minix/servers/vfs/misc.c
Thomas Veerman fa78dc389f socket: implement SOCK_CLOEXEC and SOCK_NONBLOCK
Change-Id: I3fa36fa999c82a192d402cb4d913bd397e106e53
2013-02-28 10:08:53 +00:00

811 lines
22 KiB
C

/* This file contains a collection of miscellaneous procedures. Some of them
* perform simple system calls. Some others do a little part of system calls
* that are mostly performed by the Memory Manager.
*
* The entry points into this file are
* do_dup: perform the DUP system call
* do_fcntl: perform the FCNTL system call
* do_sync: perform the SYNC system call
* do_fsync: perform the FSYNC system call
* pm_reboot: sync disks and prepare for shutdown
* pm_fork: adjust the tables after PM has performed a FORK system call
* do_exec: handle files with FD_CLOEXEC on after PM has done an EXEC
* do_exit: a process has exited; note that in the tables
* do_set: set uid or gid for some process
* do_revive: revive a process that was waiting for something (e.g. TTY)
* do_svrctl: file system control
* do_getsysinfo: request copy of FS data structure
* pm_dumpcore: create a core dump
*/
#include "fs.h"
#include <fcntl.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <minix/callnr.h>
#include <minix/safecopies.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <minix/sysinfo.h>
#include <minix/u64.h>
#include <sys/ptrace.h>
#include <sys/svrctl.h>
#include "file.h"
#include "fproc.h"
#include "scratchpad.h"
#include "dmap.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
#include "param.h"
#define CORE_NAME "core"
#define CORE_MODE 0777 /* mode to use on core image files */
#if ENABLE_SYSCALL_STATS
unsigned long calls_stats[NCALLS];
#endif
static void free_proc(struct fproc *freed, int flags);
/*
static int dumpcore(int proc_e, struct mem_map *seg_ptr);
static int write_bytes(struct inode *rip, off_t off, char *buf, size_t
bytes);
static int write_seg(struct inode *rip, off_t off, int proc_e, int seg,
off_t seg_off, phys_bytes seg_bytes);
*/
/*===========================================================================*
* do_getsysinfo *
*===========================================================================*/
int do_getsysinfo()
{
vir_bytes src_addr, dst_addr;
size_t len, buf_size;
int what;
what = job_m_in.SI_WHAT;
dst_addr = (vir_bytes) job_m_in.SI_WHERE;
buf_size = (size_t) job_m_in.SI_SIZE;
/* Only su may call do_getsysinfo. This call may leak information (and is not
* stable enough to be part of the API/ABI). In the future, requests from
* non-system processes should be denied.
*/
if (!super_user) return(EPERM);
switch(what) {
case SI_PROC_TAB:
src_addr = (vir_bytes) fproc;
len = sizeof(struct fproc) * NR_PROCS;
break;
case SI_DMAP_TAB:
src_addr = (vir_bytes) dmap;
len = sizeof(struct dmap) * NR_DEVICES;
break;
#if ENABLE_SYSCALL_STATS
case SI_CALL_STATS:
src_addr = (vir_bytes) calls_stats;
len = sizeof(calls_stats);
break;
#endif
case SI_VMNT_TAB:
fetch_vmnt_paths();
src_addr = (vir_bytes) vmnt;
len = sizeof(struct vmnt) * NR_MNTS;
break;
default:
return(EINVAL);
}
if (len != buf_size)
return(EINVAL);
return sys_datacopy(SELF, src_addr, who_e, dst_addr, len);
}
/*===========================================================================*
* do_dup *
*===========================================================================*/
int do_dup()
{
/* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are
* obsolete. In fact, it is not even possible to invoke them using the
* current library because the library routines call fcntl(). They are
* provided to permit old binary programs to continue to run.
