes;
|
|
p[n] = off;
|
|
p[n - 2] = FULL_KEY_DATA;
|
|
FREESPACE(p) = FREESPACE(p) - move_bytes;
|
|
OFFSET(p) = off;
|
|
} else {
|
|
toolarge:
|
|
p[n - 2] = FULL_KEY;
|
|
}
|
|
}
|
|
p = (uint16_t *)(void *)bufp->page;
|
|
cp = bufp->page;
|
|
bufp->flags |= BUF_MOD;
|
|
temp = FREESPACE(p) - BIGOVERHEAD;
|
|
_DBFIT(temp, uint16_t);
|
|
space = (uint16_t)temp;
|
|
}
|
|
|
|
/* Now move the data */
|
|
temp = FREESPACE(p) - BIGOVERHEAD;
|
|
_DBFIT(temp, uint16_t);
|
|
space = (uint16_t)temp;
|
|
while (val_size) {
|
|
size_t vspace = MIN(space, val_size);
|
|
_DBFIT(vspace, uint16_t);
|
|
move_bytes = (uint16_t)vspace;
|
|
/*
|
|
* Here's the hack to make sure that if the data ends on the
|
|
* same page as the key ends, FREESPACE is at least one.
|
|
*/
|
|
if (space == val_size && val_size == val->size)
|
|
move_bytes--;
|
|
off = OFFSET(p) - move_bytes;
|
|
memmove(cp + off, val_data, (size_t)move_bytes);
|
|
val_size -= move_bytes;
|
|
val_data += move_bytes;
|
|
n = p[0];
|
|
p[++n] = off;
|
|
p[0] = ++n;
|
|
temp = off - PAGE_META(n);
|
|
_DBFIT(temp, uint16_t);
|
|
FREESPACE(p) = (uint16_t)temp;
|
|
OFFSET(p) = off;
|
|
if (val_size) {
|
|
p[n] = FULL_KEY;
|
|
bufp = __add_ovflpage(hashp, bufp);
|
|
if (!bufp)
|
|
return (-1);
|
|
cp = bufp->page;
|
|
p = (uint16_t *)(void *)cp;
|
|
} else
|
|
p[n] = FULL_KEY_DATA;
|
|
bufp->flags |= BUF_MOD;
|
|
temp = FREESPACE(p) - BIGOVERHEAD;
|
|
_DBFIT(temp, uint16_t);
|
|
space = (uint16_t)temp;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called when bufp's page contains a partial key (index should be 1)
|
|
*
|
|
* All pages in the big key/data pair except bufp are freed. We cannot
|
|
* free bufp because the page pointing to it is lost and we can't get rid
|
|
* of its pointer.
|
|
*
|
|
* Returns:
|
|
* 0 => OK
|
|
*-1 => ERROR
|
|
*/
|
|
int
|
|
__big_delete(HTAB *hashp, BUFHEAD *bufp)
|
|
{
|
|
BUFHEAD *last_bfp, *rbufp;
|
|
uint16_t *bp, pageno;
|
|
int key_done, n;
|
|
size_t temp;
|
|
|
|
rbufp = bufp;
|
|
last_bfp = NULL;
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
pageno = 0;
|
|
key_done = 0;
|
|
|
|
while (!key_done || (bp[2] != FULL_KEY_DATA)) {
|
|
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
|
|
key_done = 1;
|
|
|
|
/*
|
|
* If there is freespace left on a FULL_KEY_DATA page, then
|
|
* the data is short and fits entirely on this page, and this
|
|
* is the last page.
|
|
*/
|
|
if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
|
|
break;
|
|
pageno = bp[bp[0] - 1];
|
|
rbufp->flags |= BUF_MOD;
|
|
rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
|
|
if (last_bfp)
|
|
__free_ovflpage(hashp, last_bfp);
|
|
last_bfp = rbufp;
|
|
if (!rbufp)
|
|
return (-1); /* Error. */
|
|
bp = (uint16_t *)(void *)rbufp->page;
|
|
}
|
|
|
|
/*
|
|
* If we get here then rbufp points to the last page of the big
|
|
* key/data pair. Bufp points to the first one -- it should now be
|
|
* empty pointing to the next page after this pair. Can't free it
|
|
* because we don't have the page pointing to it.
