ac9ab099c8
- clean up kernel section of minix/com.h somewhat - remove ALLOCMEM and VM_ALLOCMEM calls - remove non-safecopy and minix-vmd support from Inet - remove SYS_VIRVCOPY and SYS_PHYSVCOPY calls - remove obsolete segment encoding in SYS_SAFECOPY* - remove DEVCTL call, svrctl(FSDEVUNMAP), map_driverX - remove declarations of unimplemented svrctl requests - remove everything related to swapping to disk - remove floppysetup.sh - remove traces of rescue device - update DESCRIBE.sh with new devices - some other small changes
413 lines
11 KiB
C
413 lines
11 KiB
C
/* readclock - read the real time clock Authors: T. Holm & E. Froese
|
|
*
|
|
* Changed to be user-space driver.
|
|
*/
|
|
|
|
/************************************************************************/
|
|
/* */
|
|
/* readclock.c */
|
|
/* */
|
|
/* Read the clock value from the 64 byte CMOS RAM */
|
|
/* area, then set system time. */
|
|
/* */
|
|
/* If the machine ID byte is 0xFC or 0xF8, the device */
|
|
/* /dev/mem exists and can be opened for reading, */
|
|
/* and no errors in the CMOS RAM are reported by the */
|
|
/* RTC, then the time is read from the clock RAM */
|
|
/* area maintained by the RTC. */
|
|
/* */
|
|
/* The clock RAM values are decoded and fed to mktime */
|
|
/* to make a time_t value, then stime(2) is called. */
|
|
/* */
|
|
/* This fails if: */
|
|
/* */
|
|
/* If the machine ID does not match 0xFC or 0xF8 (no */
|
|
/* error message.) */
|
|
/* */
|
|
/* If the machine ID is 0xFC or 0xF8 and /dev/mem */
|
|
/* is missing, or cannot be accessed. */
|
|
/* */
|
|
/* If the RTC reports errors in the CMOS RAM. */
|
|
/* */
|
|
/************************************************************************/
|
|
/* origination 1987-Dec-29 efth */
|
|
/* robustness 1990-Oct-06 C. Sylvain */
|
|
/* incorp. B. Evans ideas 1991-Jul-06 C. Sylvain */
|
|
/* set time & calibrate 1992-Dec-17 Kees J. Bot */
|
|
/* clock timezone 1993-Oct-10 Kees J. Bot */
|
|
/* set CMOS clock 1994-Jun-12 Kees J. Bot */
|
|
/************************************************************************/
|
|
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <minix/type.h>
|
|
#include <minix/const.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/com.h>
|
|
#include <minix/portio.h>
|
|
#include <ibm/cmos.h>
|
|
#include <sys/svrctl.h>
|
|
|
|
int nflag = 0; /* Tell what, but don't do it. */
|
|
int wflag = 0; /* Set the CMOS clock. */
|
|
int Wflag = 0; /* Also set the CMOS clock register bits. */
|
|
int y2kflag = 0; /* Interpret 1980 as 2000 for clock with Y2K bug. */
|
|
|
|
char clocktz[128]; /* Timezone of the clock. */
|
|
|
|
#define MACH_ID_ADDR 0xFFFFE /* BIOS Machine ID at FFFF:000E */
|
|
|
|
#define PC_AT 0xFC /* Machine ID byte for PC/AT,
|
|
PC/XT286, and PS/2 Models 50, 60 */
|
|
#define PS_386 0xF8 /* Machine ID byte for PS/2 Model 80 */
|
|
|
|
/* Manufacturers usually use the ID value of the IBM model they emulate.
|
|
* However some manufacturers, notably HP and COMPAQ, have had different
|
|
* ideas in the past.