*/
int rfd, rfd2;
struct filp *f;
int r = OK;
scratch(fp).file.fd_nr = job_m_in.fd;
rfd2 = job_m_in.fd2;
/* Is the file descriptor valid? */
rfd = scratch(fp).file.fd_nr & ~DUP_MASK; /* kill off dup2 bit, if on */
if ((f = get_filp(rfd, VNODE_READ)) == NULL) return(err_code);
/* Distinguish between dup and dup2. */
if (!(scratch(fp).file.fd_nr & DUP_MASK)) { /* bit not on */
/* dup(fd) */
r = get_fd(0, 0, &rfd2, NULL);
} else {
/* dup2(old_fd, new_fd) */
if (rfd2 < 0 || rfd2 >= OPEN_MAX) {
r = EBADF;
} else if (rfd == rfd2) { /* ignore the call: dup2(x, x) */
r = rfd2;
} else {
/* All is fine, close new_fd if necessary */
unlock_filp(f); /* or it might deadlock on do_close */
(void) close_fd(fp, rfd2); /* cannot fail */
f = get_filp(rfd, VNODE_READ); /* lock old_fd again */
if (f == NULL) return(err_code);
}
}
if (r == OK) {
/* Success. Set up new file descriptors. */
f->filp_count++;
fp->fp_filp[rfd2] = f;
FD_SET(rfd2, &fp->fp_filp_inuse);
r = rfd2;
}
unlock_filp(f);
return(r);
}
/*===========================================================================*
* do_fcntl *
*===========================================================================*/
int do_fcntl()
{
/* Perform the fcntl(fd, request, ...) system call. */
register struct filp *f;
int new_fd, fl, r = OK, fcntl_req, fcntl_argx;
tll_access_t locktype;
scratch(fp).file.fd_nr = job_m_in.fd;
scratch(fp).io.io_buffer = job_m_in.buffer;
scratch(fp).io.io_nbytes = job_m_in.nbytes; /* a.k.a. m_in.request */
fcntl_req = job_m_in.request;
fcntl_argx = job_m_in.addr;
/* Is the file descriptor valid? */
locktype = (fcntl_req == F_FREESP) ? VNODE_WRITE : VNODE_READ;
if ((f = get_filp(scratch(fp).file.fd_nr, locktype)) == NULL)
return(err_code);
switch (fcntl_req) {
case F_DUPFD:
/* This replaces the old dup() system call. */
if (fcntl_argx < 0 || fcntl_argx >= OPEN_MAX) r = EINVAL;
else if ((r = get_fd(fcntl_argx, 0, &new_fd, NULL)) == OK) {
f->filp_count++;
fp->fp_filp[new_fd] = f;
FD_SET(new_fd, &fp->fp_filp_inuse);
r = new_fd;
}
break;
case F_GETFD:
/* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
r = 0;
if (FD_ISSET(scratch(fp).file.fd_nr, &fp->fp_cloexec_set))
r = FD_CLOEXEC;
break;
case F_SETFD:
/* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
if (fcntl_argx & FD_CLOEXEC)
FD_SET(scratch(fp).file.fd_nr, &fp->fp_cloexec_set);
else
FD_CLR(scratch(fp).file.fd_nr, &fp->fp_cloexec_set);
break;
case F_GETFL:
/* Get file status flags (O_NONBLOCK and O_APPEND). */
fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE);
r = fl;
break;
case F_SETFL:
/* Set file status flags (O_NONBLOCK and O_APPEND). */
fl = O_NONBLOCK | O_APPEND | O_REOPEN;
f->filp_flags = (f->filp_flags & ~fl) | (fcntl_argx & fl);
break;
case F_GETLK:
case F_SETLK:
case F_SETLKW:
/* Set or clear a file lock. */
r = lock_op(f, fcntl_req);
break;
case F_FREESP:
{
/* Free a section of a file */
off_t start, end;
struct flock flock_arg;
signed long offset;
/* Check if it's a regular file. */
if (!S_ISREG(f->filp_vno->v_mode)) r = EINVAL;
else if (!(f->filp_mode & W_BIT)) r = EBADF;
else
/* Copy flock data from userspace. */
r = sys_datacopy(who_e, (vir_bytes) scratch(fp).io.io_buffer,
SELF, (vir_bytes) &flock_arg,
sizeof(flock_arg));
if (r != OK) break;
/* Convert starting offset to signed. */
offset = (signed long) flock_arg.l_start;
/* Figure out starting position base. */
switch(flock_arg.l_whence) {
case SEEK_SET: start = 0; break;
case SEEK_CUR:
if (ex64hi(f->filp_pos) != 0)
panic("do_fcntl: position in file too high");
start = ex64lo(f->filp_pos);
break;
case SEEK_END: start = f->filp_vno->v_size; break;
default: r = EINVAL;
}
if (r != OK) break;
/* Check for overflow or underflow. */