|
|
*/
|
|
|
|
/* This is information from the last page of the pair. */
|
|
n = bp[0];
|
|
pageno = bp[n - 1];
|
|
|
|
/* Now, bp is the first page of the pair. */
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
if (n > 2) {
|
|
/* There is an overflow page. */
|
|
bp[1] = pageno;
|
|
bp[2] = OVFLPAGE;
|
|
bufp->ovfl = rbufp->ovfl;
|
|
} else
|
|
/* This is the last page. */
|
|
bufp->ovfl = NULL;
|
|
n -= 2;
|
|
bp[0] = n;
|
|
temp = hashp->BSIZE - PAGE_META(n);
|
|
_DBFIT(temp, uint16_t);
|
|
FREESPACE(bp) = (uint16_t)temp;
|
|
OFFSET(bp) = hashp->BSIZE;
|
|
|
|
bufp->flags |= BUF_MOD;
|
|
if (rbufp)
|
|
__free_ovflpage(hashp, rbufp);
|
|
if (last_bfp && last_bfp != rbufp)
|
|
__free_ovflpage(hashp, last_bfp);
|
|
|
|
hashp->NKEYS--;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Returns:
|
|
* 0 = key not found
|
|
* -1 = get next overflow page
|
|
* -2 means key not found and this is big key/data
|
|
* -3 error
|
|
*/
|
|
int
|
|
__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
|
|
{
|
|
uint16_t *bp;
|
|
char *p;
|
|
int ksize;
|
|
uint16_t bytes;
|
|
char *kkey;
|
|
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
p = bufp->page;
|
|
ksize = size;
|
|
kkey = key;
|
|
|
|
for (bytes = hashp->BSIZE - bp[ndx];
|
|
bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
|
|
bytes = hashp->BSIZE - bp[ndx]) {
|
|
if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
|
|
return (-2);
|
|
kkey += bytes;
|
|
ksize -= bytes;
|
|
bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
|
|
if (!bufp)
|
|
return (-3);
|
|
p = bufp->page;
|
|
bp = (uint16_t *)(void *)p;
|
|
ndx = 1;
|
|
}
|
|
|
|
if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
|
|
#ifdef HASH_STATISTICS
|
|
++hash_collisions;
|
|
#endif
|
|
return (-2);
|
|
} else
|
|
return (ndx);
|
|
}
|
|
|
|
/*
|
|
* Given the buffer pointer of the first overflow page of a big pair,
|
|
* find the end of the big pair
|
|
*
|
|
* This will set bpp to the buffer header of the last page of the big pair.
|
|
* It will return the pageno of the overflow page following the last page
|
|
* of the pair; 0 if there isn't any (i.e. big pair is the last key in the
|
|
* bucket)
|
|
*/
|
|
uint16_t
|
|
__find_last_page(HTAB *hashp, BUFHEAD **bpp)
|
|
{
|
|
BUFHEAD *bufp;
|
|
uint16_t *bp, pageno;
|
|
int n;
|
|
|
|
bufp = *bpp;
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
for (;;) {
|
|
n = bp[0];
|
|
|
|
/*
|
|
* This is the last page if: the tag is FULL_KEY_DATA and
|
|
* either only 2 entries OVFLPAGE marker is explicit there
|
|
* is freespace on the page.
|
|
*/
|
|
if (bp[2] == FULL_KEY_DATA &&
|
|
((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
|
|
break;
|
|
|
|
pageno = bp[n - 1];
|
|
bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
|
|
if (!bufp)
|
|
return (0); /* Need to indicate an error! */
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
}
|
|
|
|
*bpp = bufp;
|
|
if (bp[0] > 2)
|
|
return (bp[3]);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the data for the key/data pair that begins on this page at this
|
|
* index (index should always be 1).
|
|
*/
|
|
int
|
|
__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
|
|
{
|
|
BUFHEAD *save_p;
|
|
uint16_t *bp, len, off, save_addr;
|
|
char *tp;
|
|
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
while (bp[ndx + 1] == PARTIAL_KEY) {
|
|
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
|
|
if (!bufp)
|
|
return (-1);
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
ndx = 1;
|
|
}
|
|
|
|
if (bp[ndx + 1] == FULL_KEY) {
|
|
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
|
|
if (!bufp)
|
|
return (-1);
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
save_p = bufp;
|
|
save_addr = save_p->addr;
|
|
off = bp[1];
|
|
len = 0;
|
|
} else
|
|
if (!FREESPACE(bp)) {
|
|
/*
|
|
* This is a hack. We can't distinguish between
|
|
* FULL_KEY_DATA that contains complete data or
|
|
* incomplete data, so we require that if the data
|
|
* is complete, there is at least 1 byte of free
|
|
* space left.
