2fe8fb192f
There is important information about booting non-ack images in docs/UPDATING. ack/aout-format images can't be built any more, and booting clang/ELF-format ones is a little different. Updating to the new boot monitor is recommended. Changes in this commit: . drop boot monitor -> allowing dropping ack support . facility to copy ELF boot files to /boot so that old boot monitor can still boot fairly easily, see UPDATING . no more ack-format libraries -> single-case libraries . some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases . drop several ack toolchain commands, but not all support commands (e.g. aal is gone but acksize is not yet). . a few libc files moved to netbsd libc dir . new /bin/date as minix date used code in libc/ . test compile fix . harmonize includes . /usr/lib is no longer special: without ack, /usr/lib plays no kind of special bootstrapping role any more and bootstrapping is done exclusively through packages, so releases depend even less on the state of the machine making them now. . rename nbsd_lib* to lib* . reduce mtree
398 lines
12 KiB
C
398 lines
12 KiB
C
/* $NetBSD: n_erf.c,v 1.7 2005/05/03 04:18:32 matt Exp $ */
|
|
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
#if 0
|
|
static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
|
|
#endif
|
|
#endif /* not lint */
|
|
|
|
#include "mathimpl.h"
|
|
|
|
/* Modified Nov 30, 1992 P. McILROY:
|
|
* Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
|
|
* Replaced even+odd with direct calculation for x < .84375,
|
|
* to avoid destructive cancellation.
|
|
*
|
|
* Performance of erfc(x):
|
|
* In 300000 trials in the range [.83, .84375] the
|
|
* maximum observed error was 3.6ulp.
|
|
*
|
|
* In [.84735,1.25] the maximum observed error was <2.5ulp in
|
|
* 100000 runs in the range [1.2, 1.25].
|
|
*
|
|
* In [1.25,26] (Not including subnormal results)
|
|
* the error is < 1.7ulp.
|
|
*/
|
|
|
|
/* double erf(double x)
|
|
* double erfc(double x)
|
|
* x
|
|
* 2 |\
|
|
* erf(x) = --------- | exp(-t*t)dt
|
|
* sqrt(pi) \|
|
|
* 0
|
|
*
|
|
* erfc(x) = 1-erf(x)
|
|
*
|
|
* Method:
|
|
* 1. Reduce x to |x| by erf(-x) = -erf(x)
|
|
* 2. For x in [0, 0.84375]
|
|
* erf(x) = x + x*P(x^2)
|
|
* erfc(x) = 1 - erf(x) if x<=0.25
|
|
* = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
|
|
* where
|
|
* 2 2 4 20
|
|
* P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
|
|
* is an approximation to (erf(x)-x)/x with precision
|
|
*
|
|
* -56.45
|
|
* | P - (erf(x)-x)/x | <= 2
|
|
*
|
|
*
|
|
* Remark. The formula is derived by noting
|
|
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
|
* and that
|
|
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
|
* is close to one. The interval is chosen because the fixed
|
|
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
|
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
|
* guarantee the error is less than one ulp for erf.
|
|
*
|
|
* 3. For x in [0.84375,1.25], let s = x - 1, and
|
|
* c = 0.84506291151 rounded to single (24 bits)
|
|
* erf(x) = c + P1(s)/Q1(s)
|
|
* erfc(x) = (1-c) - P1(s)/Q1(s)
|
|
* |P1/Q1 - (erf(x)-c)| <= 2**-59.06
|
|
* Remark: here we use the taylor series expansion at x=1.
|
|
* erf(1+s) = erf(1) + s*Poly(s)
|
|
* = 0.845.. + P1(s)/Q1(s)
|
|
* That is, we use rational approximation to approximate
|
|
* erf(1+s) - (c = (single)0.84506291151)
|
|
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
|
* where
|
|
* P1(s) = degree 6 poly in s
|
|
* Q1(s) = degree 6 poly in s
|
|
*
|
|
* 4. For x in [1.25, 2]; [2, 4]
|
|
* erf(x) = 1.0 - tiny
|
|
* erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
|
|
*
|
|
* Where z = 1/(x*x), R is degree 9, and S is degree 3;
|
|
*
|
|
* 5. For x in [4,28]
|
|
* erf(x) = 1.0 - tiny
|
|
* erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
|
|
*
|
|
* Where P is degree 14 polynomial in 1/(x*x).