if (offset > 0 && start + offset < start) r = EINVAL;
else if (offset < 0 && start + offset > start) r = EINVAL;
else {
start += offset;
if (start < 0) r = EINVAL;
}
if (r != OK) break;
if (flock_arg.l_len != 0) {
if (start >= f->filp_vno->v_size) r = EINVAL;
else if ((end = start + flock_arg.l_len) <= start) r = EINVAL;
else if (end > f->filp_vno->v_size) end = f->filp_vno->v_size;
} else {
end = 0;
}
if (r != OK) break;
r = req_ftrunc(f->filp_vno->v_fs_e, f->filp_vno->v_inode_nr,start,end);
if (r == OK && flock_arg.l_len == 0)
f->filp_vno->v_size = start;
break;
}
case F_GETNOSIGPIPE:
/* POSIX: return value other than -1 is flag is set, else -1 */
r = -1;
if (f->filp_flags & O_NOSIGPIPE)
r = 0;
break;
case F_SETNOSIGPIPE:
fl = (O_NOSIGPIPE);
f->filp_flags = (f->filp_flags & ~fl) | (fcntl_argx & fl);
break;
default:
r = EINVAL;
}
unlock_filp(f);
return(r);
}
/*===========================================================================*
* do_sync *
*===========================================================================*/
int do_sync()
{
struct vmnt *vmp;
int r = OK;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp) {
if ((r = lock_vmnt(vmp, VMNT_READ)) != OK)
break;
if (vmp->m_dev != NO_DEV && vmp->m_fs_e != NONE &&
vmp->m_root_node != NULL) {
req_sync(vmp->m_fs_e);
}
unlock_vmnt(vmp);
}
return(r);
}
/*===========================================================================*
* do_fsync *
*===========================================================================*/
int do_fsync()
{
/* Perform the fsync() system call. */
struct filp *rfilp;
struct vmnt *vmp;
dev_t dev;
int r = OK;
scratch(fp).file.fd_nr = job_m_in.fd;
if ((rfilp = get_filp(scratch(fp).file.fd_nr, VNODE_READ)) == NULL)
return(err_code);
dev = rfilp->filp_vno->v_dev;
unlock_filp(rfilp);
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp) {
if (vmp->m_dev != dev) continue;
if ((r = lock_vmnt(vmp, VMNT_READ)) != OK)
break;
if (vmp->m_dev != NO_DEV && vmp->m_dev == dev &&
vmp->m_fs_e != NONE && vmp->m_root_node != NULL) {
req_sync(vmp->m_fs_e);
}
unlock_vmnt(vmp);
}
return(r);
}
/*===========================================================================*
* pm_reboot *
*===========================================================================*/
void pm_reboot()
{
/* Perform the VFS side of the reboot call. */
int i;
struct fproc *rfp;
do_sync();
/* Do exit processing for all leftover processes and servers, but don't
* actually exit them (if they were really gone, PM will tell us about it).
* Skip processes that handle parts of the file system; we first need to give
* them the chance to unmount (which should be possible as all normal
* processes have no open files anymore).
*/
for (i = 0; i < NR_PROCS; i++) {
rfp = &fproc[i];
/* Don't just free the proc right away, but let it finish what it was
* doing first */
lock_proc(rfp, 0);
if (rfp->fp_endpoint != NONE && find_vmnt(rfp->fp_endpoint) == NULL)
free_proc(rfp, 0);
unlock_proc(rfp);
}
do_sync();
unmount_all(0 /* Don't force */);
/* Try to exit all processes again including File Servers */
for (i = 0; i < NR_PROCS; i++) {
rfp = &fproc[i];
/* Don't just free the proc right away, but let it finish what it was
* doing first */
lock_proc(rfp, 0);
if (rfp->fp_endpoint != NONE)
free_proc(rfp, 0);
unlock_proc(rfp);
}
do_sync();
unmount_all(1 /* Force */);
}
/*===========================================================================*
* pm_fork *
*===========================================================================*/
void pm_fork(endpoint_t pproc, endpoint_t cproc, pid_t cpid)
{
/* Perform those aspects of the fork() system call that relate to files.