|
|
*/
|
|
off = bp[bp[0]];
|
|
len = bp[1] - off;
|
|
save_p = bufp;
|
|
save_addr = bufp->addr;
|
|
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
|
|
0);
|
|
if (!bufp)
|
|
return (-1);
|
|
bp = (uint16_t *)(void *)bufp->page;
|
|
} else {
|
|
/* The data is all on one page. */
|
|
tp = (char *)(void *)bp;
|
|
off = bp[bp[0]];
|
|
val->data = (uint8_t *)tp + off;
|
|
val->size = bp[1] - off;
|
|
if (set_current) {
|
|
if (bp[0] == 2) { /* No more buckets in
|
|
* chain */
|
|
hashp->cpage = NULL;
|
|
hashp->cbucket++;
|
|
hashp->cndx = 1;
|
|
} else {
|
|
hashp->cpage = __get_buf(hashp,
|
|
(uint32_t)bp[bp[0] - 1], bufp, 0);
|
|
if (!hashp->cpage)
|
|
return (-1);
|
|
hashp->cndx = 1;
|
|
if (!((uint16_t *)(void *)
|
|
hashp->cpage->page)[0]) {
|
|
hashp->cbucket++;
|
|
hashp->cpage = NULL;
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
val->size = collect_data(hashp, bufp, (int)len, set_current);
|
|
if (val->size == (size_t)-1)
|
|
return (-1);
|
|
if (save_p->addr != save_addr) {
|
|
/* We are pretty short on buffers. */
|
|
errno = EINVAL; /* OUT OF BUFFERS */
|
|
return (-1);
|
|
}
|
|
memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
|
|
val->data = (uint8_t *)hashp->tmp_buf;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Count how big the total datasize is by recursing through the pages. Then
|
|
* allocate a buffer and copy the data as you recurse up.
|
|
*/
|
|
static int
|
|
collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
|
|
{
|
|
uint16_t *bp;
|
|
char *p;
|
|
BUFHEAD *xbp;
|
|
uint16_t save_addr;
|
|
int mylen, totlen;
|
|
|
|
p = bufp->page;
|
|
bp = (uint16_t *)(void *)p;
|
|
mylen = hashp->BSIZE - bp[1];
|
|
save_addr = bufp->addr;
|
|
|
|
if (bp[2] == FULL_KEY_DATA) { /* End of Data */
|
|
totlen = len + mylen;
|
|
if (hashp->tmp_buf)
|
|
free(hashp->tmp_buf);
|
|
if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
|
|
return (-1);
|
|
if (set) {
|
|
hashp->cndx = 1;
|
|
if (bp[0] == 2) { /* No more buckets in chain */
|
|
hashp->cpage = NULL;
|
|
hashp->cbucket++;
|
|
} else {
|
|
hashp->cpage =
|
|
__get_buf(hashp, (uint32_t)bp[bp[0] - 1],
|
|
bufp, 0);
|
|
if (!hashp->cpage)
|
|
return (-1);
|
|
else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
|
|
hashp->cbucket++;
|
|
hashp->cpage = NULL;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
|
|
if (!xbp || ((totlen =
|
|
collect_data(hashp, xbp, len + mylen, set)) < 1))
|
|
return (-1);
|
|
}
|
|
if (bufp->addr != save_addr) {
|
|
errno = EINVAL; /* Out of buffers. */
|
|
return (-1);
|
|
}
|
|
memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
|
|
return (totlen);
|
|
}
|
|
|
|
/*
|
|
* Fill in the key and data for this big pair.
|
|
*/
|
|
int
|
|
__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
|
|
{
|
|
key->size = collect_key(hashp, bufp, 0, val, set);
|
|
if (key->size == (size_t)-1)
|
|
return (-1);
|
|
key->data = (uint8_t *)hashp->tmp_key;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Count how big the total key size is by recursing through the pages. Then
|
|
* collect the data, allocate a buffer and copy the key as you recurse up.