|
|
*
|
|
* Machine ID byte information source:
|
|
* _The Programmer's PC Sourcebook_ by Thom Hogan,
|
|
* published by Microsoft Press
|
|
*/
|
|
|
|
void errmsg(char *s);
|
|
void get_time(struct tm *t);
|
|
int read_register(int reg_addr);
|
|
void set_time(struct tm *t);
|
|
void write_register(int reg_addr, int value);
|
|
int bcd_to_dec(int n);
|
|
int dec_to_bcd(int n);
|
|
void usage(void);
|
|
|
|
/* SEF functions and variables. */
|
|
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
struct tm time1;
|
|
struct tm time2;
|
|
struct tm tmnow;
|
|
char date[64];
|
|
time_t now, rtc;
|
|
int i, s;
|
|
unsigned char mach_id, cmos_state;
|
|
struct sysgetenv sysgetenv;
|
|
|
|
/* SEF local startup. */
|
|
sef_local_startup();
|
|
|
|
if((s=sys_readbios(MACH_ID_ADDR, &mach_id, sizeof(mach_id))) != OK) {
|
|
printf("readclock: sys_readbios failed: %d.\n", s);
|
|
exit(1);
|
|
}
|
|
|
|
if (mach_id != PS_386 && mach_id != PC_AT) {
|
|
errmsg("Machine ID unknown." );
|
|
printf("Machine ID byte = %02x\n", mach_id );
|
|
|
|
exit(1);
|
|
}
|
|
|
|
cmos_state = read_register(CMOS_STATUS);
|
|
|
|
if (cmos_state & (CS_LOST_POWER | CS_BAD_CHKSUM | CS_BAD_TIME)) {
|
|
errmsg( "CMOS RAM error(s) found..." );
|
|
printf("CMOS state = 0x%02x\n", cmos_state );
|
|
|
|
if (cmos_state & CS_LOST_POWER)
|
|
errmsg( "RTC lost power. Reset CMOS RAM with SETUP." );
|
|
if (cmos_state & CS_BAD_CHKSUM)
|
|
errmsg( "CMOS RAM checksum is bad. Run SETUP." );
|
|
if (cmos_state & CS_BAD_TIME)
|
|
errmsg( "Time invalid in CMOS RAM. Reset clock." );
|
|
exit(1);
|
|
}
|
|
|
|
/* Process options. */
|
|
while (argc > 1) {
|
|
char *p = *++argv;
|
|
|
|
if (*p++ != '-') usage();
|
|
|
|
while (*p != 0) {
|
|
switch (*p++) {
|
|
case 'n': nflag = 1; break;
|
|
case 'w': wflag = 1; break;
|
|
case 'W': Wflag = 1; break;
|
|
case '2': y2kflag = 1; break;
|
|
default: usage();
|
|
}
|
|
}
|
|
argc--;
|
|
}
|
|
if (Wflag) wflag = 1; /* -W implies -w */
|
|
|
|
/* Read the CMOS real time clock. */
|
|
for (i = 0; i < 10; i++) {
|
|
get_time(&time1);
|
|
now = time(NULL);
|
|
|
|
time1.tm_isdst = -1; /* Do timezone calculations. */
|
|
time2 = time1;
|
|
|
|
rtc= mktime(&time1); /* Transform to a time_t. */
|
|
if (rtc != -1) break;
|
|
|
|
printf(
|
|
"readclock: Invalid time read from CMOS RTC: %d-%02d-%02d %02d:%02d:%02d\n",
|
|
time2.tm_year+1900, time2.tm_mon+1, time2.tm_mday,
|
|
time2.tm_hour, time2.tm_min, time2.tm_sec);
|
|
sleep(5);
|
|
}
|
|
if (i == 10) exit(1);
|
|
|
|
if (!wflag) {
|
|
/* Set system time. */
|
|
if (nflag) {
|
|
printf("stime(%lu)\n", (unsigned long) rtc);
|
|
} else {
|
|
if (stime(&rtc) < 0) {
|
|
errmsg( "Not allowed to set time." );
|
|
exit(1);
|
|
}
|
|
}
|
|
tmnow = *localtime(&rtc);
|
|
if (strftime(date, sizeof(date),
|
|
"%a %b %d %H:%M:%S %Z %Y", &tmnow) != 0) {
|
|
if (date[8] == '0') date[8]= ' ';
|
|
printf("%s\n", date);
|
|
}
|
|
} else {
|
|
/* Set the CMOS clock to the system time. */
|
|
tmnow = *localtime(&now);
|
|
if (nflag) {
|
|
printf("%04d-%02d-%02d %02d:%02d:%02d\n",
|
|
tmnow.tm_year + 1900,
|
|
tmnow.tm_mon + 1,
|
|
tmnow.tm_mday,
|
|
tmnow.tm_hour,
|
|
tmnow.tm_min,
|
|
tmnow.tm_sec);
|
|
} else {
|
|
set_time(&tmnow);
|
|
}
|
|
}
|
|
exit(0);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sef_local_startup *
|
|
*===========================================================================*/
|
|
PRIVATE void sef_local_startup()
|
|
{
|
|
/* Let SEF perform startup. */
|
|
sef_startup();
|
|
}
|
|
|
|
void errmsg(char *s)
|
|
{
|
|