* In particular, let the child inherit its parent's file descriptors.
* The parent and child parameters tell who forked off whom. The file
* system uses the same slot numbers as the kernel. Only PM makes this call.
*/
struct fproc *cp, *pp;
int i, parentno, childno;
mutex_t c_fp_lock;
/* Check up-to-dateness of fproc. */
okendpt(pproc, &parentno);
/* PM gives child endpoint, which implies process slot information.
* Don't call isokendpt, because that will verify if the endpoint
* number is correct in fproc, which it won't be.
*/
childno = _ENDPOINT_P(cproc);
if (childno < 0 || childno >= NR_PROCS)
panic("VFS: bogus child for forking: %d", cproc);
if (fproc[childno].fp_pid != PID_FREE)
panic("VFS: forking on top of in-use child: %d", childno);
/* Copy the parent's fproc struct to the child. */
/* However, the mutex variables belong to a slot and must stay the same. */
c_fp_lock = fproc[childno].fp_lock;
fproc[childno] = fproc[parentno];
fproc[childno].fp_lock = c_fp_lock;
/* Increase the counters in the 'filp' table. */
cp = &fproc[childno];
pp = &fproc[parentno];
for (i = 0; i < OPEN_MAX; i++)
if (cp->fp_filp[i] != NULL) cp->fp_filp[i]->filp_count++;
/* Fill in new process and endpoint id. */
cp->fp_pid = cpid;
cp->fp_endpoint = cproc;
/* A forking process never has an outstanding grant, as it isn't blocking on
* I/O. */
if (GRANT_VALID(pp->fp_grant)) {
panic("VFS: fork: pp (endpoint %d) has grant %d\n", pp->fp_endpoint,
pp->fp_grant);
}
if (GRANT_VALID(cp->fp_grant)) {
panic("VFS: fork: cp (endpoint %d) has grant %d\n", cp->fp_endpoint,
cp->fp_grant);
}
/* A child is not a process leader, not being revived, etc. */
cp->fp_flags = FP_NOFLAGS;
/* Record the fact that both root and working dir have another user. */
if (cp->fp_rd) dup_vnode(cp->fp_rd);
if (cp->fp_wd) dup_vnode(cp->fp_wd);
}
/*===========================================================================*
* free_proc *
*===========================================================================*/
static void free_proc(struct fproc *exiter, int flags)
{
int i;
register struct fproc *rfp;
register struct filp *rfilp;
register struct vnode *vp;
dev_t dev;
if (exiter->fp_endpoint == NONE)
panic("free_proc: already free");
if (fp_is_blocked(exiter))
unpause(exiter->fp_endpoint);
/* Loop on file descriptors, closing any that are open. */
for (i = 0; i < OPEN_MAX; i++) {
(void) close_fd(exiter, i);
}
/* Release root and working directories. */
if (exiter->fp_rd) { put_vnode(exiter->fp_rd); exiter->fp_rd = NULL; }
if (exiter->fp_wd) { put_vnode(exiter->fp_wd); exiter->fp_wd = NULL; }
/* The rest of these actions is only done when processes actually exit. */
if (!(flags & FP_EXITING)) return;
exiter->fp_flags |= FP_EXITING;
/* Check if any process is SUSPENDed on this driver.
* If a driver exits, unmap its entries in the dmap table.
* (unmapping has to be done after the first step, because the
* dmap table is used in the first step.)
*/
unsuspend_by_endpt(exiter->fp_endpoint);
dmap_unmap_by_endpt(exiter->fp_endpoint);
worker_stop_by_endpt(exiter->fp_endpoint); /* Unblock waiting threads */
vmnt_unmap_by_endpt(exiter->fp_endpoint); /* Invalidate open files if this
* was an active FS */
/* Invalidate endpoint number for error and sanity checks. */
exiter->fp_endpoint = NONE;
/* If a session leader exits and it has a controlling tty, then revoke
* access to its controlling tty from all other processes using it.