|
|
*
|
|
* Notes:
|
|
* Here 4 and 5 make use of the asymptotic series
|
|
* exp(-x*x)
|
|
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
|
|
* x*sqrt(pi)
|
|
*
|
|
* where for z = 1/(x*x)
|
|
* P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
|
|
*
|
|
* Thus we use rational approximation to approximate
|
|
* erfc*x*exp(x*x) ~ 1/sqrt(pi);
|
|
*
|
|
* The error bound for the target function, G(z) for
|
|
* the interval
|
|
* [4, 28]:
|
|
* |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
|
|
* for [2, 4]:
|
|
* |R(z)/S(z) - G(z)| < 2**(-58.24)
|
|
* for [1.25, 2]:
|
|
* |R(z)/S(z) - G(z)| < 2**(-58.12)
|
|
*
|
|
* 6. For inf > x >= 28
|
|
* erf(x) = 1 - tiny (raise inexact)
|
|
* erfc(x) = tiny*tiny (raise underflow)
|
|
*
|
|
* 7. Special cases:
|
|
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
|
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
|
* erfc/erf(NaN) is NaN
|
|
*/
|
|
|
|
#if defined(__vax__) || defined(tahoe)
|
|
#define _IEEE 0
|
|
#define TRUNC(x) (x) = (float)(x)
|
|
#else
|
|
#define _IEEE 1
|
|
#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
|
|
#define infnan(x) 0.0
|
|
#endif
|
|
|
|
#ifdef _IEEE_LIBM
|
|
/*
|
|
* redefining "___function" to "function" in _IEEE_LIBM mode
|
|
*/
|
|
#include "ieee_libm.h"
|
|
#endif
|
|
|
|
static const double
|
|
tiny = 1e-300,
|
|
half = 0.5,
|
|
one = 1.0,
|
|
two = 2.0,
|
|
c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
|
|
/*
|
|
* Coefficients for approximation to erf in [0,0.84375]
|
|
*/
|
|
p0t8 = 1.02703333676410051049867154944018394163280,
|
|
p0 = 1.283791670955125638123339436800229927041e-0001,
|
|
p1 = -3.761263890318340796574473028946097022260e-0001,
|
|
p2 = 1.128379167093567004871858633779992337238e-0001,
|
|
p3 = -2.686617064084433642889526516177508374437e-0002,
|
|
p4 = 5.223977576966219409445780927846432273191e-0003,
|
|
p5 = -8.548323822001639515038738961618255438422e-0004,
|
|
p6 = 1.205520092530505090384383082516403772317e-0004,
|
|
p7 = -1.492214100762529635365672665955239554276e-0005,
|
|
p8 = 1.640186161764254363152286358441771740838e-0006,
|
|
p9 = -1.571599331700515057841960987689515895479e-0007,
|
|
p10= 1.073087585213621540635426191486561494058e-0008;
|
|
/*
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
|
*/
|
|
static const double
|
|
pa0 = -2.362118560752659485957248365514511540287e-0003,
|
|
pa1 = 4.148561186837483359654781492060070469522e-0001,
|
|
pa2 = -3.722078760357013107593507594535478633044e-0001,
|
|
pa3 = 3.183466199011617316853636418691420262160e-0001,
|
|
pa4 = -1.108946942823966771253985510891237782544e-0001,
|
|
pa5 = 3.547830432561823343969797140537411825179e-0002,
|
|
pa6 = -2.166375594868790886906539848893221184820e-0003,
|
|
qa1 = 1.064208804008442270765369280952419863524e-0001,
|
|
qa2 = 5.403979177021710663441167681878575087235e-0001,
|
|
qa3 = 7.182865441419627066207655332170665812023e-0002,
|
|
qa4 = 1.261712198087616469108438860983447773726e-0001,
|
|
qa5 = 1.363708391202905087876983523620537833157e-0002,
|
|
qa6 = 1.198449984679910764099772682882189711364e-0002;
|
|
/*
|
|
* log(sqrt(pi)) for large x expansions.