static char *prompt = "readclock: ";
|
|
|
|
printf("%s%s\n", prompt, s);
|
|
prompt = "";
|
|
}
|
|
|
|
|
|
/***********************************************************************/
|
|
/* */
|
|
/* get_time( time ) */
|
|
/* */
|
|
/* Update the structure pointed to by time with the current time */
|
|
/* as read from CMOS RAM of the RTC. */
|
|
/* If necessary, the time is converted into a binary format before */
|
|
/* being stored in the structure. */
|
|
/* */
|
|
/***********************************************************************/
|
|
|
|
int dead;
|
|
void timeout(int sig) { dead= 1; }
|
|
|
|
void get_time(struct tm *t)
|
|
{
|
|
int osec, n;
|
|
unsigned long i;
|
|
struct sigaction sa;
|
|
|
|
/* Start a timer to keep us from getting stuck on a dead clock. */
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_flags = 0;
|
|
sa.sa_handler = timeout;
|
|
sigaction(SIGALRM, &sa, NULL);
|
|
dead = 0;
|
|
alarm(5);
|
|
|
|
do {
|
|
osec = -1;
|
|
n = 0;
|
|
do {
|
|
if (dead) {
|
|
printf("readclock: CMOS clock appears dead\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Clock update in progress? */
|
|
if (read_register(RTC_REG_A) & RTC_A_UIP) continue;
|
|
|
|
t->tm_sec = read_register(RTC_SEC);
|
|
if (t->tm_sec != osec) {
|
|
/* Seconds changed. First from -1, then because the
|
|
* clock ticked, which is what we're waiting for to
|
|
* get a precise reading.
|
|
*/
|
|
osec = t->tm_sec;
|
|
n++;
|
|
}
|
|
} while (n < 2);
|
|
|
|
/* Read the other registers. */
|
|
t->tm_min = read_register(RTC_MIN);
|
|
t->tm_hour = read_register(RTC_HOUR);
|
|
t->tm_mday = read_register(RTC_MDAY);
|
|
t->tm_mon = read_register(RTC_MONTH);
|
|
t->tm_year = read_register(RTC_YEAR);
|
|
|
|
/* Time stable? */
|
|
} while (read_register(RTC_SEC) != t->tm_sec
|
|
|| read_register(RTC_MIN) != t->tm_min
|
|
|| read_register(RTC_HOUR) != t->tm_hour
|
|
|| read_register(RTC_MDAY) != t->tm_mday
|
|
|| read_register(RTC_MONTH) != t->tm_mon
|
|
|| read_register(RTC_YEAR) != t->tm_year);
|
|
|
|
if ((read_register(RTC_REG_B) & RTC_B_DM_BCD) == 0) {
|
|
/* Convert BCD to binary (default RTC mode). */
|
|
t->tm_year = bcd_to_dec(t->tm_year);
|
|
t->tm_mon = bcd_to_dec(t->tm_mon);
|
|
t->tm_mday = bcd_to_dec(t->tm_mday);
|
|
t->tm_hour = bcd_to_dec(t->tm_hour);
|
|
t->tm_min = bcd_to_dec(t->tm_min);
|
|
t->tm_sec = bcd_to_dec(t->tm_sec);
|
|
}
|
|
t->tm_mon--; /* Counts from 0. */
|
|
|
|
/* Correct the year, good until 2080. */
|
|
if (t->tm_year < 80) t->tm_year += 100;
|
|
|
|
if (y2kflag) {
|
|
/* Clock with Y2K bug, interpret 1980 as 2000, good until 2020. */
|
|
if (t->tm_year < 100) t->tm_year += 20;
|
|
}
|
|
}
|
|
|
|
|
|
int read_register(int reg_addr)
|
|
{
|
|
u32_t r;
|
|
|
|
if(sys_outb(RTC_INDEX, reg_addr) != OK) {
|
|
printf("cmos: outb failed of %x\n", RTC_INDEX);
|
|
exit(1);
|
|
}
|
|
if(sys_inb(RTC_IO, &r) != OK) {
|
|
printf("cmos: inb failed of %x (index %x) failed\n", RTC_IO, reg_addr);
|
|
exit(1);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
/***********************************************************************/
|
|
/* */
|
|
/* set_time( time ) */
|
|
/* */
|
|
/* Set the CMOS RTC to the time found in the structure. */
|
|
/* */
|
|
/***********************************************************************/
|
|
|
|
void set_time(struct tm *t)
|
|
{
|
|
int regA, regB;
|
|
|
|
if (Wflag) {
|
|
/* Set A and B registers to their proper values according to the AT
|
|
* reference manual. (For if it gets messed up, but the BIOS doesn't
|
|
* repair it.)