|
|
*/
|
|
static int
|
|
collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
|
|
{
|
|
BUFHEAD *xbp;
|
|
char *p;
|
|
int mylen, totlen;
|
|
uint16_t *bp, save_addr;
|
|
|
|
p = bufp->page;
|
|
bp = (uint16_t *)(void *)p;
|
|
mylen = hashp->BSIZE - bp[1];
|
|
|
|
save_addr = bufp->addr;
|
|
totlen = len + mylen;
|
|
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
|
|
if (hashp->tmp_key != NULL)
|
|
free(hashp->tmp_key);
|
|
if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
|
|
return (-1);
|
|
if (__big_return(hashp, bufp, 1, val, set))
|
|
return (-1);
|
|
} else {
|
|
xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
|
|
if (!xbp || ((totlen =
|
|
collect_key(hashp, xbp, totlen, val, set)) < 1))
|
|
return (-1);
|
|
}
|
|
if (bufp->addr != save_addr) {
|
|
errno = EINVAL; /* MIS -- OUT OF BUFFERS */
|
|
return (-1);
|
|
}
|
|
memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
|
|
return (totlen);
|
|
}
|
|
|
|
/*
|
|
* Returns:
|
|
* 0 => OK
|
|
* -1 => error
|
|
*/
|
|
int
|
|
__big_split(
|
|
HTAB *hashp,
|
|
BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */
|
|
BUFHEAD *np, /* Pointer to new bucket page */
|
|
/* Pointer to first page containing the big key/data */
|
|
BUFHEAD *big_keyp,
|
|
int addr, /* Address of big_keyp */
|
|
uint32_t obucket,/* Old Bucket */
|
|
SPLIT_RETURN *ret
|
|
)
|
|
{
|
|
BUFHEAD *tmpp;
|
|
uint16_t *tp;
|
|
BUFHEAD *bp;
|
|
DBT key, val;
|
|
uint32_t change;
|
|
uint16_t free_space, n, off;
|
|
size_t temp;
|
|
|
|
bp = big_keyp;
|
|
|
|
/* Now figure out where the big key/data goes */
|
|
if (__big_keydata(hashp, big_keyp, &key, &val, 0))
|
|
return (-1);
|
|
change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
|
|
|
|
if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
|
|
if (!(ret->nextp =
|
|
__get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
|
|
return (-1);
|
|
} else
|
|
ret->nextp = NULL;
|
|
|
|
/* Now make one of np/op point to the big key/data pair */
|
|
_DIAGASSERT(np->ovfl == NULL);
|
|
if (change)
|
|
tmpp = np;
|
|
else
|
|
tmpp = op;
|
|
|
|
tmpp->flags |= BUF_MOD;
|
|
#ifdef DEBUG1
|
|
(void)fprintf(stderr,
|
|
"BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
|
|
(tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
|
|
#endif
|
|
tmpp->ovfl = bp; /* one of op/np point to big_keyp */
|
|
tp = (uint16_t *)(void *)tmpp->page;
|
|
_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
|
|
n = tp[0];
|
|
off = OFFSET(tp);
|
|
free_space = FREESPACE(tp);
|
|
tp[++n] = (uint16_t)addr;
|
|
tp[++n] = OVFLPAGE;
|
|
tp[0] = n;
|
|
OFFSET(tp) = off;
|
|
temp = free_space - OVFLSIZE;
|
|
_DBFIT(temp, uint16_t);
|
|
FREESPACE(tp) = (uint16_t)temp;
|
|
|
|
/*
|
|
* Finally, set the new and old return values. BIG_KEYP contains a
|
|
* pointer to the last page of the big key_data pair. Make sure that
|
|
* big_keyp has no following page (2 elements) or create an empty
|
|
* following page.
|
|
*/
|
|
|
|
ret->newp = np;
|
|
ret->oldp = op;
|
|
|
|
tp = (uint16_t *)(void *)big_keyp->page;
|
|
big_keyp->flags |= BUF_MOD;
|
|
if (tp[0] > 2) {
|
|
/*
|
|
* There may be either one or two offsets on this page. If
|
|
* there is one, then the overflow page is linked on normally
|
|
* and tp[4] is OVFLPAGE. If there are two, tp[4] contains
|
|
* the second offset and needs to get stuffed in after the
|
|
* next overflow page is added.
|
|
*/
|
|
n = tp[4];
|
|
free_space = FREESPACE(tp);
|
|
off = OFFSET(tp);
|
|
tp[0] -= 2;
|
|
temp = free_space + OVFLSIZE;
|
|
_DBFIT(temp, uint16_t);
|
|
FREESPACE(tp) = (uint16_t)temp;
|
|
OFFSET(tp) = off;
|
|
tmpp = __add_ovflpage(hashp, big_keyp);
|
|
if (!tmpp)
|
|
return (-1);
|
|
tp[4] = n;
|
|
} else
|
|
tmpp = big_keyp;
|
|
|
|
if (change)
|
|
ret->newp = tmpp;
|
|
else
|
|
ret->oldp = tmpp;
|
|
return (0);
|
|
}
|