|
|
* The tail (lsqrtPI_lo) is included in the rational
|
|
* approximations.
|
|
*/
|
|
static const double
|
|
lsqrtPI_hi = .5723649429247000819387380943226;
|
|
/*
|
|
* lsqrtPI_lo = .000000000000000005132975581353913;
|
|
*
|
|
* Coefficients for approximation to erfc in [2, 4]
|
|
*/
|
|
static const double
|
|
rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
|
|
rb1 = 2.15592846101742183841910806188e-008,
|
|
rb2 = 6.24998557732436510470108714799e-001,
|
|
rb3 = 8.24849222231141787631258921465e+000,
|
|
rb4 = 2.63974967372233173534823436057e+001,
|
|
rb5 = 9.86383092541570505318304640241e+000,
|
|
rb6 = -7.28024154841991322228977878694e+000,
|
|
rb7 = 5.96303287280680116566600190708e+000,
|
|
rb8 = -4.40070358507372993983608466806e+000,
|
|
rb9 = 2.39923700182518073731330332521e+000,
|
|
rb10 = -6.89257464785841156285073338950e-001,
|
|
sb1 = 1.56641558965626774835300238919e+001,
|
|
sb2 = 7.20522741000949622502957936376e+001,
|
|
sb3 = 9.60121069770492994166488642804e+001;
|
|
/*
|
|
* Coefficients for approximation to erfc in [1.25, 2]
|
|
*/
|
|
static const double
|
|
rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
|
|
rc1 = 1.28735722546372485255126993930e-005,
|
|
rc2 = 6.24664954087883916855616917019e-001,
|
|
rc3 = 4.69798884785807402408863708843e+000,
|
|
rc4 = 7.61618295853929705430118701770e+000,
|
|
rc5 = 9.15640208659364240872946538730e-001,
|
|
rc6 = -3.59753040425048631334448145935e-001,
|
|
rc7 = 1.42862267989304403403849619281e-001,
|
|
rc8 = -4.74392758811439801958087514322e-002,
|
|
rc9 = 1.09964787987580810135757047874e-002,
|
|
rc10 = -1.28856240494889325194638463046e-003,
|
|
sc1 = 9.97395106984001955652274773456e+000,
|
|
sc2 = 2.80952153365721279953959310660e+001,
|
|
sc3 = 2.19826478142545234106819407316e+001;
|
|
/*
|
|
* Coefficients for approximation to erfc in [4,28]
|
|
*/
|
|
static const double
|
|
rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
|
|
rd1 = -4.99999999999640086151350330820e-001,
|
|
rd2 = 6.24999999772906433825880867516e-001,
|
|
rd3 = -1.54166659428052432723177389562e+000,
|
|
rd4 = 5.51561147405411844601985649206e+000,
|
|
rd5 = -2.55046307982949826964613748714e+001,
|
|
rd6 = 1.43631424382843846387913799845e+002,
|
|
rd7 = -9.45789244999420134263345971704e+002,
|
|
rd8 = 6.94834146607051206956384703517e+003,
|
|
rd9 = -5.27176414235983393155038356781e+004,
|
|
rd10 = 3.68530281128672766499221324921e+005,
|
|
rd11 = -2.06466642800404317677021026611e+006,
|
|
rd12 = 7.78293889471135381609201431274e+006,
|
|
rd13 = -1.42821001129434127360582351685e+007;
|
|
|
|
double
|
|
erf(double x)
|
|
{
|
|
double R,S,P,Q,ax,s,y,z,r;
|
|
if(!finite(x)) { /* erf(nan)=nan */
|
|
if (isnan(x))
|
|
return(x);
|
|
return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
|
|
}
|
|
if ((ax = x) < 0)
|
|
ax = - ax;
|
|
if (ax < .84375) {
|
|
if (ax < 3.7e-09) {
|
|
if (ax < 1.0e-308)
|
|
return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
|
|
return x + p0*x;
|
|
}
|
|
y = x*x;