*/
if ((exiter->fp_flags & FP_SESLDR) && exiter->fp_tty != 0) {
dev = exiter->fp_tty;
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if(rfp->fp_pid == PID_FREE) continue;
if (rfp->fp_tty == dev) rfp->fp_tty = 0;
for (i = 0; i < OPEN_MAX; i++) {
if ((rfilp = rfp->fp_filp[i]) == NULL) continue;
if (rfilp->filp_mode == FILP_CLOSED) continue;
vp = rfilp->filp_vno;
if (!S_ISCHR(vp->v_mode)) continue;
if ((dev_t) vp->v_sdev != dev) continue;
lock_filp(rfilp, VNODE_READ);
(void) dev_close(dev, rfilp-filp); /* Ignore any errors, even
* SUSPEND. */
rfilp->filp_mode = FILP_CLOSED;
unlock_filp(rfilp);
}
}
}
/* Exit done. Mark slot as free. */
exiter->fp_pid = PID_FREE;
if (exiter->fp_flags & FP_PENDING)
pending--; /* No longer pending job, not going to do it */
exiter->fp_flags = FP_NOFLAGS;
}
/*===========================================================================*
* pm_exit *
*===========================================================================*/
void pm_exit(proc)
int proc;
{
/* Perform the file system portion of the exit(status) system call. */
int exitee_p;
/* Nevertheless, pretend that the call came from the user. */
okendpt(proc, &exitee_p);
fp = &fproc[exitee_p];
free_proc(fp, FP_EXITING);
}
/*===========================================================================*
* pm_setgid *
*===========================================================================*/
void pm_setgid(proc_e, egid, rgid)
int proc_e;
int egid;
int rgid;
{
register struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effgid = egid;
tfp->fp_realgid = rgid;
}
/*===========================================================================*
* pm_setgroups *
*===========================================================================*/
void pm_setgroups(proc_e, ngroups, groups)
int proc_e;
int ngroups;
gid_t *groups;
{
struct fproc *rfp;
int slot;
okendpt(proc_e, &slot);
rfp = &fproc[slot];
if (ngroups * sizeof(gid_t) > sizeof(rfp->fp_sgroups))
panic("VFS: pm_setgroups: too much data to copy");
if (sys_datacopy(who_e, (vir_bytes) groups, SELF, (vir_bytes) rfp->fp_sgroups,
ngroups * sizeof(gid_t)) == OK) {
rfp->fp_ngroups = ngroups;
} else
panic("VFS: pm_setgroups: datacopy failed");
}
/*===========================================================================*
* pm_setuid *
*===========================================================================*/
void pm_setuid(proc_e, euid, ruid)
int proc_e;
int euid;
int ruid;
{
struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effuid = euid;
tfp->fp_realuid = ruid;
}
/*===========================================================================*
* do_svrctl *
*===========================================================================*/
int do_svrctl()
{
unsigned int svrctl;
vir_bytes ptr;
svrctl = job_m_in.svrctl_req;
ptr = (vir_bytes) job_m_in.svrctl_argp;
if (((svrctl >> 8) & 0xFF) != 'M') return(EINVAL);
switch (svrctl) {
case VFSSETPARAM:
case VFSGETPARAM:
{
struct sysgetenv sysgetenv;
char search_key[64];
char val[64];
int r, s;
/* Copy sysgetenv structure to VFS */
if (sys_datacopy(who_e, ptr, SELF, (vir_bytes) &sysgetenv,
sizeof(sysgetenv)) != OK)
return(EFAULT);
/* Basic sanity checking */
if (svrctl == VFSSETPARAM) {
if (sysgetenv.keylen <= 0 ||
sysgetenv.keylen > (sizeof(search_key) - 1) ||
sysgetenv.vallen <= 0 ||
sysgetenv.vallen >= sizeof(val)) {
return(EINVAL);
}
}
/* Copy parameter "key" */
if ((s = sys_datacopy(who_e, (vir_bytes) sysgetenv.key,
SELF, (vir_bytes) search_key,