|
|
*/
|
|
write_register(RTC_REG_A, RTC_A_DV_OK | RTC_A_RS_DEF);
|
|
write_register(RTC_REG_B, RTC_B_24);
|
|
}
|
|
|
|
/* Inhibit updates. */
|
|
regB= read_register(RTC_REG_B);
|
|
write_register(RTC_REG_B, regB | RTC_B_SET);
|
|
|
|
t->tm_mon++; /* Counts from 1. */
|
|
|
|
if (y2kflag) {
|
|
/* Set the clock back 20 years to avoid Y2K bug, good until 2020. */
|
|
if (t->tm_year >= 100) t->tm_year -= 20;
|
|
}
|
|
|
|
if ((regB & 0x04) == 0) {
|
|
/* Convert binary to BCD (default RTC mode) */
|
|
t->tm_year = dec_to_bcd(t->tm_year % 100);
|
|
t->tm_mon = dec_to_bcd(t->tm_mon);
|
|
t->tm_mday = dec_to_bcd(t->tm_mday);
|
|
t->tm_hour = dec_to_bcd(t->tm_hour);
|
|
t->tm_min = dec_to_bcd(t->tm_min);
|
|
t->tm_sec = dec_to_bcd(t->tm_sec);
|
|
}
|
|
write_register(RTC_YEAR, t->tm_year);
|
|
write_register(RTC_MONTH, t->tm_mon);
|
|
write_register(RTC_MDAY, t->tm_mday);
|
|
write_register(RTC_HOUR, t->tm_hour);
|
|
write_register(RTC_MIN, t->tm_min);
|
|
write_register(RTC_SEC, t->tm_sec);
|
|
|
|
/* Stop the clock. */
|
|
regA= read_register(RTC_REG_A);
|
|
write_register(RTC_REG_A, regA | RTC_A_DV_STOP);
|
|
|
|
/* Allow updates and restart the clock. */
|
|
write_register(RTC_REG_B, regB);
|
|
write_register(RTC_REG_A, regA);
|
|
}
|
|
|
|
|
|
void write_register(int reg_addr, int value)
|
|
{
|
|
if(sys_outb(RTC_INDEX, reg_addr) != OK) {
|
|
printf("cmos: outb failed of %x\n", RTC_INDEX);
|
|
exit(1);
|
|
}
|
|
if(sys_outb(RTC_IO, value) != OK) {
|
|
printf("cmos: outb failed of %x (index %x)\n", RTC_IO, reg_addr);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int bcd_to_dec(int n)
|
|
{
|
|
return ((n >> 4) & 0x0F) * 10 + (n & 0x0F);
|
|
}
|
|
|
|
int dec_to_bcd(int n)
|
|
{
|
|
return ((n / 10) << 4) | (n % 10);
|
|
}
|
|
|
|
void usage(void)
|
|
{
|
|
printf("Usage: readclock [-nwW2]\n");
|
|
exit(1);
|
|
}
|