|
|
r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
|
|
y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
|
|
return x + x*(p0+r);
|
|
}
|
|
if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
|
|
s = fabs(x)-one;
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
|
if (x>=0)
|
|
return (c + P/Q);
|
|
else
|
|
return (-c - P/Q);
|
|
}
|
|
if (ax >= 6.0) { /* inf>|x|>=6 */
|
|
if (x >= 0.0)
|
|
return (one-tiny);
|
|
else
|
|
return (tiny-one);
|
|
}
|
|
/* 1.25 <= |x| < 6 */
|
|
z = -ax*ax;
|
|
s = -one/z;
|
|
if (ax < 2.0) {
|
|
R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
|
|
s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
|
|
S = one+s*(sc1+s*(sc2+s*sc3));
|
|
} else {
|
|
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
|
|
s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
|
|
S = one+s*(sb1+s*(sb2+s*sb3));
|
|
}
|
|
y = (R/S -.5*s) - lsqrtPI_hi;
|
|
z += y;
|
|
z = exp(z)/ax;
|
|
if (x >= 0)
|
|
return (one-z);
|
|
else
|
|
return (z-one);
|
|
}
|
|
|
|
double
|
|
erfc(double x)
|
|
{
|
|
double R,S,P,Q,s,ax,y,z,r;
|
|
if (!finite(x)) {
|
|
if (isnan(x)) /* erfc(NaN) = NaN */
|
|
return(x);
|
|
else if (x > 0) /* erfc(+-inf)=0,2 */
|
|
return 0.0;
|
|
else
|
|
return 2.0;
|
|
}
|
|
if ((ax = x) < 0)
|
|
ax = -ax;
|
|
if (ax < .84375) { /* |x|<0.84375 */
|
|
if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
|
|
return one-x;
|
|
y = x*x;
|
|
r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
|
|
y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
|
|
if (ax < .0625) { /* |x|<2**-4 */
|
|
return (one-(x+x*(p0+r)));
|
|
} else {
|
|
r = x*(p0+r);
|
|
r += (x-half);
|
|
return (half - r);
|
|
}
|
|
}
|
|
if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
|
|
s = ax-one;
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
|
if (x>=0) {
|
|
z = one-c; return z - P/Q;
|
|
} else {
|
|
z = c+P/Q; return one+z;
|
|
}
|
|
}
|
|
if (ax >= 28) { /* Out of range */
|
|
if (x>0)
|
|
return (tiny*tiny);
|
|
else
|
|
return (two-tiny);
|
|
}
|
|
z = ax;
|
|
TRUNC(z);
|
|
y = z - ax; y *= (ax+z);
|
|
z *= -z; /* Here z + y = -x^2 */
|
|
s = one/(-z-y); /* 1/(x*x) */
|
|
if (ax >= 4) { /* 6 <= ax */
|
|
R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
|
|
s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
|
|
+s*(rd11+s*(rd12+s*rd13))))))))))));
|
|
y += rd0;
|
|
} else if (ax >= 2) {
|
|
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
|
|
s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
|
|
S = one+s*(sb1+s*(sb2+s*sb3));
|
|
y += R/S;
|
|
R = -.5*s;
|
|
} else {
|
|
R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
|
|
s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
|
|
S = one+s*(sc1+s*(sc2+s*sc3));
|
|
y += R/S;
|
|
R = -.5*s;
|
|
}
|
|
/* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
|
|
s = ((R + y) - lsqrtPI_hi) + z;
|
|
y = (((z-s) - lsqrtPI_hi) + R) + y;
|
|
r = __exp__D(s, y)/x;
|
|
if (x>0)
|
|
return r;
|
|
else
|
|
return two-r;
|
|
}
|