sysgetenv.keylen)) != OK)
return(s);
search_key[sysgetenv.keylen] = '\0'; /* Limit string */
/* Is it a parameter we know? */
if (svrctl == VFSSETPARAM) {
if (!strcmp(search_key, "verbose")) {
int verbose_val;
if ((s = sys_datacopy(who_e,
(vir_bytes) sysgetenv.val, SELF,
(vir_bytes) &val, sysgetenv.vallen)) != OK)
return(s);
val[sysgetenv.vallen] = '\0'; /* Limit string */
verbose_val = atoi(val);
if (verbose_val < 0 || verbose_val > 4) {
return(EINVAL);
}
verbose = verbose_val;
r = OK;
} else {
r = ESRCH;
}
} else { /* VFSGETPARAM */
char small_buf[60];
r = ESRCH;
if (!strcmp(search_key, "print_traces")) {
mthread_stacktraces();
sysgetenv.val = 0;
sysgetenv.vallen = 0;
r = OK;
} else if (!strcmp(search_key, "active_threads")) {
int active = NR_WTHREADS - worker_available();
snprintf(small_buf, sizeof(small_buf) - 1,
"%d", active);
sysgetenv.vallen = strlen(small_buf);
r = OK;
}
if (r == OK) {
if ((s = sys_datacopy(SELF,
(vir_bytes) &sysgetenv, who_e, ptr,
sizeof(sysgetenv))) != OK)
return(s);
if (sysgetenv.val != 0) {
if ((s = sys_datacopy(SELF,
(vir_bytes) small_buf, who_e,
(vir_bytes) sysgetenv.val,
sysgetenv.vallen)) != OK)
return(s);
}
}
}
return(r);
}
default:
return(EINVAL);
}
}
/*===========================================================================*
* pm_dumpcore *
*===========================================================================*/
int pm_dumpcore(endpoint_t proc_e, int csig, vir_bytes exe_name)
{
int slot, r = OK, core_fd;
struct filp *f;
char core_path[PATH_MAX];
char proc_name[PROC_NAME_LEN];
okendpt(proc_e, &slot);
fp = &fproc[slot];
/* if a process is blocked, scratch(fp).file.fd_nr holds the fd it's blocked
* on. free it up for use by common_open().
*/
if (fp_is_blocked(fp))
unpause(fp->fp_endpoint);
/* open core file */
snprintf(core_path, PATH_MAX, "%s.%d", CORE_NAME, fp->fp_pid);
core_fd = common_open(core_path, O_WRONLY | O_CREAT | O_TRUNC, CORE_MODE);
if (core_fd < 0) { r = core_fd; goto core_exit; }
/* get process' name */
r = sys_datacopy(PM_PROC_NR, exe_name, VFS_PROC_NR, (vir_bytes) proc_name,
PROC_NAME_LEN);
if (r != OK) goto core_exit;
proc_name[PROC_NAME_LEN - 1] = '\0';
if ((f = get_filp(core_fd, VNODE_WRITE)) == NULL) { r=EBADF; goto core_exit; }
write_elf_core_file(f, csig, proc_name);
unlock_filp(f);
(void) close_fd(fp, core_fd); /* ignore failure, we're exiting anyway */
core_exit:
if(csig)
free_proc(fp, FP_EXITING);
return(r);
}
/*===========================================================================*
* ds_event *
*===========================================================================*/
void *
ds_event(void *arg)
{
char key[DS_MAX_KEYLEN];
char *blkdrv_prefix = "drv.blk.";
char *chrdrv_prefix = "drv.chr.";
u32_t value;
int type, r, is_blk;
endpoint_t owner_endpoint;
struct job my_job;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
/* Get the event and the owner from DS. */
while ((r = ds_check(key, &type, &owner_endpoint)) == OK) {
/* Only check for block and character driver up events. */
if (!strncmp(key, blkdrv_prefix, strlen(blkdrv_prefix))) {
is_blk = TRUE;
} else if (!strncmp(key, chrdrv_prefix, strlen(chrdrv_prefix))) {
is_blk = FALSE;
} else {
continue;
}
if ((r = ds_retrieve_u32(key, &value)) != OK) {
printf("VFS: ds_event: ds_retrieve_u32 failed\n");
break;
}
if (value != DS_DRIVER_UP) continue;
/* Perform up. */
dmap_endpt_up(owner_endpoint, is_blk);
}
if (r != ENOENT) printf("VFS: ds_event: ds_check failed: %d\n", r);
thread_cleanup(NULL);
return(NULL);
}